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Abstract: This paper presents an H.264/AVC decoder realization on a dual-core SoC (System-on-Chip) platform by 
the well-designed macroblock level software partitioning. Furthermore, optimizations of the procedures 
executed on each core, and data movement between two cores are captured from software and hardware 
techniques. The evaluation results show that a video with D1 (720×480 pixels) resolution can reach real-
time decoding by the implementation, which provides a valuable experience for similar designs. 

1 INTRODUCTION 

The emerging IP-based multimedia applications, 
such as IPTV, video-on-demand services, and video 
telephony may benefit from coding efficiency of the 
H.264/AVC video standard (ITU-T Rec.H.264, 2003; 
Schwarz, 2006) by the lower bit-rates and superior 
video quality in comparison to existing video stan-
dards (Wiegand, 2003; Raja, 2004). However, added 
features and functionalities of the H.264/AVC codec 
involving extra computation complexity that directly 
affects the cost effectiveness of commercializing 
those applications, especially on resource-constraint 
embedded devices. Numerous researches (Horowitz, 
2003; Ostermann, 2004; Kalva, 2005) attended to 
complexity analysis and profiling of the H.264/AVC 
codec, while several approaches (Suh, 2006; Wang, 
2004; Chen, 2006; Lin, 2006) came up with reduc-
ing the implementation complexity. Most of the re-
sults were devoted to algorithm level optimization in 
which specific characteristics of a single processor 
with or without hardware accelerator engines are 
utilized. 

Instead, in this paper, the H.264/AVC decoder is 
realized on an asymmetric dual-core platform, upon 
which macroblock (MB) level software partitioning 
is applied from data and control flow perspectives. 
This approach exploits several advantages. First, I/O 
and control-intensive operations (e.g., entropy de-
coding procedure and memory management control 

procedures) are separated from computation-
intensive operations handled by distinct cores for the 
purpose of smoothly optimization. Second, data 
communication can be hidden by pipelined process-
ing between two cores (described later in Section 3) 
for saving the space complexity as mentioned in 
(Horowitz, 2003). Third and lastly, realizing compu-
tation-intensive software portions on a VLIW DSP 
provides programmable and efficient techniques 
consistent with comparable audio and video codecs.  

Additionally, from the proposed software pipe-
lined processing between two cores (explained later 
in Section 3.4), performance improvement can be 
reached through optimizing several conceptually 
pipelined stages from three aspects: 1) entropy de-
coding on MPU core, 2) data movement between the 
MPU and DSP cores, and 3) software portions exe-
cuted on DSP core. These advanced optimizations 
complete the entire H.264/AVC decoder of a dual-
core system. The main contribution here brings a 
valuable experience in software programming model 
for realizing multimedia applications on a dual-core 
application processor (particularly equipped with a 
VLIW DSP) emerged in the recent marketplace, 
such as the TI’s DaVinci™ processor (DaVinci™ 
technology, 2007).  

The rest of the paper is organized as follows. The 
PAC DSP is first introduced in Section 2. Then we 
explain the software partition flow and data memory 
allocation in Section 3. Next, in Section 4, the opti-
mization techniques for enhancing the performance 
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of decoder are summarized. Experimental results are 
given in Section 5, and conclusions are finalized in 
Section 6. 

2 OVERVIEW OF THE PAC DSP 

The PAC DSP (parallel architecture core digital sig-
nal processor) is a 32-bit fixed-point, 5-way issue, 
and 9-stage pipelined DSP designed by STC/ITRI 
organization (STC’s Multimedia SoC, 2007) in Tai-
wan. It features low power and high performance 
through cluster-based VLIW datapath with parti-
tioned register files, and power/clock gating mecha-
nisms. Figure 2-1 shows the detail architecture of the 
PAC DSP, where the major components and features 
are explained as follows. 

PSCU (Program Sequence Control Unit)—
dispatches instructions to the scalar unit and clus-
tered VLIW data path, executes control flow instruc-
tions, and handles the interrupt/exception events. 
Scalar Unit—executes the scalar instructions with 
low parallelism but high data dependency, controls 
the interfaces of accelerators and power control unit. 

Clusters (VLIW datapath)—each cluster owns a 
LSU (Load/Store Unit) and an AU (Arithmetic 
Unit). The AU provides arithmetic, comparison, data 
transfer, bit manipulation, multiplication and accu-
mulation and special instructions, while LSU pro-
vides load/store instructions instead of multiplication 
and accumulation instructions. As shown in Figure 
2-1, the register files (RFs) within a cluster are dis-
tributed as coefficient, private and Ping-Pong RFs. 

 
Figure 2-1: Architecture of the PAC DSP core. 

Memory subsystem—PAC DSP provides 32 kB 
instruction memory and 64 kB data memory. The 
memory interface unit (MIU) of PAC DSP provides 
a maximum bandwidth of 32 bytes, where 8 bytes 
for each cluster and CFU, 4 bytes for Scalar Unit 
and BIU. In addition, it is byte, half-word, word or 
double word addressable according to the instruction 

types of the LSU. As shown in Figure 2-2, the data 
memory is divided into eight banks in 8 kB 
(64×1024 bits), forming four groups for the purpose 
of reducing access conflicts for a multi-issued proc-
essor. Especially note that consecutive two data 
banks in a group can be configured to be interleav-
ing mode or not, providing convenient data parti-
tions for multimedia applications. 
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Figure 2-2: Memory subsystem of the PAC DSP. 

3 SOFTWARE PARTITION 
AND DATA STRUCTURE 

In this section, the software partitioning, MB level 
processing flow, and data communication of an 
H.264 decoder for an asymmetric dual-core system, 
that is, a RISC MPU plus a VLIW PAC DSP, are 
described in the following subsections. 

3.1 Software Partition 

As Figure 3-1 shows, the MPU is in charge of the 
entropy decoding (ED) due to inherently table-
lookup and control operations. The inverse quantiza-
tion/inverse transformation (IQ/IT), picture predic-
tive compensation (PPC) and deblocking filter (DF) 
processes are handled by the DSP because of natu-
rally computation-intensive property. 
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Figure 3-1: Partitioned decoding flow of H.264/AVC 

3.2 Data Structure  
and Memory Allocation 

In terms of MB decoding flow, and preventing con-
flict of data access to maximizing the throughput 
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and parallelism, decoding video data should be well-
organized mapped into the data memory of PAC 
DSP. Taking a D1 (720×480) video clip as an exam-
ple, Figure 3-2 displays its memory allocation onto 
the data memory of PAC DSP results in 45×30 MBs 
in raster order. The MBs of each row is equally di-
vided into four parts spreading amount distinct 
banks of the data memory with repeatedly sequence 
group index 0, 1, 2, 3, therefore preventing data ac-
cess contentions. 
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0 1 2 3 0 1 2 3 1 2 3
0 1 2 3 0 1 2 3 1 2 3
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Figure 3-2: Example of data arrangement for D1 resolu-
tion (in the unit of MB). 

In other words, the pipelined execution method-
ology (described later in Section 3.4) for an asym-
metric dual-core system can benefit from the alloca-
tion scheme. When IQ/IT is processing the ith MB in 
the group k, where k =i mod 4, the DMA (triggered 
by the MPU) can transfer the (i-1)th MB from the 
DSP data memory to external memory without ac-
cess conflicts. Meantime, when PPC is processing 
the ith MB in group k, it can move the residual data 
of the next (i+1)th MB to the DSP data memory 
(through the DMA), result in preventing memory or 
data contentions. 

For each row, there are 12 MBs and 12 PreRow 
data entries (PreRow data will be explained later in 
Section 3.3) saved in the first group while the other 
groups have 11 MBs and 11 PreRow data entries 
respectively. Each MB is stored into a fixed size 
memory space with MB data and reference data. 

Data (include MB data and reference data) will 
be overwritten when the newest data is transferred to 
the memory group. At the moment, PreRow data 
needs to be maintained because the reference data 
from the left, upper, and upper-right MBs still be 
required at inter/intra prediction and DF stage. As 
shown in Figure 3-3, the centered 16×16 or 4×4 
blocks represent the processing data during the op-
eration; while the blocks (outside the centered block) 
represent the referenced PreRow data. In Figure 3-
3(c), the reference data used by inter prediction is 
not in the current processing picture, therefore re-
quired data should be transferred via the picture 
buffer from the MPU to the DSP through the DMA 
controller. 

 
Figure 3-3: Residual blocks with relative reference data 
for (a) intra prediction, (b) DF, and (c) inter prediction. 
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Figure 3-4: data layout in DSP local memory (in 4 groups) 

After the calculation completed on the 1st MB in 
the 1st row, the reference data (PreRow data) re-
quired by the 1st MB in 2nd row is saved in the same 
group, such that each MB can access the data re-
quired in the same group as well. That is why the 
MB is allocated in the groups by index. Figure 3-4 
shows the data layout reside in memory partitioned 
into 4 groups. Global variables such as parameter 
and flag are placed at fixed location in group 0. 
Temporarily memory area is located at group 3. 

The usage of memory space is assuming the 
maximum requirement. For example, (9×9 +3×3) 
×16 bytes are needed for reference data, because 
(4×4+2×2) ×16 bytes are required in inter prediction 
for a MB. Required reference data for each process 
is shown in Figure 3-3. 

3.3 Data Format Transformation 
Compaction  
and PreRow Data Reservation 

3.3.1 Data Format Transformation 

As shown in Figure 3-5, the DFT (Data Format 
Transformation) is applied after the IQ/IT for reor-
dering the data in the purpose of smoothly PPC and 
DF processing according to the data locality. 
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Figure 3-5: Data format transformation. 

Figure 3-6 shows the representation of luma (left), and 
chroma (Cb and Cr), transforming large Z raster scan 
order into little z raster scan order. 
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Figure 3-6: Sub-MB order for luma, and chroma (Cb and 
Cr) MBs. 

3.3.2 Data Format Compaction 

Encoder will extend 1 byte into 2 bytes during mo-
tion estimation stage and transform it into NAL bit-
streams by entropy encoding. Decoder should re-
verse this compress transformation on the residual 
data after entropy decoding for getting the original 
data. The memory space with size 768 bytes (512 
bytes for luma, 128 bytes for chroma Cb, and 128 
bytes for chroma Cr) in an MB is reserved for restor-
ing residual data, which is extracted by entropy de-
coding from the bit-streams. After the PPC stage of 
decoder, a pixel in 2 bytes will be converted into 1 
byte, thus, half of original memory space will be 
freed as shown in Figure 3–7. This memory space 
can be used for saving pre-column and upper-left 
data, which will be used by the next MB at the intra 
prediction stage, as shown in Figure 3-3(a). 
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Figure 3-7: Data format compaction 

3.3.3 PreRow Data Reservation 

Since reference data required by the PPC and DF 
comes from temporal and spatial locations (either in 
inter or intra frames within contiguous marcrobloks 
as depicted in Figure 3-3). Reserving the whole ref-
erenced frame in the DSP data memory is unpracti-

cal, therefore the proposed PreRow data as shown in 
Figure 3-4 can efficiently handle the problem, thus 
reducing the frequently data movement between 
memories (i.e., the DSP data memory and external 
memory) during the PPC and DF operations. 

3.4 Program Control Flow 
and Data Flow 

3.4.1 Control Flow Perspective 

MB is the unit of iterations, which means that the 
MPU and DSP are synchronized with MB. The con-
trol flow between the MPU and DSP is handled by 
the flag resided in share memory. As shown in Fig-
ure 3-8, the MPU and DSP are started at the same 
time. The DSP keeps polling the flag until the data 
from the MPU is ready and the flag is set. The dot-
ted lines represent the time setting flag and the effect 
on MPU and DSP after setting flag. 
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Figure 3-8: Control flow perspective in a dual-core system  

MPU－Stage ED gets the SPS, PPS fields in 
NAL and goes into the main control flow. ED com-
mands DMA to write data on the DSP data memory 
after the operation on 1st MB data finishes. The flag 
ED_Done is set to be 1. Next, check if the 
DMA_W_Done is set to be 0. Negative results con-
tinuous polling on DMA_W_Done until the flag is 
cleared. If DMA_W_Done is 0, then the condition 
column > 2 would be checked for transfer reference 
data to the DSP or not. If column <= 2, transfer ac-
tion would be skipped. To determine whether the 
MPU should restore the data processed by the DSP 
(DMA_R) or not, the flag DF_Done has to be 
checked. If DF_Done is 1, routine DMA_R is exe-
cuted and DF_Done is cleared, the value of column 
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will also be checked here. If ED_Done is set as 0, 
then executes next iteration. 

PAC DSP－Flag DF_Done will be checked first. 
If it is cleared by the MPU, then the DSP will check 
if column > 3 to determine if the execution of DF is 
needed. Flags DF_Done, IT/IQ_Done and 
PPC_Done will be checked next. If DF_Done = 1, 
IT/IQ_Done = 0 and PPC_Done = 0, means that DF 
operation completes while IT/IQ and PPC had not. 
When IT/IQ_Done=0 and ED_Done=1 (ED finished 
and data transferred to the DSP memory), IT/IQ can 
be executed. Also, column will be checked here. If 
column <= 1, IT/IQ is skipped. Negative results the 
execution of IT/IQ. IT/IQ_Done is set for announc-
ing that IT/IQ had been executed, despite the value 
of IT/IQ_Done. 

The same operation will be applied on PPC. 
DMA_W_Done (1 means reference data had been 
written to the DSP, 0 means had not) and PPC_Done 
(1 means PPC executed, 0 means not) check first. If 
DMA_W_Done=1 and PPC_Done = 0, check if col-
umn > 2 for execution of PPC required or not. 
PPC_Done is set at last. While IT/IQ_Done = 
PPC_Done = 1, next iteration will go on. 

3.4.2 Data Flow Perspective 

In Figure 3-9, function blocks in MPU are located at 
the left hand side and those in the DSP are located at 
the right hand side. Iterations are separated by dotted 
lines; functions are represented by blocks with their 
names, and the following label m-n means the mth 
slice and the nth MB processed by the function. 

There are 2 areas of buffer in MPU for storing 
data processed by ED. ED will process the data in 1st 
slice and place it in one buffer. Those 2nd slices are 
placed in the other. As shown in Figure 3-9, ED 
(Slice 0) represents the data processed by ED. 

The blocks (with grey line) represent the func-
tion of iteration taking no action which corresponds 
to the block of column value check in Figure 3-8. 
The DMA_W(Ref.) function is executed by the 
DMA (commanded via the MPU) for moving refer-
ence data and the DMA_W(ED) is for moving the 
residual MB data (after the ED procedure). 
IT/IQ+DFT, and PPC+DFC are the respective stage 
for MB processing executed by the PAC DSP. The 
synchronization between the PAC DSP and MPU is 
controlled by polling flags (resided in shared mem-
ory) as shown in Figure 3-8. 
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Figure 3-9: Data flow perspective in a dual-core system. 

4 OPTIMIZATION 

Based on the proposed MB level parallel processing 
among two cores, optimization can be achieved from 
three aspects of the ED procedure on MPU core, 
data communication among two cores, and the pro-
cedures, such as IT/IQ, PPC, and DF executed on 
PAC DSP core. The detail optimization techniques 
of each landscape are described separately in the 
following subsections. 

4.1 Entropy Decoding on MPU 

The performance of ED procedure can be improved 
from the dominated kernel algorithm, Context-
Adaptive Variable Length Coding (CAVLC). 
Through statistic analysis of various typical video 
clips, we found that around 60% of 4×4 blocks de-
coded from bitstreams appeared in 500 bitstream 
patterns within length of 12 bits (especially around 
87% for length of 8 bits). Therefore designing a bit-
stream pattern table of these 500 bitstream patterns 
to directly decoding the 4×4 blocks (via table lookup) 
can improve the ED substantially. Furthermore the 
bitstream pattern table can be constructed by sepa-
rating into four 8-bit pattern tables and twenty-one 
4-bit pattern tables for the purpose of saving mem-
ory usage instead of using a single 12-bit pattern 
table. Accordingly a two-phase pattern search algo-
rithm is derived (as shown in Figure 4-1) to speedup 
the CAVLC decoding algorithm contained in the ED 
procedure executed on the MPU core. Detail infor-
mation can be found in (Tseng, 2006). 
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Figure 4-1: Two-phase pattern search algorithm of 
CAVLC decoding. 

4.2 Data Communication among MPU 
and PAC DSP 

The data movement between two cores is accom-
plished by DMA controller (commended by the 
MPU). However, large amount of small-size refer-
ence data (as depicted in Figure 3-3) is required for 
inter prediction of MBs, result in too frequently set-
ting the DMA channels. Additionally, the reference 
data are located in two-dimension (2D) mode and 
spread randomly, which hurts a traditional DMA in 
transforming the 2D coordination into physical ad-
dress in terms of longer channel register setting time. 
Moreover, in general the addresses of the reference 
data are non-word alignment, since the widths of 
reference blocks are often odd and determined dy-
namically. This phenomenon forces a traditional 
DMA to transfer the data in a unit of byte, degrading 
bus bandwidth utilization. Therefore, to tackle three 
major inherently issues of moving reference data 
(between two cores), a multimedia enhanced DMA 
controller (or so called M-DMAC) is proposed to 
replace original used DesignWare DMAC (so called 
DW-DMAC) provided by Synopsys company. 

Figure 4-2 shows the architecture of proposed 
M-DMAC, where two functional units, Multimedia 
Functional Unit (MFU), and Data Recombination 
Unit (DRU) are introduced. On the one hand, DRU 
handles recombining of 2D source blocks, facilitat-
ing M-DMAC to transfer non-word alignment ad-
dress. The M-DMAC supports four transfer modes 
(i.e., any combination of 1D and 2D), and sixteen 
physical channels to shorten the busy waiting time 
of application programs or issued interrupts. On the 
other hand, MFU supports not only physical address 
interface for linear data transmission, but also 2D 
awareness interface, where the block size, and the 
X-Y coordination of 2D block, width, height, and 
starting address of source/destination video frames. 
Moreover, there are also motion vector parameters 

describing the locations of source reference blocks. 
To reduce the setting times of channel registers, 
common block size and frame resolution are built 
inside MFU and can be designated through an index 
table. For 2D block, user can directly input 2D data 
information via the 2D awareness interface. Thereaf-
ter the 2D information is transformed into physical 
address, thereby reducing the time for calculating 
physical address, and achieving high parallelism 
between application programs and M-DMAC opera-
tions. 

 
Figure 4-2: Architecture of M-DMAC. 

4.3 Program Optimization on  
PAC DSP 

Computation intensive procedures, such as IT/IQ, 
PPC, and DF, executed on the PAC DSP are opti-
mized by hand-coded assembly programs adhere to 
fully utilized the characteristics of PAC DSP. The 
programming techniques are summarized as follows. 

 Data partitioning for two VLIW clusters 

Actually PAC DSP is a 5-way issue VLIW DSP 
processor, classifying into one AU plus one LSU per 
cluster, and one Scalar Unit. Therefore, the cluster-
based VLIW datapath inherently towards data parti-
tioning, that makes fully parallelization for MB 
processing. For example, all MBs (no matter luma or 
chroma) can be decomposed into 4x4 sub-MBs, and 
one 4x4 can be further divided into 4x2 or 2x4 data 
blocks processed by each cluster. Especially, Cb and 
Cr are processed on distinct cluster due to their data 
independent property. Higher IPC (instruction per 
cycle) can be reached naturally via this scheme on 
PAC DSP. 

 Data packing/unpacking with SIMD (single 
instruction and multiple data) 

PAC DSP provides efficient data packing and un-
packing instructions, which makes smoothly SIMD 
utilization on each cluster. Ideally 8-bit data process-
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ing can achieved double quad-speed with minor 
overhead for packing/unpacking (from/to memory). 

 Strength reduction for multiplication opera-
tions 

Multiplications in the IQ/IT (matrix operations) and 
PPC (6-tape filter operations) procedures of the 
H.264/AVC decoder can be transformed into addi-
tion and subtraction operations. Furthermore, those 
operations can be well organized into special MAC 
(multiply-and-accumulate) and Butterfly operations 
provided by the PAC DSP instructions. 

 Loop unrolling and Software pipelining  

Through these schemes, NOP operations in loop 
kernels for each procedures executed on the PAC 
DSP can be squeezed out to improve the perform-
ance. A lot of efforts have paid on this, since data 
dependence is the critical issue in our MB level de-
coding flow between two cores (MPU and DSP) 
where inter-loop unrolling and software pipelining 
need to be carefully handled. Especially note that 
slightly refinement in the deepest loop kernel still 
can achieve a great improvement substantially due to 
the enormous data proportional to the video resolu-
tion. 

5 EXPERIMENTAL RESULTS 

As shown in Figure 5-1, a development board of the 
PAC SoC platform (STC’s Multimedia SoC, 2007) 
to evaluate the implementation, where the MPU is 
ARM922T running at 150MHz with 33MHz internal 
frequency, the system bus is AMBA 2.0 lite running 
at 22MHz frequency with multi-layer AHBs, and the 
M-DMAC is a FPGA module running the same fre-
quency as AHB bus, and a PAC DSP (also imple-
mented by the FPGA module) running at 24MHz. 
The following subparagraphs describe the compara-
ble results of each portion. 

ED on MPU core－Table 5-1 shows the results of 
devised two-phase pattern search algorithm for 
CAVLC decoding in ED executed on the MPU core, 
achieving around 10% improvement in average 
comparing to standard ED with normal CAVLC 
decoding scheme. 
Data movement between two cores－Figure 5-2 
displays the efficiency of proposed M-DMAC in 
terms of inter prediction with various MB partitions 
result in 2~4 times faster than DW-DMAC. 

 
Figure 5-1: Development board of the PAC SoC. 

Table 5-1: Performance improvement of two-phase pattern 
search algorithm for typical video sequences. 

 

 
Figure 5-2: Performance comparison between M-DMAC, 
and DW-DMAC with various MB partitions. 

Procedures on PAC DSP core－Table 5-2 shows 
the results of procedures executed on the PAC DSP, 
where intra prediction has the largest code size in-
curred by code unrolling for all different cases. The 
best case of DF procedure produced 1000 cycle 
counts when BS (boundary strength value) equals 
zero. Statistically, the probability of BS equals to 
zero is around 71% in average and 47.3% in worst 
case. Thus evaluation results achieved around 2000 
cycles in average. Due to a great amount of cycle 
count wasting on the interpolation operation, the 
inter prediction process has large cycle count around 
(640~2800) + 200. Also, the evaluation displayed 

Video 
sequence 

Entropy decoding 
with normal 
CAVLC decoding 

Entropy decoding 
with two-phase 
pattern search method 

Improvement 

Claire 14,612,810 12,738,779 12.82% 

Highway 20,639,203 19,572,458 14.86% 

Carphone 29,777,102 25,990,674 12.72% 

Silent 30,334,038 26,373,234 13.06% 

News 30,725,393 28,079,039 8.61% 

Foreman 34,192,569 29,959,594 12.38% 

Mobile 89,094,039 83,645,173 6.12% 
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that the average cycle count of interpolation opera-
tion is 1500. For IQ/IT, the skip mode has probabil-
ity 45% in average and 6% in worst case, which re-
sults the best case cycle count 200. The average cy-
cle count spent in IT/IQ is around 1500 cycles.  

Therefore, the implementation on the DSP core 
spends around 5000 cycles per MB processing in 
average, which is under the required cycle counts 
per MB of decoding an H.264 video sequence with 
D1 (720×480) resolution in real time (i.e., 6173 cy-
cles, derived from (250×106) / (45×30) / 30 when the 
DSP is running at 250 MHz), therefore achieving 
real-time decoding in most cases. 

Table 5-2: Execution cycles of the procedures on the PAC 
DSP. 

Functions Cycle counts Code size(kB) 
DSP_main 150 1.5 
IQ/IT 200~2600 6.4 
Intra prediction (300~1900) + (200~400) 18.7 
Inter prediction (640~2800) + 200 11.2 
DF 1000~5000 8.9 
TOTAL 1850~10600 46.7 

Finally, the prototyping SoC platform with an 
ARM core and FPGA module (for the PAC DSP) 
reveals that, even in low profile specification, the 
whole decoding system still can process up to 26 fps 
at QCIF resolution, which can be expected at higher 
specification with a real-chip dual-core SoC (e.g., 
PAC DSP@250MHz with higher bus frequency) for 
decoding a video with D1 resolution in real-time. 

6 CONCLUSIONS 

In this paper, a software programming model for 
H.264/AVC decoder on an asymmetric dual-core 
SoC platform, equipped with a VLIW PAC DSP 
coprocessor is presented. The decoding throughput 
is achieved by well-organized software partitioning 
flow between two cores, efficient data movement 
from MPU to PAC DSP and vice versa, and program 
optimization both on the MPU and PAC DSP. The 
analysis shows that the implementation can achieve 
real-time decoding at D1 resolution, which provides 
a valuable experience for similar implementations. 

REFERENCES 

Chen, Y.-K. Li, E., Zhou, X., Ge, S., 2006. Implementa-
tion of H.264 Encoder and Decoder on Personal Com-

puters. In Journal of Visual Communications and Im-
age Representations, vol. 17, no. 2, pp. 509-532. 

DaVinci™ technology from TI.(n.d.). Retrieved March 2, 
2007,from:http://www.ti.com/corp/docs/landing/davin
ci/index.html 

Horowitz, M., Joch, A., Kossentini, F., Hallapuro, A.,  
2003. H.264/AVC baseline profile decoder complexity 
analysis. IEEE Transactions on Circuits and Systems 
for Video Technology, vol.13, issue 7, pp. 704-716. 

ITU-T Rec.H.264, ISO/IEC 14496-10, 2003. Advanced 
video coding, Final Draft International Standard, JVT-
G050r1, Geneva, Switzerland 

Kalva, H., Furht, B., 2005. Complexity Estimation of the 
H.264 Coded Video Bitstreams. Computer Journal, 
vol. 48, issue 5, pp. 504-513. 

Lin, H.-C., Wang, Y.-J., Cheng, K.-T., Yeh, S.-Y., Chen, 
W.-N., Tsai, C.-Y.,  Chang, T.-S., Hang, H.-M., 2006.  
Algorithm and DSP implementation of H.264/AVC. In 
ASP-DAC’06, 11-th Asia and South Pacific Design 
Automation Conference, Yokohama, Japan. 

Ostermann, J., Bormans, J., List, P., Marpe, D.,  Narro-
schke, M., Pereira, F., Stockhammer, T., Wedi, T., 
2004. Video coding with H. 264/AVC: tools, perform-
ance, and complexity. Circuits and Systems Magazine, 
IEEE, vol. 4, no. 1, pp. 728. 

Raja, G., Mirza, M. J., 2004. Performance comparison of 
advanced video coding H.264 standard with baseline 
H.263 and H.263+ standards. In ISCIT’04, IEEE In-
ternational Symposium on Communications and In-
formation Technology, vol.2, pp. 743-746. 

Schwarz, H., Marpe, D., Wiegand, T., 2006. Overview of 
the Scalable H.264/MPEG4-AVC Extension. In 
ICIP’06, IEEE International Conference on Image 
Processing, pp. 161-164 

STC’s Multimedia SoC. (n.d.). Retrieved March, 2, 2007, 
from: http://int.stc.itri.org.tw/eng/research/multimedia-
soc.jsp?tree_idx=0200 

Suh, H.-L., Jeong, H.-K., Ji, H.-P., Seon, W.-K., Suki, K., 
2006. Implementation of H.264/AVC Decoder for 
Mobile Video Applications. In ISCAS’06, IEEE Inter-
national Symposium on Circuits and Systems . 

Tseng, S.-Y., Hsieh, T.-W., 2006. A Pattern-Search 
Method for H.264/AVC CAVLC Decoding. In 
ICME’06, IEEE International Conference on Multi-
media & Expo, pp. 1073-1076. 

Wang, S., Yang, Y., Li, C., Tung, Y., Wu, J., 2004. The 
optimization of H.264/AVC baseline decoder on low-
cost TriMedia DSP processor. In proceedings of SPIE, 
vol. 5558, p. 524. 

Wiegand, T., Schwarz, H., Joch, A., Kossentini, F.,  
Sullivan, G., 2003. Rate-constrained coder control and 
comparison of video coding standards. IEEE Transac-
tions on Circuits and Systems for Video Technology, 
vol. 13, pp. 688–703. 

SIGMAP 2007 - International Conference on Signal Processing and Multimedia Applications

316


