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Abstract: Temporal Key Integrity Protocol (TKIP) is the IEEE TaskGroupi’s solution for the security loop holes 
present in the already widely deployed 802.11 hardware. It is a set of algorithms that wrap WEP to give the 
best possible solution given design constraints such as paucity of the CPU cycles, hardwiring of the WEP 
encryption algorithm and software upgrade dependent. Thus, TKIP is significantly more difficult and 
challenging to implement and optimise than WEP. The objective of this research is to examine the 
cost/benefit of TKIP security mechanisms and optimise its implementation to reduce security overhead for 
better performance. We propose a modified TKIP (MoTKIP) with improved packet encapsulation and 
decapsulation procedure that reduces computation and packet overhead in classic TKIP substantially and 
optimises total wireless network throughput rates. 

1 INTRODUCTION 

Most current wireless networks are based on widely 
adopted IEEE 802.11 standard (Stallings, 2003). 
Unfortunately the initial security specification, 
called Wired Equivalent Privacy (WEP), in this 
standard has been proved insecure and is thus 
inadequate for protecting a wireless network from 
eavesdropping and other attacks (Borisov, Goldberg, 
& Wagner, 2001). TKIP mechanism is a transition 
method used to strengthen security of IEEE 802.11 
WLAN and is implemented through software 
upgrades using RC4 of WEP as its core, but 
introduces changes in the areas of message integrity, 
IV creation, and key management. However, the 
additional computation complexity and overhead 
that TKIP key mixing and encapsulation process 
impose have received little research attention. Even 
so, cryptographic review thus far suggests it 
achieves its fundamental design goals (Al Naamany, 
Shidhani & Bourdoucen, 2006). 

 
The TKIP encapsulation process and message 

integrity check increase the size of the transmitted 
packets, which in turn lower the effective bandwidth 
and increase the communication cost also. 
Consequently, reducing security overhead and 
power consumption are current research challenges 
to wireless security designers so as to extend the 
operating lifetime of battery powered mobile 

devices. The aim of this work is to study TKIP and 
optimally trade between security overhead and 
power consumption to design a modified TKIP 
(MoTKIP) with low packet encapsulation and 
decapsulation overhead. The rest of the paper is 
organized as follows: Section 2 gives a succinct 
account of literature and related work in the field of 
wireless security optimization. We present a brief 
overview of the TKIP algorithm in Section 3. The 
MoTKIP packets and optimised TKIP key mixing 
are described in Section 4. Then, in section 5 a 
security overhead comparison is performed. This is 
followed by concluding remarks in Section 6. 

2 RELATED WORK 

In the literature (Prasithsangaree & Krishnamurthy, 
2004), most efficient wireless security algorithms 
are designed based on models which do not take into 
account the security performance together with the 
computational overhead. Research by Jones et al. 
(Jones, Sivalingam, Agrawal, & Chen. 2001) and Lettieri 
et al. (Lettieri & Srivastava, 1999) have shown that one 
of the main causes of unnecessary energy 
consumption is overhead of security and 
communication protocol over a wireless channel. 
Two basic principles that have been suggested to 
achieving an energy efficient system are to avoid 
unnecessary actions and reduce the amount of data 
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traffic (Havinga & Smit, 2001). However, most 
existing wireless security protocols use resources 
avidly and limit the efficient use of wireless node 
resources in several ways. Wireless security 
protocols significantly increase the amount of 
overhead required to secure the network, thereby 
decreasing the data rates of wireless links because 
additional traffic is usually needed for authentication 
or verification services (Thomas, Al-Begain & 
Hughes, 2005). Another prior work from Ganesan et 
al. (Ganesan, Venugopalan, Peddabachagari, Dean, 
Mueller & Sichitiu, 2003) assesses the feasibility of 
different encryption schemes for a range of 
embedded architectures using execution time 
overhead measurements. Potlapally et al. 
(Potlapally, Ravi, Raghunathan & Jha, 2003.) 
investigated energy consumption of different ciphers 
on the Secure Sockets Layer. Consequently, our 
work consolidates all earlier work on 802.11 
wireless securities and adds to those research works 
to fill this void of, investigating and answering the 
question of designing low overhead TKIP 
encryption for existing 802.11 hardware 

3 OVERVIEW OF TKIP 

TKIP increases the size of the initialisation vector 
(IV) used in the encapsulation process to an 
effective 48 bits. This significantly decreases the 
probability of an IV reuse by increasing the size of 
possible IVs to 248 as opposed to 224 possible WEP 
IV values. Increasing the IV length also addresses 
WEP’s weak key vulnerability. It achieves this by 
implementing a very innovative way of splitting the 
IV into two parts. The first 16 bits of the least 
significant part of the IV are padded to create a 24-
bit IV in a way that avoids the use of weak keys. 
This process is called per-packet key mixing. This 
IV is joined to a mixed key that is calculated using 
the remaining most significant 32 bits of the TKIP 
IV as well as the MAC-address of the wireless LAN 
card to generate the key. It ensures that every packet 
has a different set of IVs. Thus, one of the main 
problems of the WEP algorithm is solved, namely 
that every station belonging to the network is using 
the same key for encrypting data. 

TKIP uses a temporal key (TK) and the packet 
sequence number to arrive at a per-packet key and 
IV. The temporal key is a 128-bit shared secret 
between transmitter and receiver that has a fixed 
lifetime. TKIP uses a two-phase key mixing 
operation to derive the unique per-packet key 

stream, and each phase fixes one particular flaw in 
WEP. Phase 1 eliminates the same key from use by 
all links and Phase 2 de-correlates the public IV 
from known per-packet key. 

Phase 1 mixes 128-bit Temporal Key (TK) with the 
first 4 bytes of IV and the sender’s 48-bit MAC 
address, and generates an intermediate key P1K. In 
this step, the 48-bit MAC address of the transmitter 
is iteratively XORed with the 128-bit TK. Each byte 
of the result is used to index an S-box, an invertible 
non- linear substitution table, to produce the 80-bit 
intermediate key P1K. This intermediate key is 
computed once every 216 packets and is likely to be 
cached. For performance optimization, intermediate 
key P1K is computed only when the temporal key is 
changed/updated and most of the time its value is 
saved on memory. By mixing the MAC address into 
the temporal key, Phase 1 ensures that various 
stations using the same temporal key generate 
different key streams. Hence, this prevents key 
stream reuse due to cross-station IV collision. 

Phase 2 takes input P1K [80 bits] with TK (128 bits) 
and the last 2 bytes of IV to generate a unique 128-
bit RC4 key, also known as WEP seed. It employs 
S-box substitution, rotate operation and addition 
operation to generate the 128-bit per-packet RC4 
key. This decouples the known association between 
IV and the key, thus preventing exploiting weak 
keys to recover TK. However, the RC4 key has an 
internal structure that must conform to the WEP 
specification for compatibility. That is, the first 24-
bits are used to convey the WEP IV and the last 104 
bits convey the WEP base key, as the existing WEP 
hardware expects to concatenate a base key and IV. 
This is accomplished by assigning the 8 most 
significant bits of the packet sequence number to the 
first and second bytes of the WEP IV, and the least 
significant sequence number bits to the third IV 
byte. The first 3 bytes of Phase 2 output correspond 
exactly to the WEP IV and the last 13 bytes to the 
WEP base key. Precisely, the first and third byte of 
RC4 per packet key comes from the lower 16-bit of 
the IV. The second byte is a repeat of the first byte, 
except that bit 5 is forced to 1 and bit 4 is forced to 
0. Phase 2 applies this masking off specific bits of 
the second IV byte to prevent the WEP per-packet 
key concatenation from producing the known RC4 
weak keys (Paul & Preneel, 2004.). Finally, the RC4 
key is used to generate the key stream, which is then 
XORed with the plaintext for encryption. 

TKIP security mechanism takes active 
countermeasures when two MIC failures are 
detected in less than one minute. The 
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countermeasures generally consist of re-keying the 
connection and notifying the network administrator. 
When the receiver encounters two packets with 
invalid MICs within one minute, it believes to be 
under an attack, and disassociates its clients and 
waits for a minute before continuing operation. MIC 
is checked last in the TKIP decapsulation process. 
Any frame that does not have a valid ICV and TSC 
are discarded before the MIC is verified. The ICV 
ensures that noise and transmission errors do not 
erroneously trigger the countermeasures. In order to 
minimize the risk of false alarms, the rule is that the 
MIC shall be verified after the CRC, IV and other 
checks have been performed (IEEE Standard for 
Information Technology, 2004). Another 
countermeasure is that, if a new temporal key cannot 
be established before the full 16-bit space TSC is 
exhausted, then TKIP protected communications 
will cease. For key refresh failure, the 
implementation halts further data traffic until 
rekeying succeeds, or disassociates. 

In short, TKIP is designed in such a way that 
security completely relies on the secrecy of all the 
packet keys (Moen, Raddum & Hole, 2004). Even if 
one packet key is lost to the attacker, it is easily 
possible to find the MIC key. Similarly, if two 
packets with same IV are disclosed, an attacker can 
do anything for the duration of the current temporal 
key. To avoid replay attacks, the sequence counter is 
simply implemented such that no IV value, which 
once has been received, will be allowed. The only 
problem of this approach is introduced by the fact 
that IEEE 802.11 allows burst-acknowledgements, 
which indicates that up to 16 packets could be sent 
at once and then be acknowledged by just a single 
packet. Consequently the sequence counter has to 
remember the last 16 IV values to guarantee that all 
packets have been correctly received. 

4 MODIFIED TKIP 

As shown in Figure 1, the second phase of TKIP key 
mixing function reuses the 80-bit TKIP-mixed 
Transmit Address and Key (TTAK) or phase 1 key 
(P1K) with MAC Protocol Data Units (MPDUs) 
associated with the same 32-bits upper IV part, 
Temporal Key (TK) and Transmitter Address (TA) 
for the next consecutive 216 packets. Hence, the 32-
bit high IV becomes known to the receiver when the 
first encrypted packet is transmitted and this part is 
cached since it is static for the subsequent 216 
packets.   

The second phase mixes the output of the first 
phase with the TK and monotonically increments 
16-bit low IV part counter (i.e. 0x0000-0xFFFF) to 
produce the final WEP seed, also called the per-
packet key. Since the knowledge of 32-bit high IV 
and the future sequence of 16-bit low IV is also 
known to the receiver, it is not necessary to send the 
full 48-bit extended IV as redundancy again in each 
packet. Thus, the cached 80-bits TTAK derived from 
the IV in the first packet at the transmitter will also 
be that same input to the second phase mixing of the 
receiver and automatically the next 16-bit IV counter 
it is just a unit increment of the previous one. Since 
the IV counter is predictable, phase 2 can be 
computed in advance while waiting for the next 
packet(s) to arrive at the receiver. Therefore, in the 
new Modified TKIP (MoTKIP) frame format, the 
redundant 4-bytes extended IV is removed from the 
packet load for packets ranging from the 2nd to the 
(216)th packet.  We use the standard code algorithm 
in (IEEE Standard for Information Technology, 
2004) to optimised TKIP key mixing phase. 

The function MK16 constructs a 16-bit value 
from two 8-bit inputs as MK16(X,Y) = (256*X) + 
Y. The phase 1 output stays the same for 216 (i.e. 65, 
536) consecutive frames from the same TK and TA. 
Cheap CPU operations common on 802.11 devices, 
such as the exclusive-OR operation (⊕), the addition 
operation (+), the AND operation (&), the OR 
operation ( | ), the right bit shift operation (>>), 
rotate and table look-ups are used in phase 1 and 
phase 2 key mixing.  
Figure 1 also illustrates the general procedure for 
MoTKIP. For MoTKIP encapsulation process, 
another major change in TKIP frame format is 
implemented by calculating the MIC over IV also; 
and only for first packet transmission the Extended 
IV XORed with session key is concatenated and sent 
in the packet. In addition, the MoTKIP 
encapsulation uses special flag bits for specific 
control purpose. At the start of secure 
communication, the transmitter or sender computes a 
keyed cryptographic message integrity code, or the 
MIC, over the MSDU source and destination 
addresses, the priority bits, the MSDU plaintext data 
and the 48-bit Extended IV also. MoTKIP appends 
the computed MIC to the MSDU data prior to 
fragmentation into MPDUs. The receiver obviously 
has to verify the MIC after decryption with 
Extended IV, ICV checking, and reassembly of the 
MPDUs into an MSDU. Invalid MIC naturally leads 
to discarding of corresponding MSDUs, and this 
defends against forgery attacks and replay attacks. 
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Figure 1: Modified TKIP (MoTKIP) procedure with low overhead MPDU. 
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MoTKIP uses the cryptographic key mixing function 
to combine a temporal key (TK), transmitter address 
(TA), and the extended IV into the WEP seed 
similar to the classic TKIP. At the start of the 
session, for the first data packet, the 48-bit extended 
IV XORed with a session key is appended to the 
encrypted data. 

 
However, the new MIC for each MoTKIP packet is 
calculated using the IV, source and destination 
addresses and data payload at the transmitter, and 
the same is recalculated at the receiver to detect 
replay attacks. 

 
In the traditional approach, the key reason why 

the IV is transmitted in the clear is because the 
802.11 standard assumes that an adversary does not 
gain any useful information from its knowledge. The 
IV is meant to introduce randomness to the key, and 
appending the clear IV in the transmitted packet 
helps the receiver to decrypt the information sent 
from the transmitter station. However, it has been 
proved that various types of attacks are possible 
using the IV knowledge as described in the literature 
(Walker, 2004; Borisov, Goldberg & Wagner, 2001).  

 
In our new approach to strengthen the TKIP 

security, for the first packet transmitted when a 
session starts between STA and AP, the extended IV 
is encrypted with a session key. Hence, first 
MoTKIP packet sent with encrypted IV uses C = [ 
Ks ⊕ IV, P ⊕ RC4 ( IV, TK, SA) ]. The MoTKIP 
MIC is computed over: the MSDU destination 
address (DA); the MSDU source address (SA); the 
MSDU priority (Reserved for future use); the entire 
unencrypted MSDU data (payload) and the 
unencrypted entire IV also. The DA, SA, clear 
extended IV, 3 octets reserved to 0 and a one octet 
priority field are used for calculating the MIC and 
are not transmitted. The TKIP decapsulation 
mechanism is composed of several sub processes all 
working continuously to provide the decrypted 
packets. The process of decapsulating the first 
MoTKIP packet is the opposite of the encapsulation 
process of the first packet with the addition of the 
integrity checks. The MoTKIP decapsulation is 
designed to be the least computationally intensive. 
Since the predictable rule for sequencing the 
Extended IV for subsequent TKIP packets (from 2nd 
to 65536th packet) is to increment the low 16-bit IV 
part monotonically from 0xFFFF to 0x0000, the 48-
bits Ext IV is not included in these MoTKIP packets. 
Instead, a status byte is appended as shown in Figure 
1. 

5 PERFORMANCE 

The experimental test setup consisted of establishing 
and testing secure communication performance via 
802.11b wireless network cards and an access point. 
The nominal data rates were 11Mbps. Encrypted 
files are transmitted from clients to server. As the 
server is receiving data packets, it checks for the 
status byte header to identify the proper MoTKIP 
algorithm for decryption. Several statistical 
experiments were performed to verify the MoTKIP 
operation and WLAN performance throughput. 

Table 1 shows the relative security overhead 
imposed by WEP, classic TKIP and MoTKIP when 
applied to all traffic types and also includes the open 
security reference benchmark. Wireless device 
battery may experience reduced efficiency when 
several intensive operations (power hungry), such as 
key mixing, MIC calculation and RC4 processing, 
occur simultaneously. As expected, 128-bit WEP 
encryption imposes the least overhead whilst TKIP 
demands significant use of the available wireless 
bandwidth because of extended IV and MIC, placing 
substantial burden on WLAN performance. While 
classic TKIP is predictably more intensive than 
WEP, the processing overhead of MoTKIP is 
substantially less than classic TKIP. MoTKIP 
outperforms TKIP in terms of percentage 
computational overhead and energy consumption 
efficient by 25–35%. The throughput of MoTKIP 
measured in the simulation tests clearly shows 
MoTKIP to be less bandwidth intensive. In terms of 
overhead percentages associated with each 
encryption schemes compared to no encryption:  
128-bit WEP incurs 1.0 – 1.4% throughput 
degradation; 128-bit classic TKIP brings 2.4 – 2.6% 
overhead increase; while MoTKIP incurs only 1.9- 
2.1% overhead that lowers actual data throughput 
rate. 

Table 1:  802.11 WLAN throughput v/s encryption 
scheme. 

Encryption 
schemes 

Average throughput 
(Kbps) 

No encryption 8695 
WEP-128 bits 8580 
TKIP-128 bits 8254 
MoTKIP – 128 
bits 

8472 
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Table 2: Processing Time by encryption schemes without 
transmission. 

Encryption 
schemes 

Processing Time (ms) 

No encryption 194 
WEP-128 bits 298 
TKIP-128 bits 625 
MoTKIP – 128 
bits 

501 

 
Table 2 shows the time consumed for iteration 

over a 5MB file. The time consumed is proportional 
to the complexity of encryption operations and the 
amount of data transmission. From these results it 
can be concluded that MoTKIP should be used 
wherever implementable due to its lower overhead 
and enhanced security in comparison with classic 
TKIP. 

6 CONCLUSION 

In this paper, we study the performance overhead 
caused by TKIP compared to our proposed 
MoTKIP. The latter is a better optimised 
intermediate solution than TKIP and it also discards 
all known attacks from WEP architecture while 
preserving the RC4 algorithm to ensure 
compatibility. Lightweight MoTKIP security scheme 
is used to minimize the impact of overhead on 
network and energy resources. Simulation results 
demonstrate the effectiveness of our approach with 
higher network throughput gain for embedding 
minimal information into the MoTKIP encapsulated 
packets. It considerably decreases key mixing 
complexity of the encryption while making it 
securely more robust and efficient. 
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