
CONSTRUCTING CONSISTENT USER REQUIREMENTS
Lessons Learnt from Requirements Verification

Petra Heck
Laboratory for Quality Software, TU Eindhoven, Postbus 513, 5600 MB, Eindhoven, The Netherlands

Keywords: User Requirements, Use Cases, Verification, Consistency.

Abstract: The user requirements specify what functions an information system has to fulfil. The user requirements
serve as the basis for system implementation and test specification. In this paper we present a number of
guidelines that improve the quality of the user requirements. .
If the guidelines we present are obeyed during requirements construction, certain types of inconsistencies
will not be present in the resulting requirements. Better quality requirements lead to fewer errors in the other
system development phases and during system changes.

1 INTRODUCTION

The user requirements specify what functions an
information system has to fulfil. We assume that
before the user requirements are created a context or
environment description is produced. The context
description specifies the business processes the
information system plays a role in, and the
stakeholders and users of the system. The user
requirements should detail each step in the business
processes where the information system is involved.

For construction and analysis of user
requirements, many methods, techniques and tools
have been introduced in the past. Examples of tools
are modelling tools for system context or processes
and requirement management tools. Methods and
techniques have been introduced for the entire
requirements engineering life cycle from
requirements elicitation to requirements validation.

However, no tool can automatically generate the
user requirements for a new system. The elicitation
of requirements remains human work. No matter in
what form the requirements are written down, the
human part of the work leaves room for many
mistakes. The type of mistake that we consider in
this paper is inconsistency within the requirements.
This type of inconsistency can be found by only
looking at the requirements specification itself.

To argue about consistency of requirements, the
elements they consist of and the relations between

the elements must be clear. For this we present an
example structure in the next section.

We have used this structure to perform case
studies, in which we have checked the requirements
of different information systems for consistency.
The many inconsistencies discovered during those
case studies show that there is not enough awareness
of the basic relations between requirements elements
among requirements engineers.

In this paper we provide a number of simple
guidelines that can prevent (or make it easy to
detect) a number of commonly encountered
inconsistencies. The guidelines have been
discovered during case studies, in which we have
manually checked the requirements of different
information systems for consistency.

2 GUIDELINES

From the specific findings in the previous section,
we can abstract a number of guidelines. Obeying
these guidelines in the construction of requirements
will reduce the number of consistency defects.

[G1] Structure the Requirements
Before the requirements are created, the structure of
the requirements should be clear.

The easiest way to obtain a consistent structure
for the requirements is to use templates (these can be
e.g. Word templates, but also template projects in a
requirement management tool). Good examples of

502
Heck P. (2007).
CONSTRUCTING CONSISTENT USER REQUIREMENTS - Lessons Learnt from Requirements Verification.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - ISAS, pages 502-505
DOI: 10.5220/0002345305020505
Copyright c© SciTePress

requirements structures can also be found in
standards like IEEE Std. 830 (IEEE, 1998). When
the template is fixed, the relationships between the
different elements in the template should be
documented. These relationships lead to simple
checks that the users of the templates can perform
during requirements creation.

If requirements are not structured, the
relationships between the different elements will
never be clear and cannot easily be checked for
inconsistencies.

[G2] Use (Semi)-Formal Models
Many consistency checks can be automated if the
requirements are written down in a formal (i.e.
mathematically-based) language. However, in
practice these formal languages are not often used.
This is due to the training that is required to use
them and the difficulty for business users to
understand them. Much effort is now put into the
creation of languages that are readable for business
users (mostly picture based) but also translatable
into formal languages for verification purposes. An
example is the BPMN notation for business
processes (OMG, 2006).

While these languages are not widely available
yet, a second-best alternative is to use semi-formal
elements (e.g. use case scenarios or data
dictionaries) to describe the requirements. These
semi-formal elements have less ambiguity than
natural language only and thus are easier to validate
by hand. Moreover, semi-formalness means that
there are a few options to translate (parts of) the
elements into formal descriptions and perform
formal verification.

[G3] Structure with Use Cases
Among the semi-formal elements, the use cases
deserve a guideline of their own.

Use cases (Leffingwell, 2003) are an effective
way of writing down functional requirements
because their story can be understood by users,
developers and testers.

A use case describes sequences of actions a
system performs that yield an observable result of
value to a particular actor. The particular actor is the
individual, system or device that initiates the action.

A use case has four mandatory elements:
 unique name;
 brief description;
 actors;
 flow of events: basic flow and alternate flows

(optional situations, odd cases, variants,
errors, blocked resources, non-occurring
events, etc.).

Use cases have a number of advantages over
summing up the functional requirements item-wise:

 Test cases for acceptance testing can be easily
derived from the use cases (the same
interaction sequence can be used).

 Completeness of the user requirements can be
more easily assessed by the walkthrough of
these use cases because the interaction is easy
to imagine by the users.

 Developers of the system can better understand
what each system function comprises because
of the coherent way of describing each step in
it.

[G4] Create Summary Use Cases
For many information systems, the number of user
functions is quite large.

A good solution for structuring the use cases is
the introduction of so-called ‘summary use cases’
(Cockburn, 2001). A summary use case describes
the user-system interaction on a high-level where
each step is itself a use case. If summary use cases
are not used, another type of overview must indicate
the relationships between the different use cases.

If an overview does not exist, the readers of the
requirements specification will have a very hard
time to grasp the functionality of the entire system.
If the functionality is not clear, readers will overlook
items and create inconsistencies in their follow-up
work.

[G5] Do Not Forget Literature
Many publications have been written about
requirements engineering. All these books, articles
and standards contain numerous guidelines on
requirements engineering. To read all these would
require too much effort.

A good solution is to create a guideline
document that collects the relevant guidelines. The
reading effort is divided over more people and the
new-comers can be informed by reading this
document. The guideline document will grow as
more people read new literature.

There are for instance many publications on use
cases [e.g. (Cockburn, 2001), (Leffingwell, 2003)],
but it suffices to take the most important guidelines
from books, standards or articles and collect them in
the use case template that is used in the company
projects.

If literature is entirely ignored the risk of
reinventing the wheel exists. This paper already
summarizes a number of simple guidelines.

CONSTRUCTING CONSISTENT USER REQUIREMENTS - Lessons Learnt from Requirements Verification

503

[G6] Specify Functions after User Analysis
Users of the system that are often forgotten are e.g.
the system administrator or the manager who only
uses the system for monthly reports.

Before the requirements are created, a good
analysis of all system user roles during the entire life
cycle of the system must be made. If the user roles
are known, the system functions for each role can be
listed.

If a proper user analysis is left out the final
system may miss important user interfaces such as a
report facility for managers or a configuration screen
for administrators.

[G7] Document the Picture Techniques
Although pictures often contain less ambiguity than
natural language, the symbols that are used in
pictures can still mean different things to different
people: what is the meaning of the shaded symbols,
the arrows, the dotted lines vs. the full lines, etc.
Most modelling tools, even if they are based on
standards like UML, do not put any restrictions on
the symbols in a certain diagram type.

To explain the meaning of each symbol and
colour used in the picture, a legend must be added to
the picture. Another good option is to document the
standard meaning in a company reference and only
include exceptions with the pictures themselves.

If no explanation of picture symbols (including
arrows and lines) and colours is included, different
interpretations are bound to be made. The different
interpretation will lead to inconsistencies in the
implementation or other actions that are based on the
pictures.

[G8] Relate Pictures to Text
When both pictures and text are used to explain the
same concept (e.g. steps in a use case scenario) they
must be consistent with each other.

To make it easy to verify the consistency of the
text and the picture, the same wording must be used.
If steps are pictured, the steps should be numbered
the same as in the text to make it easy to relate the
steps. Any other relations between the pictures and
text should be marked in the picture.

If text and pictures are not clearly related, it is
difficult to compare them. The inconsistencies
between text and picture might be overlooked.

[G9] Maintain Cross-References
A cross-reference indicates for a certain type of item
in which requirements or use cases a specific item is
addressed. Cross-references allow for forward and
backward traceability of the requirements.

The cross-reference is useful during update
actions of the requirements. If e.g. a new type of
printer is attached to the system, the ‘peripheral
equipment’ cross-reference indicates which
requirements or use cases are influenced by this. It
takes some extra time to maintain the cross-
reference unless the requirements are stored in a
requirements management tool that automatically
creates the indexes.

If no cross-references are maintained during
requirement development, an update action will take
a long time because all documents need to be
searched for references to the updated item. If
multiple names were used for the item, references
can easily be missed.

[G10] Maintain a Glossary
A glossary must indicate the meaning of each
ambiguous or project-specific term in the user
requirements. Moreover, if the requirements are
written in a non-native language a list of translations
should be included. A glossary is not only intended
for the lookup of abbreviations. It must provide a
unique source for the terminology in the project (e.g.
simple things like “do we use ‘customer’ or ‘client’
to indicate the buyer of our services?”).

A picture of the relations between the different
entities can be included to make the glossary more
informative. A less informal version of the glossary
would be a data dictionary, which also defines data
representations.

If not at least a basic glossary is provided for the
project the different possible interpretation of terms
will lead to inconsistencies in follow-up activities.
Moreover, the use of multiple terms for the same
entity (because there was no glossary that uniquely
defined the term to use) will lead to items being
easily overlooked.

[G11] Create Templates Pre-filled with Examples
A template that only outlines the structure of the
document can cause different writers to fill in fairly
distinct contents for the sections.

To make the template more indicative each
section should contain comments on what is
expected from the writer (are pictures mandatory? is
there a standard way of numbering items? when can
this section be left empty? etc.), and an example of
the contents. Checks that the author can perform on
the contents can also be included in the template.

If a template only contains section headings the
contents of the documents will vary from author to
author. It is hard to find inconsistencies between
documents that are not similar. Guidelines, examples

ICEIS 2007 - International Conference on Enterprise Information Systems

504

and checks in the templates will improve the quality
of the produced documents in general.

[G12] Do Not Use ‘N/A’
When templates are used to produce requirements
documents, some sections may not apply to all
projects. E.g. for a system without peripheral
equipment a section describing the equipment is not
needed.

When a template is the basis for a document, no
sections can be left out otherwise the structure
among different projects will become inconsistent.
However, it does not suffice to simply mark the
section as ‘N/A’ or ‘Not applicable”, because it is
not clear why the section is not applicable. E.g. is
there no peripheral equipment in the system or is it
not used for this use case?

Each occurrence of ‘N/A’ must be clarified with
a reason, otherwise people can not verify that the
‘N/A’ was appropriate (it could have been e.g. a
copy-paste error) or when it should be updated
(when the reason becomes invalid). ‘N/A’ will lead
people to ignore the section in all future uses of the
document.

An incorrectly specified ‘N/A’ is a major
inconsistency in the document.

[G13] Keep Track of Open Points
Requirements are usually written in more than one
cycle. During the earlier cycles, not all information
might be available. The missing information leads to
so-called ‘issues’ or ‘open points’.

At the final delivery of the requirements, all open
points must be solved. The best way to make sure
that none of the documents contain open points is to
keep track of the open points on a central list with
referrals to the related documents. An open point
may only be closed after it has been updated in the
corresponding documents.

If open points are left in the documents they are
incomplete and some parts cannot be used for
follow-up actions.

3 RELATED WORK

Certain standards provide guidelines for
requirements, e.g. IEEE Std 830 (IEEE, 1998), IEEE
Std 1233 (IEEE, 1998) or the ESA standards (ESA,
1991). Our guidelines supplement these standards.
Our guidelines are on a greater level of detail than
the standards. The standards specify a format for the
requirements, some guidelines for the contents of the
requirements, and processes to create requirements.

The idea of using formal models for
requirements engineering is not new and promoted
by many authors, e.g. (Parnas, 1995), (Lamsweerde,
2001). The use case-based approach is also not new,
e.g. (Cockburn, 2001), (Leffingwell, 2003).

The guidelines we have presented in the previous
section are not new, but the overview we have
presented can serve as a quick-reference for
requirements engineers.

4 CONCLUSIONS

Our paper aims to serve as a practical overview of
simple guidelines that companies can incorporate in
their requirements engineering processes in order to
reduce the chance for inconsistencies.

If the guidelines we present are obeyed during
requirements construction, certain types of
inconsistencies will not be present in the resulting
requirements. Better quality requirements lead to
fewer errors in the other system development phases
and during system changes.

REFERENCES

Cockburn, A., 2001. Writing Effective Use Cases,
Addison-Wesley. London.

ESA Board for Software Standardisation and Control
(BSSC), 1991. ESA software engineering standards,
Issue 2.

IEEE Computer Society, 1998. IEEE Recommended
Practice for Software Requirements Specifications,
IEEE Std 830-1998.

IEEE Computer Society, 1998. IEEE Guide for
Developing System Requirements Specifications,
IEEE Std 1233-1998.

Lamsweerde, A. van, 2001. Building Formal
Requirements Models for Reliable Software. In Ada-
Europe 2001. Springer-Verlag.

Leffingwell, D., Widrig, D., 2003. Managing Software
Requirements. A Use Case Approach, Pearson
Education. Boston, 2nd edition.

OMG, February 2006. Business Process Modeling
Notation (BPMN) Specification. Version 1.0, Final
Adopted Specification. Retrieved from
http://www.omg.org/docs/dtc/06-02-01.pdf.

Parnas, D.L., Madey, J., 1995. Functional Documentation
for Computer Systems. In Science of Computer
Programming, vol. 25, no. 1, pp. 41–61.

CONSTRUCTING CONSISTENT USER REQUIREMENTS - Lessons Learnt from Requirements Verification

505

