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Abstract: New fusion predictors for linear dynamic systems with different types of observations are proposed. The 
fusion predictors are formed by summing of the local Kalman filters/predictors with matrix weights 
depending only on time instants. The relationship between them and the optimal predictor is discussed. High 
accuracy and computational efficiency of the fusion predictors are demonstrated on the first-order Markov 
process and the damper harmonic oscillator motion with multisensor environment. 

1 INTRODUCTION 

The integration and fusion of information from a 
combination of different types of observed 
instruments (sensors) are often used in the design of 
high-accuracy control systems. Typical applications 
that can benefit, the use of multiple sensors, are 
industrial tasks, military command, mobile robot 
navigation, multi-target tracking, and aircraft 
navigation (see Hall, 1992; Bar-Shalom and Li,  
1995). If it is decided that all local sensors observe 
the same target, then the next problem is how to 
combine the correspondence local estimates. 

Several distributed fusion architectures were 
discussed in Bar-Shalom (1990) and Bar-Shalom  
and  Campo (1986) and Li et al. (2004) and 
algorithms for distributed estimation fusion have 
been developed in Bar-Shalom  and  Campo (1986) 
and Shin et al. (2004, 2006) and Zhou et al. (2006).  
The Bar-Shalom and Campo fusion formula (FF) for 
two-sensors systems has been generalized for an 
arbitrary number of sensors in Shin et al. (2004, 
2006). FF represents an optimal mean-square linear 
combination of the local estimates with the matrix 
weights satisfying the linear algebraic equations. 
The explicit expression for the matrix weights has 
been derived in Zhou et al. (2006). Application of 
FF to some estimation and filtering problems was 
proposed in Bar-Shalom  and  Campo (1986), Li et 
al. (2004), and Shin et al. (2004, 2006). The main 
purpose of this paper is development of fusion 

predictors to forecast the future state of the linear 
multisensor systems.   

This paper is organized as follows. In Section 2, 
we present the statement of the prediction problem 
with multisensor environment and give its optimal 
solution. In Section 3, we propose two fusion 
predictors, which are derived by using the FF. In 
Section 4, the fusion predictors are tested and 
compared.  Finally,  Section 5 is the conclusion. 

2 STATEMENT OF PROBLEM 
KALMAN PREDICTOR  

Consider a discrete-time linear dynamic system with 
additive white Gaussian noise,  

,0,1,k,vGxFx kkkk1k K=+=+
 (1) 

where n
kx ℜ∈  is state vector, and r

kv ℜ∈  is white 
Gaussian noise, ( )kk Q0,N~v .  
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where (N)
k

(1)
k w,,w K  are white Gaussian noises, 

( )(i)
k

(i)
k R0,~w N , mmm N1 =++L . The initial state is 

modeled as a Gaussian random vector, ( )000 P,x~x N . 
The system and observation noises kv  and 

,N1,...,i,w(i)
k =  and the initial state 0x  are mutually 

uncorrelated.  
 

Prediction (or fixed-lead prediction) is the 
estimation of the state at future time 0s,sk ≥+  
beyond the observation interval, that is, based on 
data up to an earlier time k, 

( ) { }.k0,...,i,YY,YxEx̂ ik][0,k][0,skksk === ++
 (4) 

The Kalman predictor (KP). The optimal predictor 
KP

kskksk x̂x̂ ++ ≡  and its error covariance KP
kskksk PP ++ ≡  are 

given by the Kalman predictor equations: 
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with initial conditions KP
kk

KP
kk P,x̂  determined by the 

standard Kalman filter (KF) equations(Bar-Shalom 
et al. 2001, Lewis 1981). Note that the optimal 
predictor KP

kskx̂ +
 represents the centralized predictor, 

which processing the overall observations k][0,Y  
simultaneously. 

Many advanced systems now make use of a large 
number of sensors in practical applications ranging 
from aerospace and defense, robotics automation 
systems, to the monitoring and control of process 
generation plants. Recent developments in integrated 
sensor network systems have further motivated the 
search for decentralized signal processing algorithms. 
An important practical problem in the above systems 
is to find a fusion estimate to combine the 
information from various local estimates to produce 
a global (fusion) estimate.  

In next Section, we propose two new fusion 
predictors for multisensor discrete-time dynamic 
systems (1), (3). 

3 TWO FUSION PREDICTORS  

The derivation of the fusion predictors is based on 
the assumption that the overall observation vector 

kY  combines the local (individual) sensors 
(N)
k

(1)
k y,,y K , which can be processed separately. 

According to (1) and (3), we have N unconnected 

dynamic subsystems ( N,1,i K= ) with the state kx  
and local sensor (i)

ky : 
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where i  is the fixed-number of subsystem. Then the 
optimal mean-square local filtering ( )(i)

k][0,k
(i)

kk yxEx̂ =  

and prediction ( )(i)
k][0,sk

(i)
ksk yxEx̂ ++ =  estimates are 

determined by the recursive Kalman filtering 
equations,  { }k0,...,j,yy (i)

j
(i)

k][0, ==  (Bar-Shalom et al. 
2001). We have 
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where nI  is an nn ×  identity matrix, and (ii)
kkP  and 

(ii)
kskP +

 are the filtering and prediction local error  

covariances, respectively, i.e., 

( )
..0,1,2,..j,x̂xx~

,x~,x~covP
(i)

kjkjk
(i)

kjk

(i)
kjk

(i)
kjk

(ii)
kjk

=−=

=

+++

+++  (9) 

Thus we have N  local Kalman estimates 
,x̂,x̂ (i)

ksk
(i)

kk +
 and the corresponding error 

covariances (i)
ksk

(i)
kk P,P +

 for  N.1,...,i =  Using these 

local estimates and covariances we propose two 
fusion prediction algorithms. 

3.1 The Fusion of Local Predictors 
(FLP Algorithm) 

The fusion predictor FLP
kskx̂ +
 of the state skx + based on 

the overall sensors (2) is constructed from the local 
predictors (i)

kskx̂ +
 by using FF (Shin et al. 2004, 2006 

and Zhou et al. 2006): 

,Ia,x̂ax̂ n

N

1i
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where (N)
sk,

(1)
sk, a,,a K  are nn × time-varying matrix 

weights determined from the mean-square criterion, 
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The following Theorem and Corollary completely 
define the fusion predictor FLP

kskx̂ +
 and its error 

covariance, ( )FLP
ksk

FLP
ksk

FLP
ksk x~,x~covP +++ = . 

Theorem: Let (N)
ksk

(1)
ksk x̂,,x̂ ++ K  are the local Kalman 

predictors of an unknown state skx + . Then 

(a) The weights (N)
sk,

(1)
sk, a,,a K satisfy the linear 

algebraic equations  
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ksk
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and they can be explicitly written out in the 
following form 

( ) ;N1,...,i,PPa
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1h,

1)(h)(
ksk

N

1j

)1((ij)
ksk

(i)
sk, =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−

=

−

+
=

−

+ ∑∑
l

l  (13) 

(b) The local cross-covariances  

( ) jiN;1,...,ji,,x~,x~covP (j)
ksk

(i)
ksk
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 (14) 

satisfy the following recursions: 
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with the gains (i)
kL  determined by (8). 

 (c) The fusion error covariance FLP
kskP +
  is given by 
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Corollary: If (N)
ksk

(1)
ksk x̂,,x̂ ++ K  are unbiased local 

Kalman estimates then the fusion predictor   FLP
kskx̂ +
 in 

(10) is unbiased. 

The proofs of Theorem and Corollary are given in 
Appendix. 

    Thus the local Kalman filtering estimates (8), and  
the recursive fusion equations (10)-(17) completely 
define FLP algorithm.  

In particular case at 2N = ,  FF (10)-(13) reduces 
to the Bar-Shalom and Campo formula: 
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Further, in parallel with FLP we offer the other 
algorithm for fusion prediction. 

3.2 The Prediction of Fusion Filter 
(PFF Algorithm) 

This algorithm consists of two parts. The first part 
fuses the local Kalman filtering estimates 

(N)
kk

(1)
kk x̂,...,x̂  using FF. We have 
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where the weights (N)
k

(1)
k b,,b K  satisfy the linear 

algebraic equations (Shin et al. 2006) 
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or explicitly expressed from the formula (Zhou et al. 
2006): 
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where the local cross-covariances (ij)
kkP  are 

determined by (8) and (16). 
In the second part we predict the fusion filtering 
estimate FF

kkx̂  using one-step prediction: 

.x̂x̂,FA,x̂A
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=
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Remark 1 (Estimation accuracy): Experimentally, 
FLP and PFF have very close accuracy, as in Section 
4.  Unfortunately, now we do not have a rigorous 
proof or disproof of this result.  

Remark 2 (Computational complexity): In general, 
the both results, namely, linear equations (12), (20) 
and expressions (13),(21) are equivalent, being the 
implicit and explicit forms of the solution, 
respectively. However, from the computational point 
of view, when the number of sensors N  is large or 
the local cross-covariance matrices (ij)

kskP +
 are ill-

conditioned, the linear equations may be more 
preferable than the explicit expressions. 

To predict the state skx +  using the FLP we need 
to compute the matrix weights (N)

jk,
(1)

jk, a...,,a   for each 
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lead s1,2,...,j =  in contrast to the PFF, wherein the 
weights (N)

k
(1)
k b...,,b  are computed only once, since 

they do not depend on the leads 1.s ≥  Therefore the 
FLP is more complex than the PFF, especially for 
the large leads 1.s >>   

Remark 3 (Real-time implementation): We may note, 
that the local filter gains (i)

kL , the error cross-
covariances (ij)

ksk
(ij)

kk P,P +
, and the weights (i)

k
(i)

sk, b,a  may 

be pre-computed, since they do not depend on the 
current observations .Yk  But  only on the noises 
statistics kQ  and (i)

kR , and the system matrices 
(i)
kkk H,G,F , which are part of the system model (1), 

(3). Thus, once the observation schedule has been 
settled, the real-time implementation of the fusion 
predictors FLP and PFF requires only the 
computation of the local Kalman estimates 

(N)
kk

(1)
kk x̂,,x̂ K   and final fusion predictors FLP

kskx̂ +
 and 

PFF
kskx̂ +
. 

Remark 4 (Parallel implementation): The local 
Kalman estimates (N)

kk
(1)

kk x̂,,x̂ K  are separated for 

different sensors. Therefore, they can be 
implemented in parallel for various types of 
observations  .N1,...,i,y(i)

k =  

4 EXAMPLES  

4.1 Prediction for a Scalar 
Multi-sensor System 

Consider a scalar system described by 

,k,0,1,k,vaxx Tkk1k K=+=+  (23) 
,N,1,2,i,wxy (i)

kk
(i)
k K=+=  (24) 

where  ( ) ( ) ( ).σ,x~x,r0,~w,q0,~v 2
000i

(i)
kk NNN  

This represents the model which takes N sensor 
modes. The parameters are subject to 0.9,a =  

,0.2q = .4N1,σ,0.5x,20k 2
00T ==== The 

optimal Kalman predictor, and two fusion predictors 
FLP and PFF were used to estimate .1s,x sk ≥+

 The 
noise statistics were taken as follows: 

.5.0r,5.1r.8,1r2.0,r 4321 ====  

Table 1: Comparison of  MSEs at   N=3,4. 

N=3 Type of Fusion Predictors 
k KP FLP PFF 
0 1.00000 1.00000 1.00000 
1 1.04623 1.04602 1.04623 
2 0.96947 0.98315 0.98314 
3 0.95727 0.96658 0.96657 
4 0.95417 0.96131 0.96131 
5 0.95330 0.95962 0.95962 
M  M  M  M  

10 0.95295 0.95918 0.95918 
N=4 Type of Fusion Predictors 

k KP FLP PFF 
0 1.00000 1.00000 1.00000 
1 1.04623 1.04602 1.04623 
2 0.95045 0.96037 0.96050 
3 0.94361 0.94967 0.94966 
4 0.94257 0.94753 0.94753 
5 0.94239 0.94718 0.94718 
M  M  M  M  

10 0.94235 0.94735 0.94735 

Table 1 illustrates the mean-square errors (MSEs) 
KP

kskP +
, FLP

kskP +
, and PFF

kskP +
 at the lead 10s =  and 

.4,3N =  Note that the MSEs FLP
kskP +
and PFF

kskP +
are very 

close and reduced from 3N =  to .4N =  Moreover, 
the differences between the optimal KP and fusion 
predictors are negligible, especially for steady-state 
regime at 10.k ≥ The numerical simulations were 
performed using a computer with the following 
specification: Intel® Pentium® 4 CPU 3.0GHz 1G 
RAM. The CPU time for evaluation of the estimate 

PFF
kskx̂ +
 is 4.9 times less than for FLP

kskx̂ +
. This is due to 

the fact that the PFF’s weights  (i)
kb   do not depend 

on leads  10,...,1s =  in contrast to the FLP’s weights 
(i)

sk,a . 

4.2 The Damper Harmonic Oscillator 
Motion 

System model of the harmonic oscillator is 
considered in Lewis (1986): 

,4t0,v
1
0

x
2
10

x tt2
n

t ≤≤⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
−−

=
αω

&  (25) 

where [ ]Tt2,t1,t xxx = , and 
t1,x  is position, and 

t2,x  
is velocity, 

tv is zero-mean white Gaussian noise 
with intensity q, ( ) ( )stqδvvE st −= , ( ).P,x~x 000 N  
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Assume that the observation system contains two 
sensors which are observing the position 

t1,x .  Then 
we have 

,
w
w

x
01
01

y
y

y (2)
t

(1)
t

t(2)
t

(1)
t

t ⎥
⎦

⎤
⎢
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⎡
=⎥
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⎤
⎢
⎣

⎡
=  (26) 

where )1(
tw  and )2(

tw  are uncorrelated white Gaussian 
noises with zero-mean and intensities 1r  and 2r , 
respectively.  
After discretization of the system and observation 
models (25), (26) three predictors were applied: KP, 
FLP and PFF. The performance of the fusion 
predictors was expressed in the terms of 
computation load (CPU time) and loss in estimation 
accuracy (MSE) with respect to the optimal KP. The 
model parameters, noises statistics, initial conditions, 
and lead were taken to 

[ ] [ ] .10s,1.02.0diagP,0.00.0x

,1r,2r,1q,16.0,64.0

0
T

0

21
2
n

===

===== αω  

 
Figure 1: KP, FLP and PFF MSEs for position. 

 
 

Figure 2: KP, FLP and PFF MSEs for velocity. 

In Figs.1 and 2 we show the MSEs for position ( )1x , 

,PP KP
ksk1,

KP
1 += ,PP FLP

ksk1,
FLP

1 += ,PP PFF
ksk1,

PFF
1 += and 

analogously for velocity ( )2x  PFF
2

FLP
2

KP
2 P,P,P , 

respectively.  
The analysis of results in Figs. 1 and 2 shows that 

the fusion predictors FLP and PFF have very close 
accuracy, i.e., .2,1i,PP PFF

i
FLP
i =≈ Moreover, the 

differences between both fusion MSEs PFF
i

FLP
i P,P , 

and optimal one KP
iP  are negligible, especially for 

steady-state regime. The CPU times for KP, FLP, 
and FPP are equaled to  

,(s)016.0T,(s)094.0T,0.015(s)T PFFFLPKP ===  

respectively. Thus these combined effects provide 
the best balance between the computational 
efficiency and desired prediction accuracy for the 
PFF.  

5 CONCLUSION  

In this paper, we present two fusion predictors (FLP 
and PFF) for discrete-time linear systems with 
multisensor environment. Both of these predictors 
represent the optimal linear combination of an 
arbitrary number of local Kalman filters or 
predictors. Each local filter (predictor) is fused by 
the MMSE criterion. Experimentally the FLP and 
PFF algorithms have very close accuracy.  In view 
of the computational complexity, however, the PFF 
more efficient than the FLP. The examples 
demonstrate the efficiency and high-accuracy of the 
proposed predictors. 
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APPENDIX 

Proof of Theorem and Corollary: 
 
(a) Equations (12) and expression (13) 
immediately follow as a result of application of the 
general FF (Shin et al. 2006 and Zhou et al. 2006) to 
the optimization problem (11).    
 
(b)  Equation for the local error takes the form 
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ksksk
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 and (j)

kskx~ +
follows from the 

standard propagation equation for ( ).x~x~EP
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Equation (16) was given in Shin et al. (2006). 
 

(c) Using (10) the fusion error covariance can be 
rewritten as  
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This completes the proof of Theorem. 
 

If the local predictors (i)
kskx̂ +

 are unbiased, i.e., 

( ) ( )sk
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Corollary is proved.  
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