
MODIFIED TEMPORAL KEY INTEGRITY PROTOCOL FOR
EFFICIENT WIRELESS NETWORK SECURITY

M. Razvi Doomun* and K. M. Sunjiv Soyjaudah
Faculty of Engineering, University of Mauritius, Reduit

Keywords: TKIP, Wireless Security, Key Mixing, Security Overhead.

Abstract: Temporal Key Integrity Protocol (TKIP) is the IEEE TaskGroupi’s solution for the security loop holes
present in the already widely deployed 802.11 hardware. It is a set of algorithms that wrap WEP to give the
best possible solution given design constraints such as paucity of the CPU cycles, hardwiring of the WEP
encryption algorithm and software upgrade dependent. Thus, TKIP is significantly more difficult and
challenging to implement and optimise than WEP. The objective of this research is to examine the
cost/benefit of TKIP security mechanisms and optimise its implementation to reduce security overhead for
better performance. We propose a modified TKIP (MoTKIP) with improved packet encapsulation and
decapsulation procedure that reduces computation and packet overhead in classic TKIP substantially and
optimises total wireless network throughput rates.

1 INTRODUCTION

Most current wireless networks are based on widely
adopted IEEE 802.11 standard (Stallings, 2003).
Unfortunately the initial security specification,
called Wired Equivalent Privacy (WEP), in this
standard has been proved insecure and is thus
inadequate for protecting a wireless network from
eavesdropping and other attacks (Borisov, Goldberg,
& Wagner, 2001). TKIP mechanism is a transition
method used to strengthen security of IEEE 802.11
WLAN and is implemented through software
upgrades using RC4 of WEP as its core, but
introduces changes in the areas of message integrity,
IV creation, and key management. However, the
additional computation complexity and overhead
that TKIP key mixing and encapsulation process
impose have received little research attention. Even
so, cryptographic review thus far suggests it
achieves its fundamental design goals (Al Naamany,
Shidhani & Bourdoucen, 2006).

The TKIP encapsulation process and message

integrity check increase the size of the transmitted
packets, which in turn lower the effective bandwidth
and increase the communication cost also.
Consequently, reducing security overhead and
power consumption are current research challenges
to wireless security designers so as to extend the
operating lifetime of battery powered mobile

devices. The aim of this work is to study TKIP and
optimally trade between security overhead and
power consumption to design a modified TKIP
(MoTKIP) with low packet encapsulation and
decapsulation overhead. The rest of the paper is
organized as follows: Section 2 gives a succinct
account of literature and related work in the field of
wireless security optimization. We present a brief
overview of the TKIP algorithm in Section 3. The
MoTKIP packets and optimised TKIP key mixing
are described in Section 4. Then, in section 5 a
security overhead comparison is performed. This is
followed by concluding remarks in Section 6.

2 RELATED WORK

In the literature (Prasithsangaree & Krishnamurthy,
2004), most efficient wireless security algorithms
are designed based on models which do not take into
account the security performance together with the
computational overhead. Research by Jones et al.
(Jones, Sivalingam, Agrawal, & Chen. 2001) and Lettieri
et al. (Lettieri & Srivastava, 1999) have shown that one
of the main causes of unnecessary energy
consumption is overhead of security and
communication protocol over a wireless channel.
Two basic principles that have been suggested to
achieving an energy efficient system are to avoid
unnecessary actions and reduce the amount of data

151
Razvi Doomun M. and M. Sunjiv Soyjaudah K. (2007).
MODIFIED TEMPORAL KEY INTEGRITY PROTOCOL FOR EFFICIENT WIRELESS NETWORK SECURITY.
In Proceedings of the Second International Conference on Security and Cryptography, pages 151-156
DOI: 10.5220/0002125601510156
Copyright c© SciTePress

traffic (Havinga & Smit, 2001). However, most
existing wireless security protocols use resources
avidly and limit the efficient use of wireless node
resources in several ways. Wireless security
protocols significantly increase the amount of
overhead required to secure the network, thereby
decreasing the data rates of wireless links because
additional traffic is usually needed for authentication
or verification services (Thomas, Al-Begain &
Hughes, 2005). Another prior work from Ganesan et
al. (Ganesan, Venugopalan, Peddabachagari, Dean,
Mueller & Sichitiu, 2003) assesses the feasibility of
different encryption schemes for a range of
embedded architectures using execution time
overhead measurements. Potlapally et al.
(Potlapally, Ravi, Raghunathan & Jha, 2003.)
investigated energy consumption of different ciphers
on the Secure Sockets Layer. Consequently, our
work consolidates all earlier work on 802.11
wireless securities and adds to those research works
to fill this void of, investigating and answering the
question of designing low overhead TKIP
encryption for existing 802.11 hardware

3 OVERVIEW OF TKIP

TKIP increases the size of the initialisation vector
(IV) used in the encapsulation process to an
effective 48 bits. This significantly decreases the
probability of an IV reuse by increasing the size of
possible IVs to 248 as opposed to 224 possible WEP
IV values. Increasing the IV length also addresses
WEP’s weak key vulnerability. It achieves this by
implementing a very innovative way of splitting the
IV into two parts. The first 16 bits of the least
significant part of the IV are padded to create a 24-
bit IV in a way that avoids the use of weak keys.
This process is called per-packet key mixing. This
IV is joined to a mixed key that is calculated using
the remaining most significant 32 bits of the TKIP
IV as well as the MAC-address of the wireless LAN
card to generate the key. It ensures that every packet
has a different set of IVs. Thus, one of the main
problems of the WEP algorithm is solved, namely
that every station belonging to the network is using
the same key for encrypting data.

TKIP uses a temporal key (TK) and the packet
sequence number to arrive at a per-packet key and
IV. The temporal key is a 128-bit shared secret
between transmitter and receiver that has a fixed
lifetime. TKIP uses a two-phase key mixing
operation to derive the unique per-packet key

stream, and each phase fixes one particular flaw in
WEP. Phase 1 eliminates the same key from use by
all links and Phase 2 de-correlates the public IV
from known per-packet key.

Phase 1 mixes 128-bit Temporal Key (TK) with the
first 4 bytes of IV and the sender’s 48-bit MAC
address, and generates an intermediate key P1K. In
this step, the 48-bit MAC address of the transmitter
is iteratively XORed with the 128-bit TK. Each byte
of the result is used to index an S-box, an invertible
non- linear substitution table, to produce the 80-bit
intermediate key P1K. This intermediate key is
computed once every 216 packets and is likely to be
cached. For performance optimization, intermediate
key P1K is computed only when the temporal key is
changed/updated and most of the time its value is
saved on memory. By mixing the MAC address into
the temporal key, Phase 1 ensures that various
stations using the same temporal key generate
different key streams. Hence, this prevents key
stream reuse due to cross-station IV collision.

Phase 2 takes input P1K [80 bits] with TK (128 bits)
and the last 2 bytes of IV to generate a unique 128-
bit RC4 key, also known as WEP seed. It employs
S-box substitution, rotate operation and addition
operation to generate the 128-bit per-packet RC4
key. This decouples the known association between
IV and the key, thus preventing exploiting weak
keys to recover TK. However, the RC4 key has an
internal structure that must conform to the WEP
specification for compatibility. That is, the first 24-
bits are used to convey the WEP IV and the last 104
bits convey the WEP base key, as the existing WEP
hardware expects to concatenate a base key and IV.
This is accomplished by assigning the 8 most
significant bits of the packet sequence number to the
first and second bytes of the WEP IV, and the least
significant sequence number bits to the third IV
byte. The first 3 bytes of Phase 2 output correspond
exactly to the WEP IV and the last 13 bytes to the
WEP base key. Precisely, the first and third byte of
RC4 per packet key comes from the lower 16-bit of
the IV. The second byte is a repeat of the first byte,
except that bit 5 is forced to 1 and bit 4 is forced to
0. Phase 2 applies this masking off specific bits of
the second IV byte to prevent the WEP per-packet
key concatenation from producing the known RC4
weak keys (Paul & Preneel, 2004.). Finally, the RC4
key is used to generate the key stream, which is then
XORed with the plaintext for encryption.

TKIP security mechanism takes active
countermeasures when two MIC failures are
detected in less than one minute. The

SECRYPT 2007 - International Conference on Security and Cryptography

152

countermeasures generally consist of re-keying the
connection and notifying the network administrator.
When the receiver encounters two packets with
invalid MICs within one minute, it believes to be
under an attack, and disassociates its clients and
waits for a minute before continuing operation. MIC
is checked last in the TKIP decapsulation process.
Any frame that does not have a valid ICV and TSC
are discarded before the MIC is verified. The ICV
ensures that noise and transmission errors do not
erroneously trigger the countermeasures. In order to
minimize the risk of false alarms, the rule is that the
MIC shall be verified after the CRC, IV and other
checks have been performed (IEEE Standard for
Information Technology, 2004). Another
countermeasure is that, if a new temporal key cannot
be established before the full 16-bit space TSC is
exhausted, then TKIP protected communications
will cease. For key refresh failure, the
implementation halts further data traffic until
rekeying succeeds, or disassociates.

In short, TKIP is designed in such a way that
security completely relies on the secrecy of all the
packet keys (Moen, Raddum & Hole, 2004). Even if
one packet key is lost to the attacker, it is easily
possible to find the MIC key. Similarly, if two
packets with same IV are disclosed, an attacker can
do anything for the duration of the current temporal
key. To avoid replay attacks, the sequence counter is
simply implemented such that no IV value, which
once has been received, will be allowed. The only
problem of this approach is introduced by the fact
that IEEE 802.11 allows burst-acknowledgements,
which indicates that up to 16 packets could be sent
at once and then be acknowledged by just a single
packet. Consequently the sequence counter has to
remember the last 16 IV values to guarantee that all
packets have been correctly received.

4 MODIFIED TKIP

As shown in Figure 1, the second phase of TKIP key
mixing function reuses the 80-bit TKIP-mixed
Transmit Address and Key (TTAK) or phase 1 key
(P1K) with MAC Protocol Data Units (MPDUs)
associated with the same 32-bits upper IV part,
Temporal Key (TK) and Transmitter Address (TA)
for the next consecutive 216 packets. Hence, the 32-
bit high IV becomes known to the receiver when the
first encrypted packet is transmitted and this part is
cached since it is static for the subsequent 216
packets.

The second phase mixes the output of the first
phase with the TK and monotonically increments
16-bit low IV part counter (i.e. 0x0000-0xFFFF) to
produce the final WEP seed, also called the per-
packet key. Since the knowledge of 32-bit high IV
and the future sequence of 16-bit low IV is also
known to the receiver, it is not necessary to send the
full 48-bit extended IV as redundancy again in each
packet. Thus, the cached 80-bits TTAK derived from
the IV in the first packet at the transmitter will also
be that same input to the second phase mixing of the
receiver and automatically the next 16-bit IV counter
it is just a unit increment of the previous one. Since
the IV counter is predictable, phase 2 can be
computed in advance while waiting for the next
packet(s) to arrive at the receiver. Therefore, in the
new Modified TKIP (MoTKIP) frame format, the
redundant 4-bytes extended IV is removed from the
packet load for packets ranging from the 2nd to the
(216)th packet. We use the standard code algorithm
in (IEEE Standard for Information Technology,
2004) to optimised TKIP key mixing phase.

The function MK16 constructs a 16-bit value
from two 8-bit inputs as MK16(X,Y) = (256*X) +
Y. The phase 1 output stays the same for 216 (i.e. 65,
536) consecutive frames from the same TK and TA.
Cheap CPU operations common on 802.11 devices,
such as the exclusive-OR operation (⊕), the addition
operation (+), the AND operation (&), the OR
operation (|), the right bit shift operation (>>),
rotate and table look-ups are used in phase 1 and
phase 2 key mixing.
Figure 1 also illustrates the general procedure for
MoTKIP. For MoTKIP encapsulation process,
another major change in TKIP frame format is
implemented by calculating the MIC over IV also;
and only for first packet transmission the Extended
IV XORed with session key is concatenated and sent
in the packet. In addition, the MoTKIP
encapsulation uses special flag bits for specific
control purpose. At the start of secure
communication, the transmitter or sender computes a
keyed cryptographic message integrity code, or the
MIC, over the MSDU source and destination
addresses, the priority bits, the MSDU plaintext data
and the 48-bit Extended IV also. MoTKIP appends
the computed MIC to the MSDU data prior to
fragmentation into MPDUs. The receiver obviously
has to verify the MIC after decryption with
Extended IV, ICV checking, and reassembly of the
MPDUs into an MSDU. Invalid MIC naturally leads
to discarding of corresponding MSDUs, and this
defends against forgery attacks and replay attacks.

MODIFIED TEMPORAL KEY INTEGRITY PROTOCOL FOR EFFICIENT WIRELESS NETWORK SECURITY

153

Figure 1: Modified TKIP (MoTKIP) procedure with low overhead MPDU.

XORed with Session Key

 3 bytes 5 bits 1 bit 2 bits 4 bytes 0 – 2312 bits 8 bytes 4 bytes

IV Rsvd Ext IV KeyID Extended IV Data MIC ICV

Encrypted with per-packet key

24 bits

RC4 – legacy WEP engine

 WEP seed

 32 bits

64 bits
tag

MIC = Michael (TMK + SA +
DA + priority + plaintext + IVL)

ICV = CRC (plaintext
|| MIC)

Plaintext MPDU MIC ICV

Key Stream
Generator

Construct
MPDU Type B

Construct
MPDU Type A

1st MPDU with
the Ext IV

sequence?

Yes No

Increment
IVL :

0xFFFF –
0x0000

TTAK
80 bits

16 bits IV
(lower)

32 bits IV
(upper)

Ext IV (48 bits) TK (128 bits) SA (48 bits)

Phase 1 Key Mixing

Phase 2 Key Mixing

 IV d IV Per-Packet Key (104 bits)

Encrypted with per-packet key

 Status byte Data MIC ICV

F0 F1 F2 F3 F4 F5 F6 F7

F0 : Indicate Ext IV absent/present
F1 : Indicate same IVH for phase 1 key mixing
F2 : Indicate IVL for current packet decapsulation is unit increment of previous IVL
F3 : Indicate if MSDU fragmented
F4 : Indicate if MPDU belongs to same MSDU
F5 F6 F7 : Rsvd

First MoTKIP packet :

2nd and Subsequent
MoTKIP packet :

SECRYPT 2007 - International Conference on Security and Cryptography

154

MoTKIP uses the cryptographic key mixing function
to combine a temporal key (TK), transmitter address
(TA), and the extended IV into the WEP seed
similar to the classic TKIP. At the start of the
session, for the first data packet, the 48-bit extended
IV XORed with a session key is appended to the
encrypted data.

However, the new MIC for each MoTKIP packet is
calculated using the IV, source and destination
addresses and data payload at the transmitter, and
the same is recalculated at the receiver to detect
replay attacks.

In the traditional approach, the key reason why

the IV is transmitted in the clear is because the
802.11 standard assumes that an adversary does not
gain any useful information from its knowledge. The
IV is meant to introduce randomness to the key, and
appending the clear IV in the transmitted packet
helps the receiver to decrypt the information sent
from the transmitter station. However, it has been
proved that various types of attacks are possible
using the IV knowledge as described in the literature
(Walker, 2004; Borisov, Goldberg & Wagner, 2001).

In our new approach to strengthen the TKIP

security, for the first packet transmitted when a
session starts between STA and AP, the extended IV
is encrypted with a session key. Hence, first
MoTKIP packet sent with encrypted IV uses C = [
Ks ⊕ IV, P ⊕ RC4 (IV, TK, SA)]. The MoTKIP
MIC is computed over: the MSDU destination
address (DA); the MSDU source address (SA); the
MSDU priority (Reserved for future use); the entire
unencrypted MSDU data (payload) and the
unencrypted entire IV also. The DA, SA, clear
extended IV, 3 octets reserved to 0 and a one octet
priority field are used for calculating the MIC and
are not transmitted. The TKIP decapsulation
mechanism is composed of several sub processes all
working continuously to provide the decrypted
packets. The process of decapsulating the first
MoTKIP packet is the opposite of the encapsulation
process of the first packet with the addition of the
integrity checks. The MoTKIP decapsulation is
designed to be the least computationally intensive.
Since the predictable rule for sequencing the
Extended IV for subsequent TKIP packets (from 2nd
to 65536th packet) is to increment the low 16-bit IV
part monotonically from 0xFFFF to 0x0000, the 48-
bits Ext IV is not included in these MoTKIP packets.
Instead, a status byte is appended as shown in Figure
1.

5 PERFORMANCE

The experimental test setup consisted of establishing
and testing secure communication performance via
802.11b wireless network cards and an access point.
The nominal data rates were 11Mbps. Encrypted
files are transmitted from clients to server. As the
server is receiving data packets, it checks for the
status byte header to identify the proper MoTKIP
algorithm for decryption. Several statistical
experiments were performed to verify the MoTKIP
operation and WLAN performance throughput.

Table 1 shows the relative security overhead
imposed by WEP, classic TKIP and MoTKIP when
applied to all traffic types and also includes the open
security reference benchmark. Wireless device
battery may experience reduced efficiency when
several intensive operations (power hungry), such as
key mixing, MIC calculation and RC4 processing,
occur simultaneously. As expected, 128-bit WEP
encryption imposes the least overhead whilst TKIP
demands significant use of the available wireless
bandwidth because of extended IV and MIC, placing
substantial burden on WLAN performance. While
classic TKIP is predictably more intensive than
WEP, the processing overhead of MoTKIP is
substantially less than classic TKIP. MoTKIP
outperforms TKIP in terms of percentage
computational overhead and energy consumption
efficient by 25–35%. The throughput of MoTKIP
measured in the simulation tests clearly shows
MoTKIP to be less bandwidth intensive. In terms of
overhead percentages associated with each
encryption schemes compared to no encryption:
128-bit WEP incurs 1.0 – 1.4% throughput
degradation; 128-bit classic TKIP brings 2.4 – 2.6%
overhead increase; while MoTKIP incurs only 1.9-
2.1% overhead that lowers actual data throughput
rate.

Table 1: 802.11 WLAN throughput v/s encryption
scheme.

Encryption
schemes

Average throughput
(Kbps)

No encryption 8695
WEP-128 bits 8580
TKIP-128 bits 8254
MoTKIP – 128
bits

8472

MODIFIED TEMPORAL KEY INTEGRITY PROTOCOL FOR EFFICIENT WIRELESS NETWORK SECURITY

155

Table 2: Processing Time by encryption schemes without
transmission.

Encryption
schemes

Processing Time (ms)

No encryption 194
WEP-128 bits 298
TKIP-128 bits 625
MoTKIP – 128
bits

501

Table 2 shows the time consumed for iteration

over a 5MB file. The time consumed is proportional
to the complexity of encryption operations and the
amount of data transmission. From these results it
can be concluded that MoTKIP should be used
wherever implementable due to its lower overhead
and enhanced security in comparison with classic
TKIP.

6 CONCLUSION

In this paper, we study the performance overhead
caused by TKIP compared to our proposed
MoTKIP. The latter is a better optimised
intermediate solution than TKIP and it also discards
all known attacks from WEP architecture while
preserving the RC4 algorithm to ensure
compatibility. Lightweight MoTKIP security scheme
is used to minimize the impact of overhead on
network and energy resources. Simulation results
demonstrate the effectiveness of our approach with
higher network throughput gain for embedding
minimal information into the MoTKIP encapsulated
packets. It considerably decreases key mixing
complexity of the encryption while making it
securely more robust and efficient.

REFERENCES

Al Naamany A. M. , Shidhani A. and Bourdoucen H.
2006. IEEE 802.11 Wireless LAN Security Overview.
IJCSNS International Journal of Computer Science
and Network Security, VOL.6 No.5B.

Borisov N., Goldberg I., and Wagner D. 2001.
Intercepting mobile communications: the insecurity of
802.11. In 7th Annual International Conference on
Mobile Computing and Networking, Rome, Italy.

Ganesan P., Venugopalan R., Peddabachagari P., Dean A.,
Mueller F., and Sichitiu M. 2003. Analyzing and
Modeling Encryption Overhead for Sensor Network
Nodes. In Proeeding. 2nd ACM International

Conference on Wireless Sensor Networks and
Applications, 2003, pp. 151-159.

Havinga P. J. M. and Smit G. J. M. 2001. Energy-
Efficient Wireless Networking for Multimedia
Applications. Wiley Wireless Communications and
Mobile Computing, vol. 1, no. 2, pp. 165-184.

IEEE Standard for Information Technology. 2004. –
Telecommunications and Information Exchange
between systems – Local and metropolitan networks –
Specific requirements, Part II, Amendment 6: Medium
Access Control (MAC) Security Enhancements, IEEE
Std 802.11i – 2004.

Jones C. E., Sivalingam K. M., Agrawal P., and Chen J.-C.
2001. A Survey of Energy Efficient Network
Protocols for Wireless Networks. Wireless Networks,
vol. 7, no. 4, pp. 343-358.

Lettieri P. and Srivastava M. B. 1999. Advances in
Wireless Terminals. IEEE Personal Communications,
vol. 6, no. 1, pp. 6-19.

Moen V., Raddum H., and Hole K. J. 2004. Weaknesses in
the Temporal Key Hash of WPA. Mobile Computing
and Communications Review, pp. 76–83.

Paul S. and Preneel B. 2004. A new weakness in the RC4
keystream generator and an approach to improve the
security of the cipher. Fast Software Encryption, FSE
2004, Lecture notes in Computer Science, Springer-
Verlag, pp. 245-259.

Potlapally N. R., Ravi S., Raghunathan A., and Jha N. K.
2003. Analyzing the Energy Consumption of Security
Protocols. In Proeeding. International Symposium on
Low Power Electronics and Design, 2003, pp. 30-35.

Prasithsangaree P. and Krishnamurthy P. 2004. Analysis
of trade-offs between security strength and energy
savings in security protocols for WLANs. In IEEE
Fall Semi-Annual vehicular technology conference
(VTC), Los Angeles, CA.

Stallings W. 2003. Cryptography and network security:
Principles and practice. Prentice Hall, Upper Saddle
River, New Jersey.

Thomas P., Al-Begain K. and Hughes J. 2005. The impact
of security measures on the performance of IEEE
802.11 networks. In Proceedings 3rd International
workshop in wireless security technologies, IWWST
’05, London, UK, pp. 82-92.

Walker J. 2004. 802.11 Security Series. Part I: The Wired
Equivalent Privacy (WEP). Intel Technical Report.

 Walker J. 2004. 802.11 Security Series. Part II: The
Temporal Key Integrity Protocol(TKIP). Intel
Technical Report.

SECRYPT 2007 - International Conference on Security and Cryptography

156

