
COMPARISON OF FIVE ARCHITECTURE DESCRIPTION
LANGUAGES ON DESIGN FOCUS, SECURITY AND STYLE

Csaba Egyhazy
Computer Science Department, Virginia Tech, 7054 Haycock Road, Falls Church, Virginia 22043, USA

Keywords: Architecture Description Language, high-level abstraction, component, connector, configuration, interface.

Abstract: With the increasing complexity and size of software systems, defining and specifying software architectures
becomes an important part of the software development process. In the past, many software architectures
have been described and modeled in an ad hoc and informal manner. For the past 20 years, Architecture
Description Languages (ADLs) have been proposed to facilitate the description and modeling of software
architectures. This paper reviews the history of ADLs, selects five of them, and compares them based on
their design focus, security modeling, and styles modelling.

1 INTRODUCTION

Architecture Description Languages (ADLs) are
formal notations which are used to describe and
model software architectures (Shaw and Garlan,
1996), (Perry and Wolf, 1992). However, ADLs are
actually far more than simple language syntax;
“... this notations usually provide both a conceptual
framework and a concrete syntax for characterizing
software architectures. They also typically provide
tools for parsing, unparsing, displaying, compiling,
analyzing, or simulating architectural descriptions
written in their associate language ... ” (Garlan and
Perry, 1995).

Shaw and Garlan describe an ADL as a language
which has precise descriptions and specifications:
“provides models, notations, and tools to describe
architectural components and their interactions; it
must handle large-scale, high level designs; it must
support the adaptation of these designs to specific
implementations; it must support user-defined or
application specific abstractions; and it must
support principled selection of architectural
paradigms... ” (Shaw and Garlan, 1992).

The first comprehensive survey of ADLs was
done by Clement in 1996 (Clements, 1996). About
the same time, Nenad Medividovic and Richard N.
Taylor published a framework Error! Reference
source not found. for classifying and comparing
ADLs. Since then, some of these ADLs have been
developed to new generation (e.g. ACME,

MetaH) and some of them declined (e.g. UniCon,
Wright, C2). New ADLs such as ArchWare and
xADL 2.0 emerged. Consequently, there is a need
for a comparative review of some of these
contemporary ADLs at this time. In this paper we
provide such a comparison with respect to three
metrics: design focus, security modeling, and style
modeling.

2 HISTORICAL VIEW OF ADLS

Our review of the evolution of ADLs resulted in a
taxonomy marked by three periods: theory base
period, first-generation ADLs, and second-
generation ADLs. As seen from Figure 1 starting at
the top, the Theory Base Period commenced in the
late 1980s with the publication of Mary Shaw’s
paper on “high-level abstraction” and software
architecture style concepts 0). Since then, research
expands on architecture level of abstractions
including the decomposition of architectures, the
interconnection between components, the notation
for describing architectures, and the formal methods
adopted in describing components, behaviors, and
connections. We call this period the Theory Base
Period. Two methodologies of modeling the
software architecture form the conceptual basis of
Theory Base Period. The one founded by Mary
Shaw and David Garland, and the other by Perry and
Wolf (Perry and Wolf, 1992). The Shaw and Garlan
(Shaw and Garlan, 1996) methodology is built

270
Egyhazy C. (2007).
COMPARISON OF FIVE ARCHITECTURE DESCRIPTION LANGUAGES ON DESIGN FOCUS, SECURITY AND STYLE.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - ISAS, pages 270-277
DOI: 10.5220/0002348002700277
Copyright c© SciTePress

around a series of styles. The idea of styles comes
from the concept of pattern in high-level
programming languages. The Perry and Wolf (Perry
and Wolf, 1992) methodology is built around the
idea that software systems can be represented as a
triple {Element, Rule, Rationale}. During the first
part of the 1990s software architecture formalization
focused on individual systems or styles. Examples
include the formalization of pipe-filter style
(Luckham, Vera, and Meldal, 1995), event systems
Error! Reference source not found.) and object-
composition standard (Garlan and Notkin, 2001).
Therefore, the cost of development using such
formalization actually increases. Second, there are
no corresponding tools to support the formalization
and because they develop the semantics of a style
from scratch, there is no direct means of
characterizing a specific system configuration.

First-generation ADLs focus more on the
modeling of architecture elements. The modeling is
based on the gross structure proposed by Shaw and
Garland, where an ADL describes the architecture in
terms of component, connector and the way they are
composed with each other. Components can be
described with specification and implementation. So
do connectors. Components are the loci of
computation and state. Each component has an
interface specified with component type and the
player. Player is called an interface point in this
paper. Connectors are the loci of relations among
components. They mediate interactions. Each
connector has a protocol specification which is the
interface of the connector provided to components or
other connectors. The protocol includes rules about
the types of interface, assurances about properties of
the interaction, rules about the order in which things
happen, and commitments about the interaction.

As seen in Figure 1, ADLs such as UniCon,
Wright, ACME, Rapide, SRI SADL, C2 ADL and
MetaH belong to the first-generation ADLs. UniCon
was developed around 1995 by a CMU group lead
by Mary Shaw. It is in UniCon where the
aforementioned gross structure of architecture
language was proposed. UniCon is a consequence of
Mary Shaw’s research on architecture styles.
UniCon, implements the pipe and filters architecture
style, real-time scheduling architecture, and global
data access architecture. Wright focused on the
concept of explicit connector types, on the use of
automated checking of architectural properties.

Rapide’s original goal was to build large-scale
distributed multi-language systems. Rapide adopts
an event-based execution model of distributed time-

sensitive systems. This model is called the "timed
poset model." Posets provide the most detailed
formal basis to date for constructing early life cycle
prototyping tools, and later life cycle tools for
correctness and performance analysis of distributed
time-sensitive systems.

Compared with other first-generation ADLs,
Structural Architecture Description Language
(SADL) is relatively new. Its research mainly
focuses on the architecture styles and architecture
refinement patterns. The focus of MetaH
(Honeywell MetaH Website) is to build reliable,
real-time multiprocessor avionics system
architectures. ACME was proposed to provide a
structural framework for characterizing
architectures, together with annotation facilities for
additional ADL-specific information.

Most of the second-generation ADLs derived
from a specific first-generation ADL. For example,
on the base of MetaH, Honeywell Inc. developed
AADL; CMU and University of California at Irvine
united and created xADL 2.0 based on ACME and
C2 SADL research; ADML is an XML improved
version of ACME. Most of second generation ADLs
have a relatively complete tools support (Bass,
Clements, Kazman, 2003). They are more
extensible, such as xADL 2.0, and focus on handling
dynamic architectures, e.g., ArchWare.

3 FIVE ARCHITECTURE
DESCRIPTION LANGUAGES

In our comparative review of ADLs, we selected two
ADLs from the first-generation and three ADLS
from the second generation for this comparison.
They are: Rapide, SADL, xADL 2.0, AADL and
ArchWare. Among the second-generation ADLs, we
selected xADL 2.0, derived from xArch. Since
AADL inherited most of the characteristics of
MetaH, there is no need to include ACME, C2
SADL and MetaH in our comparison. Also, from the
aforementioned history we know that UniCon,
Wright, Aesop and ACME were all generated by the
CMU research group, and are therefore similar to
each other. Most of their characteristics are inherited
by the second generation ADLs such as xADL 2.0
and AADL. On the other hand, our other selections,
namely Rapide and SADL were developed
independently and are different from the ADLs
developed at CMU.

COMPARISON OF FIVE ARCHITECTURE DESCRIPTION LANGUAGES ON DESIGN FOCUS, SECURITY AND
STYLE

271

Figure 1: Architecture Description Language Evolution Chronicle.

Our last selection was ArchWare, the newest ADL
in our survey. It focuses on modeling active
architectures, and it has many features which are not
shown in other ADLs.

3.1 Rapide

Rapide abstracts architecture as an interface
connection architecture 0 (Dashofy E. M., van der
Hoek A. and Taylor R. N., 2002). According to this
abstraction, an architecture consists of interface,
connections and constraints. Interfaces are the
feature for component abstraction. Connections
define the communication between components, and
Constraints restrict the behavior of the interfaces and
connections. Rapide is an event processing
language, so the semantics of Rapide are defined in
terms of generating events, sending events from one
component to another component and observing
events. A component in Rapide is described in terms
of interface. It includes the kinds of events that a
component can observe or generate, the functions
the component provides to other components or
requires from other components, and the states and
state transitions of the component and constraints on
its external behavior. The interface declares sets of
constituents to represent behaviors contained in the

components which are visible to the external
architecture.

3.2 SADL

SADL adopted the common way of architecture
abstraction (Moriconi and Riemenschneider, 1997),
namely one represented with components,
connectors and configurations. The component has a
name, a type and an interface. The configuration
defines the way of wiring components and
connectors into an architecture. A configuration
contains two kinds of elements: connections and
constraints. Mapping is very important in SADL. It
is a relation that defines a syntactical interpretation
from the abstract level of architecture to the concrete
level of architecture.

In SRI SADL, a component is a sub-type of type
component. A component has a name, a type and an
interface. The interface points of a component are
represented with ports. A port has a name and a
type, and is designated for input or output. Input port
is tagged as iport. Output port is tagged as oport.

SADL supports sub-typing as a means of
defining new architectural objects within a particular
class of objects. For example, component is the

ICEIS 2007 - International Conference on Enterprise Information Systems

272

built-in type of SADL. SADL component type
supports type constraints. In addition, SADL is
algebraically extensible. It is possible to introduce
new types that are not derived from a predefined
collection of base types. Semantics in SADL are
represented over constraints and properties.
Constraints in SADL are first-class objects using
classical first-order logic with quantifiers that range
over the natural numbers. The SADL Constraint
Language provides a means to describe formal
semantics.

3.3 xADL 2.0

xADL 2.0 separates an architecture description into
the design time description and the runtime
description. Architectures are modeled with a set of
schemas. These schemas have the following
dependencies. Instance Schema is used to represent
run-time elements. Design time elements are
represented in Structure and Types Schema. The
Options Schema provides the ability to specify that
certain components, connectors and links are
optional when instantiating architecture. The
Variants Schema provides the ability to specify that
the type of certain components and connectors can
vary when instantiating the architecture. The
Version Schema provides the ability to store version
evolution information of elements in an architecture.
In xADL 2.0, an architecture is represented with
components, connectors and links (Dashofy, E. M,
2003).

In xADL 2.0, component, connector, interface
and link instance are semantically neutral, which
means that their behaviors are not formally
specified. Behavior specification can be specified in
extensions. As well as the semantics, xADL 2.0 does
not take any steps to define constraints or rules about
components and their behaviors. Constraints can be
specified in extensions.

3.4 AADL

AADL was explicitly designed to meet the needs of
embedded real-time systems developed by model-
based engineering, such as avionics, automotive
electronics and robotic systems. These systems are
usually performance critical.

An AADL specification consists of a global
declaration and an AADL declaration. The global
declaration includes package specifications and
property set declarations. AADL declarations
include component type, component
implementation, port group types, and annex

libraries. A component type specifies a functional
interface in terms of features flow specifications and
properties. The feature describes the interface of a
component through which control and data may be
exchanged with other components. As shown in the
Figure 2, data, subprograms, threads, thread groups
and processes collectively represent the application
software. They are called software components.
Processor, memory, bus and device collectively
represent the execution platform. They are called
execution platform components.

Figure 2: Components from Application Software to
Execution Platform.

3.5 ArchWare

In ArchWare, an architecture is described in terms of
components, connectors and their compositions
(ArchWare Project Site). Components are described
in terms of external ports and an internal behavior.
Connectors are special-purpose components. This
abstraction is represented pictorially in Figure 3.

Figure 3: Architectural Concept of ArchWare (Adopted
from ArchWare Project Site).

The hyper-code abstraction was introduced in
ArchWare as a mean of unifying the concept of
source code, executable code and data in a
programming system (Ron, et.al, 2005). Since it can
present closure, through sharing links, it can be used
as a representation for introspection of the executing
system. As seen from Figure 4, ArchWare is a
formal type system consisted of three layers. With
this type mechanism, it is easy to extend ArchWare

COMPARISON OF FIVE ARCHITECTURE DESCRIPTION LANGUAGES ON DESIGN FOCUS, SECURITY AND
STYLE

273

with new base types and new type constructors.
Therefore, ArchWare can be seen as an open family
of layered languages having as root the base layer.
The type of a component is represented by the port
type and behavior type. Both types can be
parameterized. A port type defines a communication
protocol.

4 COMPARISON BASED ON
DESIGN FOCUS, SECURITY
AND STYLE

In the study reported here, we used a comparison
framework that consisted of several metrics grouped
according to 3 general features: Design Focus,
Security, and Style.

Figure 4: Three Layers of Type Definition.

A comparison outline table is given in Figure 5.
Each ADL has its own design goal. Basically, there
is no ADL that can be adapted to every situation.

4.1 Design Focus

ADLs give us an insight into which area they are
more competent in. It is our hope that the
comparison given in Figure 5 will facilitate the
selection of an ADL over another when satisfying
particular development project requirements.
Rapide focuses on large-scale distributed and time-
sensitive systems. Rapide demonstrated to be used in
modeling NSA’s Multilevel Systems Security
Initiative, X/Open Distributed Transaction
Processing Industry Standard. SRI SADL was
designed for general purpose. Most of ADLs except
AADL we surveyed can be used in general domains,
but they have different design goals. xADL focuses
on extensibility and flexibility architectures. Rapide
focuses on large-scale distributed, time-sensitive,
and multi-language systems, particularly in solving
distributed system design problems. So even though
it can be used in designing general systems, it is
more applicable in distributed multi-languages. SRI
SADL specializes in refinement. For mobile
software system, ArchWare is superior. AADL is
specific to embedded system. xADL 2.0 can be used
as a bridge between different ADLs.

 ADL
Metrics Rapide SADL xADL AADL ArchWare

Design
Focus

Large-scale
distributed, time-
sensitive, multi-
language systems

No particular
domain requirement,
focus on refinement

Focus on
extensibility and
flexibility
architectures

Focus on embedded real-
time systems, high
reliability, timing,
responsiveness, throughput,
safety requirements

Focus on active
software
architecture

Security
Modeling

Not provided

Theoretically
proved that when
security plans are
set up in low level
abstraction, it will
be effective in
higher level too

Use the
extensible
foundation of the
language; support
architectural
access control
module

Can define safety
engineering concepts
(MTBF, propagation
through connections)
Fail secure attribute model
etc.

Not provided

Style
Modeling

Defined with the
architecture section.
Support
parameterization.
Events can be styled
as event pattern

Defined with the
ARCHITECTURE
section. Use
predicate mapping
to map styles.

Defined with a
XML schema No
semantic
supported

Defined with the system
section. The system has
multiple modes with each
representing a possible
configuration case

A style consists of
types, constituent
elements,
constraints. It is a
property-guarded
abstraction

Figure 5: Comparison of Five ADLs on General Features.

ICEIS 2007 - International Conference on Enterprise Information Systems

274

4.2 Security Modeling

In traditional software designs, security is often
considered as an extension or a remedy rather than a
part of the architecture, it is relatively acceptable
when the system is simple and homogeneous.
However, with the system becoming larger and
larger, more and more software is built from existing
components. These components may come from
different sources. Consequently, the practice of
component-based software engineering requires
architects to consider security not only as a property
of individual components, but also as an important
issue in the architecture as a whole (Ren and Taylor,
2005).

Security issues are seldom included in the
consideration from the language point of view.
Integrating security into the architecture modeling
introduces a degree of complexity. However, it can
guide the comprehensive development of security.
Such high-level modeling enables designers to
locate potential vulnerabilities and install
appropriate countermeasures. It facilitates checking
that security is not compromised by individual
components and enables secure interaction between
components. It also enables the possibility of
selecting the most secure components and supports
continuous refinement. In recent years, security
modeling has received greater attention, particularly
in the development of second-generation ADLs. If
an ADL does not provide explicit security modeling,
it does not mean that the ADL is incapable of
handling security issues. It simply means that it was
not originally conceived to address security in
particular. For example, the SADL group proved
that if security properties were provided at the lower
level in the architecture’s hierarchy, they could be
persevered at higher levels by using formalizing
mappings and correctness arguments. They
illustrated this idea by applying SADL on enforcing
the multilevel security (MLS) policy in the X/Open
Distributed Transaction Processing architecture.
However, SADL only proved that they are capable
of enacting security policies. They didn’t introduce
any security policies or specify any security
properties in the language itself.

xADL 2.0 modeled two types of access
privileges (Dashofy, E. M, 2003). The first type
handles passive resources. It deals with traditional
access such as read and write. The second type
handles active resources. It includes control on
instantiation and destruction of architectural
constituents, connection of components with
connectors, execution and reading and writing of

architecturally critical information. Traditional
ADLs have paid little attention to the second type.
However, they are obviously important from the
architectural point of view. Safeguard refers to
permissions that are required to access the interfaces
of the protected components and connectors. A
safeguard specifies what prerequisite other
components or connectors should have before they
access a certain protected component or connector.
Policy specifies what privileges a subject should
have to access resources protected by safeguard. It
can be regarded as a specific security solution for a
component or a connector.

Components and connectors play different roles
in the security scheme. Components work as the
supplier of the security contract. Connectors play an
important role in regulating and enforcing the
security contract specified by components. It can
decide what subjects the connected components are
executing for, and regulate whether components
have sufficient privileges to communicate through
the connectors. It also has the potential to provide
secure interaction between insecure components.

For example, AADL’s optional set of
declarations and semantics can be used to introduce
new properties of components that support the
addition of security techniques. The error model
annex in AADL is able to define qualitative and
quantitative analysis of non-functional requirements,
such as security requirement and safety requirement
on both components and connectors. To fully
support architectural security design, the error annex
should provide security modeling tools that can be
integrated with the AADL tools. This has not been
realized yet (Feiler, Gluch, Hudak, and Lewis,
2004).

4.3 Style Modeling

An architecture style captures common computation
and communication paradigms used to address a
particular class of programming problems. A mature
and formal architecture style should possess three
basic elements: a) A well-defined notation for
capturing architectures developed in the style b)
Well-defined methods for producing and analyzing
formal models from a specification captured in the
notation, and c) A well-defined method for
producing an implementation from a specification
capture in the notation.

A style should contain precise semantics; provide
interface coding guidelines for source modules and
provide well-defined methods for assembling
components to produce an overall implementation.

COMPARISON OF FIVE ARCHITECTURE DESCRIPTION LANGUAGES ON DESIGN FOCUS, SECURITY AND
STYLE

275

This allows for the styles to be evaluated, verified
and reused in different environments. The support
for styles in an ADL is essential, and will affect its
usability and scalability. Style is often equal to
pattern in many cases.

Architecture style in Rapide is a set of interfaces
(components), a set of connection rules and a set of
constraints. Connection rules define relationships
between events independently of any
implementation; connections are defined using event
patterns. The event patterns provide the expressive
means to define both static and dynamic
architecture. As seen in Figure 6, a style is directly
expressed with architecture in Rapide.

Figure 6: A Style in Rapide.

As shown in Figure 7, style is defined with
architecture in SADL. The architecture basically
contains a components section, a connectors section
and a configuration section. The architecture can
import declarations of types, variables, constants,
assertions and architectures from other specifications
with import. The architecture can also export
aforementioned elements as well. The architecture
can be parameterized and can be added as a new
type in SADL. SADL supports style mapping with
predicates.
In xADL 2.0, the architecture type is composed of
three collections: components, connectors and links.
However, because xADL2.0 itself does not contain
any semantic description, the architecture is
regarded as a container of styles. At this time, the
definition of an architecture style with complete
meaning needs extensions (Dashofy, E. M, 2003).

Figure 7: SADL style – ARCHITECTURE.

5 CONCLUSIONS

In this paper, we conducted a study of five ADLs
based on design focus, styles, and security. Although
security issues are gaining more and more attention
in the ADL literature, few provide complete
solutions. SADL and AADL claim that the
languages are extensible so they are capable of
defining security properties. However, without clear
and pre-defined terminologies, it is hard for
application architects to implement the extension.
xADL 2.0 is the only one in our comparison that
provides a security framework. However, we think
there is an inherent shortcoming in xADL 2.0. For
example, xADL 2.0 does not itself provide any
semantic and constraints in the language, it makes
their security control stop in the access level. Also, it
suffers from the security issues brought by plug-in
components or connectors described in other ADLs,
especially when those components or connectors are
composite. The security solution provided by xADL
2.0 is limited to access control. ADLs have begun to
address security issues. However, it is still far from
established.

Although all ADLs support the definition of
architecture styles, the support levels are different.
Most of them satisfied the first criteria, that is, they
all have a well-defined notation for capturing
architecture developed in style. The only exception
is xADL 2.0. Because its design goal, it does not
capture the semantic of an architecture. Rapide and
SADL allow parameterization in defining styles.
This may increase the reusability of a style. For
example, in a Client/Server architecture style, the
network protocol between the client and the server is
parameterized. It can be TCP/IP or SNA by using
parameter input. The parameter can be a number too,
for example, the number of the client.

In closing, we believe that once one of the above
ADLs emerges as the front runner, and becomes the
likely de facto industry standard, an increase in the
adoption of ADLs as part of the software
engineering process will follow.

REFERENCES

Abowd G., Allen R. and Garlan D., 1993, Using Style to
Understand Descriptions of Software Architecture.
Proceedings of the 1st ACM SIGSOFT symposium on
Foundations of software engineering Pages: 9 – 20

ArchWare Project Site: http://www.arch-ware.org/

styleA: ARCHITECTURE
 [char_iport : SEQ (character) code_oport
: code]
 IMPORTING character, … , FROM type_1
 IMPORTING Function FROM
Function_Style
 ….
BEGIN
COMPONENTS
 comp1: …
 comp2: …
 ….

with comp1, comp2
architecture styleA is
 ?C1: comp1; ?M : Msg;
 ?C2: comp2;

connections

styleA: ARCHITECTURE
 [char_iport : SEQ (character) code_oport
: code]
 IMPORTING character, … , FROM type_1
 IMPORTING Function FROM
Function_Style
 ….
BEGIN
COMPONENTS
 comp1: …
 comp2: …
 ….

ICEIS 2007 - International Conference on Enterprise Information Systems

276

Bass L., Clements P., and Kazman R., 2003, Software
Architecture in Practice, Second Edition, Addison-
Wesley Professional; 2 edition, April, 2003

Clements P. C., 1996, A Survey of Architecture
Description Languages, International Workshop on
Software Specifications & Design, Proceedings of the
8th International Workshop on Software Specification
and Design

Dashofy E. M., van der Hoek A. and Taylor R. N., 2002,
An Infrastructure for the Rapid Development of XML-
based Architecture Description Languages, In
Proceedings of the 24th International Conference on
Software Engineering

Dashofy, E. M, 2003, A Guide for Users of the xADL 2.0
Language First Revision, Institute for Software
Research at the University of California

Feiler P., Gluch D., Hudak J., Lewis B., 2004, Embedded
System Architecture Analysis Using SAE AADL,
Carnegie-Mellon Univ Pittsburgh PA Software
Engineering Inst

Garlan D. and Notkin D., 2001, Formalizing design
spaces: Implicit invocation mechanisms. In VDM’91:
Formal Software Development Methods, page 31-44

Garlan D. and Perry D., 1995, Introduction to the special
issue on Software Architecture IEEE Transactions on
Software Eng., April 1995.

Garlan, D. Monroe R. and Wile D., 1997, ACME: An
Architecture Description Language, Proceedings of
CASCON 97, Toronto, Ontario, November 1997, pp.
169-183.

Honeywell MetaH Website:
http://www.htc.honeywell.com/metah/

Luckham, D. C. Vera J., Meldal S., 1995, Three Concepts
of System Architecture, Technical Report: CSL-TR-
95-674, 1995

Medividovic N. and Taylor R. N., 1996, A Classification
and Comparison Framework for Software Architecture
Description Languages IEEE Transactions on
Software Engineering Volume 26, Issue 1, 1996

Moriconi M. and Riemenschneider R. A., 1997,
Introduction to SADL 1.0: A Language for Specifying
Software Architecture Hierarchies, SRI International
1997

Perry D. E. and Wolf A. L., 1992, Foundations for the
Study of Software Architecture, ACM SIGSOFT
Software Engineering Notes, 1992 Publishing
Company, Singapore, pp. 1-39, 1993

Rapide Design Team, 1997, Draft: Rapide 1.0 Types
Language Reference Manual, Program Analysis and

Verification Group, Computer Science Lab, Stanford
University

Ren, J. and Taylor R. N., 2005, A Secure Software
Architecture Description Language, Department of
Informatics, University of California, Irvine,

Shaw M. and Garlan D., 1996, Software Architecture:
Perspectives on an Emerging Discipline, Prentice
Hall, 1996, Page 167.

Shaw M. and Garlan D., 1993, An Introduction to
Software Architecture, Advances in Software
Engineering and Knowledge Engineering, Series on

Software Engineering and Knowledge Engineering,
Vol 2, World Scientific

Shaw M., 1989, Larger Scale Systems Require Higher-
Level Abstractions, ACM, 1989

Ron Morrison, Graham Kirby, Dharini Balasubramaniam,
Kath Mickan, Flavio Oquendo, Sorana Cimpan, Brian
Warboys, Bob Snowdon and R Mark Greenwood,
2004, Support for Evolving Software Architectures in
the ArchWare ADL, IEEE/IFIP Conference on
Software Architecture (WICSA).

COMPARISON OF FIVE ARCHITECTURE DESCRIPTION LANGUAGES ON DESIGN FOCUS, SECURITY AND
STYLE

277

