
A METHODOLOGY FOR DEVELOPING ONTOLOGIES USING
THE ONTOLOGY WEB LANGUAGE (OWL)

Magdi N. Kamel, Ann Y. Lee and Edward C. Powers
Department of Information Sciences, Naval Postgraduate School, 589 Dyer Rd, Monterey, California, 93943, USA

Keywords: Ontologies, Ontology Development Methodologies, Ontology Web Language (OWL), Semantic Web.

Abstract: It is generally agreed upon that ontologies are the knowledge representation component of the Semantic
Web. There is a growing need for developing ontologies in different disciplines as means for sharing a
common understanding of the structure of information in a domain among both people and machines. This
paper describes a seven-step methodology for developing ontologies using the Ontology Web Language
(OWL) based on related approaches for software and ontology development. As with contemporary
software development methodologies, the steps of the proposed approach are applied iteratively and in a
cyclical fashion in order to accurately capture the domain knowledge.

1 INTRODUCTION

It is generally agreed upon that ontologies are the
knowledge representation component of the
Semantic Web (Berners-Lee 2001). Although the
realization of the Semantic Web is still a distant
goal, there is a growing demand for ontologies to be
incorporated into current technologies. Many
disciplines are seeing the immense value of
ontologies as a way to codify a common set of
information or knowledge to be shared across
multiple applications. Ontologies provide users with
a consistent and agreed-upon knowledge base that
both humans and machines can process (Musen
1992; Gruber 1993).

While no ontology can model all the nuances of
any domain area, it is possible and valuable to
abstract the major concepts and how they relate to
one another. Having a valid knowledge
representation system that is widely shared saves
tremendous amount of effort for those who do not
have access to subject matter experts (SMEs).
Likewise, SMEs are motivated to provide users and
applications with basic domain knowledge through
the development of ontologies, thus providing users
with consistent sets of information that they can
maintain and manage.

Unfortunately, there is no clear understanding on
how to build ontologies, and good methodologies for
developing ontologies are greatly needed. A number

of suggestions for such methodologies have emerged
as people reflect on their experience of building
ontologies. Such suggestions include the experiences
in the development of TOVE (Toronto Virtual
Enterprise) (Grüninger and Fox 1995), the
Enterprise Ontology (Uschold 1996), Methontology
(Gomez-Perez et al 1996), and KBSI IDEF5 (KBSI
1994). While these approaches share some common
elements, they differ in their emphasis on different
aspects of ontology development.

This paper describes a methodology for
developing ontologies based on related approaches
for software and ontology development. It differs
from previous approaches in that it is specifically
designed for developing ontologies in OWL DL, an
Ontology Web Language based on description logic.
The process of the methodology involves modeling
the real world concepts and their relationships into
OWL classes, properties and instances.

Although, building ontologies requires a robust
grasp of the language used to build it, there are many
ontology development environment that provide
graphical user interfaces that hide the complexity of
the language syntax from the ontology developer.
While we believe that it is important to understand
the OWL constructs for building a valid OWL
ontology, the purpose of this paper is to understand
the process and methodology of building an
ontology rather than the syntax of the language.

The paper is organized as follows. Section 2
describes ontologies, why they are important as a

261
N. Kamel M., Y. Lee A. and C. Powers E. (2007).
A METHODOLOGY FOR DEVELOPING ONTOLOGIES USING THE ONTOLOGY WEB LANGUAGE (OWL).
In Proceedings of the Ninth International Conference on Enterprise Information Systems - SAIC, pages 261-268
DOI: 10.5220/0002352302610268
Copyright c© SciTePress

knowledge representation system, and presents a
brief overview of the Web Ontology Language
(OWL). Section 3 details a proposed seven-step
development methodology using Geography as the
domain of interest. Finally Section 4 concludes the
paper with a summary and directions for future
research.

2 ONTOLOGIES AND THE WEB
ONTOLOGY LANGUAGE
(OWL)

Ontologies are used to capture knowledge and
semantics about a domain of interest. They describe
the concepts in the domain, their properties, and the
relationships that exist between those concepts.
Ontologies derive their value from their ability to
share knowledge across information systems. An
ontology can take on various forms. It may be as
basic as a simple catalog, a finite list of terminology,
and as semantically sophisticated as logical
abstraction for disjointed and inverse relationships.

There are many goals for developing ontologies,
the most important of which is the ability to share a
common understanding of the structure of
information in a domain among both people and
machines (Noy and McGuinness 2001). By using an
ontology that creates a common language amongst
disparate systems, it becomes possible to share the
same set of terms and concepts. This also allows
software agents to aggregate and extract information
from other systems and use them appropriately to
answer queries. Other goals for developing
ontologies include the ability to reuse domain
knowledge, making domain assumption explicit,
separating domain knowledge from the operational
knowledge, and analyzing domain knowledge.

As ontologies move from simple taxonomies to a
structured knowledge base with properties and
restrictions, their need for expressiveness grows
(McGuiness 2002). At this end of the spectrum, a
semantically rich language becomes imperative to
represent the concepts and relationships of the
domain. Furthermore, an inference engine (reasoner)
can be used to verify consistency and completion. It
checks for consistency and makes inference where it
deems the relationships to be incomplete. These are
crucial elements of a meaningful ontology because
applications and systems rely on valid knowledge
representation.

Different ontology languages provide different
facilities. The most recent development in ontology

languages is the Web Ontology Language (OWL)
from the World Wide Web Consortium (W3C).
Derived from DARPA’s DAML+OIL, OWL is an
extension of Resource Description Framework
(RDF), a language for metadata interoperability
(Brickley and Guha 1999). OWL extends RDF in
order to facilitate richer inferences than RDF
Schemas. OWL provides a vocabulary to create
hierarchy of classes and use of class inheritance.
OWL’s extensions include semantics for cardinality,
class and instance equality, relationship between
classes, and property characteristics. Using the
variety of constructs provided by OWL, users can
build complex and useful ontologies.

There are three flavors of OWL, each with
different degrees of expressiveness, namely OWL
Lite, OWL DL (Description Logic), and OWL Full.
OWL Lite is used mainly for simple classification
hierarchy and constraints. OWL DL supports
maximum expressiveness while maintaining
decidability and computational completeness. OWL
DL uses all of the OWL constructs with certain
restrictions such as type separation (where a class,
property and individuals share all of the same
features). OWL Full is the most expressive version
which guarantees syntactic freedom of RDF without
computational completeness.

The example below, from the Geography
Ontology, defines the Continent class using
OWL. This simple definition states that the class
called Continent belongs to a parent class called
Body_of_Land. As specified by the namespaces,
OWL uses RDF Schema and RDF constructs to
point to the resource identifiers.

<owl:Class rdf:ID="Continent">
<rdfs:subClassOf
rdf:resource="#Body_of_Land"/>

</owl:Class>
In addition to the taxonomic hierarchy of classes,

OWL provides a rich set of semantics to describe the
relationship between classes and between
individuals.

3 A METHODOLOGY FOR
DEVELOPING ONTOLOGIES
USING OWL

While there are numerous papers on ontologies,
there is little guidance on how to go about their
development, particularly for OWL ontologies. In
this section we present a methodology that adapts

ICEIS 2007 - International Conference on Enterprise Information Systems

262

existing approaches for software and ontology
development to develop OWL ontologies.

The proposed development methodology consists
of seven steps. Similar to the life cycle model for
software development, these steps are applied
iteratively and in a cyclical fashion. The steps of the
proposed methodology are:

1. Determine the scope and application of the
ontology

2. List relevant concepts of the domain
3. Create the class hierarchy
4. Define properties
5. Describe classes using property restrictions

and complex definitions
6. Classify ontology with a reasoning tool
7. Create individuals and fill property values
Each of these steps will be discussed in some

detail in the sections that follow. A Geography
Ontology will be used to illustrate the steps of the
methodology. The choice of the Geography domain
is based on the fact it is a commonly understood
domain and thus will help the reader understand the
process of building an ontology.

3.1 Determine the Scope and
Application of the Ontology

This crucial first step requires a clear understanding
of the purpose and scope of the ontology to be
developed. Often, the purpose of an ontology is two-
folds. If an ontology is to represent the knowledge
base of a particular domain or segment of a domain,
it will potentially function to “answer” all general
questions related to that domain. A second reason
for developing an ontology is its use as knowledge
representations in specific applications. For a given
ontology, the requirements for these two goals may
be conflicting. Therefore, the developer must
compromise the demand for specificity and
generality of scope in order to create a useful
ontology. He must carefully manage the scope and
depth to develop a realistic and coherent ontology
that serves the purpose of the application.

The scope and purpose of the Geography
Ontology is to define the basic physical and political
geographies and represent the relationships between
them for the purpose of using it with an Ontology
Assisted Knowledge Discovery Application
(OAKDA), which will access the ontology to
provide meaningful context to tailor user web
searches. The ontology represents the high-level
understanding of geopolitics – the physical
geographic characteristics existing within different
types of political entities. We will use this example

ontology in the sections that follow to demonstrate
the development methodology of an OWL DL
ontology.

3.2 List Relevant Concepts of the
Domain

Once the scope is broadly defined, this step
enumerates, in no particular order, the main concepts
of the domain of interest. Although the final
ontology may not necessarily include all the
concepts defined during this phase, the developer
should list as many relevant concepts as possible. At
this point, one should not be concerned with
overlapping concepts, the relationships between
them, or their properties. The goal of this step is to
create a comprehensive list of the concepts of the
domain in preparation for the subsequent steps of
development.

For the Geography example, the relevant
concepts of the domain include the following:
ocean, lake, river, mountain, land,
plains, valley, desert, tropics,
climate, country, government, city,
boundary, continent, language,
ethnicity, latitude, longitude,
archipelago, Mexico, South America

While not every concept becomes a class, having
a large pool of concepts relevant to the domain
makes the hierarchy development easier. As in the
requirements analysis for software development, the
time and thought invested into the first two steps
provide great benefits and rewards during the
subsequent steps of the methodology.

3.3 Create the Class Hierarchy

This step creates a class hierarchy by specifying
superclasses and subclasses. Superclasses and
subclasses are related through an “is-a” relationship
which indicates that a member of a subclass is also a
member of the superclass.

Organizing the class hierarchy may be
accomplished in several ways: top-down, bottom-up,
or a combination approach (Noy and McGuiness
2001). The top-down approach starts with the most
general set of concepts and works down to the
subsequent levels of specialization. For example,
BodyOfLand and BodyOfWater classes are
identified as the highest level of the Geography
hierarchy, and subsequent subclasses are added to
these two classes. Thus, Ocean, River, and
Lake are added as subclasses of BodyOfWater,

A METHODOLOGY FOR DEVELOPING ONTOLOGIES USING THE ONTOLOGY WEB LANGUAGE (OWL)

263

and Mountain, Desert, and Plains as
subclasses of BodyOfLand.

The bottom-up approach starts with identifying
the most specific classes, then grouping, and
subsuming them under a parent class. For example,
in the Geography Ontology, the developer may start
with LandlockedCountry, IslandCountry,
and BiCoastalCountry classes, which are then
grouped as subclasses under the parent class of
Country.

The combination approach develops the class
hierarchy by defining the most salient terms of the
ontology, adding successive classes at the different
levels as appropriate. The advantage of the
combination approach is that it allows the developer
to start anywhere along the hierarchy and move up
and down the hierarchy and add new classes as
necessary. For example, in the Geography Ontology,
BodyOfWater and BodyOfLand classes were
initially defined as top level classes. In subsequent
iterations, a PhysicalGeography class was
defined and became a superclass for the
BodyOfWater and BodyOfLand classes.

When grouping low-level concepts, developers
should carefully differentiate between classes and
their instances, known in OWL as individuals. The
distinction between a class and an individual is not
always clear and often depends on the purpose of the
ontology. This means that a concept that is a class in
a given ontology may be an individual in another.
However, classes are generally “naturally occurring
sets of things in a domain of discourse” while
individuals correspond to real-world entities grouped
under these classes (Noy and McGuiness 2001).

In the Geography ontology, PacificOcean is
an instance of Ocean rather than its subclass since
PacificOcean does not represent a group of
entities but an actual entity itself. On the contrary,
IslandCountry should be a subclass of
Country rather than its instance since it represents
a group of island countries, such as Ireland and
Cuba.

The development of the class hierarchy of this
step falls under the design phase of the software
development cycle. As the ontology evolves, the
developer will revisit this step and modifies the
hierarchy as necessary. Additional requirements and
knowledge acquired in the process refines the class
taxonomy. In order to manage the constantly
evolving ontology, detailed documentation and
versioning is recommended.

It is important to note that in OWL DL, all
classes are considered overlapping unless such

separation or disjointness is made explicit.
Specifying disjointness between classes requires an
explicit specification using the OWL syntax
owl:disjointWith. Only by defining a class as
disjoint with others, the developer can assume class
mutual exclusivity.

3.4 Define the Properties

Following the creation of the class hierarchy, this
step specifies the class properties. A property
represents the relationship between two individuals,
or between an individual and a literal string value.
Properties are derived from the characteristics of the
defined classes. Similar to the method of specifying
classes and subclasses, properties are defined by
listing the characteristics of the defined classes and
then relating them to their classes. A defined
property may apply to more than one class.

For example, the characteristics of the Country
class include border, population, capital, language,
climate, rivers, lakes, mountain, government, ethnic
groups, and others. Most of these characteristics
relate to other classes within the ontology. A verb is
usually added as a prefix to property to specify the
relationship between the classes or between a class
and a data string. For example, Country has a
property of hasCapital to denote the relationship
that it has with the City class. For the class
characteristics that do not relate to another class, the
property depicts the class’s relationship to a data
string value. The property hasPopulation
describes the connection between the individuals of
class Country and their population value. In this
case, population is a numeric value that represents
the number of people in a particular country.

OWL DL ontologies allow the specification of
different types of class properties. They include
inverse, transitive, symmetric, functional and inverse
functional properties. Each of these properties
consists of its unique OWL DL constructs, and is
described briefly in the sections below. It is
important for the developer to correctly identify the
type of property and specify it in the ontology.

3.4.1 Inverse Properties

Properties having an opposite relationship to one
another are known as inverse properties. For
example, if the property hasCountry has the
corresponding inverse property of hasCity, and if
individual A has a hasCountry property value of
individual B, then individual B hasCity property
value of individual A. Specifically, if the individual

ICEIS 2007 - International Conference on Enterprise Information Systems

264

Venice, an instance of the City class, has the
hasCountry property value of Italy, then the
instance of Country Italy will automatically
have the hasCity property value of Venice. An
inverse property is denoted using the OWL syntax,
owl:inverseOf, a subproperty of
owl:ObjectProperty, to indicate an opposite
relationship to the specified inverse property

3.4.2 Transitive Properties

A transitive property is commonly used to represent
“part-whole” relationships. If transitive property PT
links individuals X and Y as well as individuals Y
and Z, then it is inferred, by the rules of transitivity,
that PT relates X to Z. For example, in the
Geography Ontology, the locatedIn is a
transitive property that is specified for the
individuals VaticanCity, Rome, and Italy. If
VaticanCity is locatedIn Rome and Rome is
locatedIn Italy, then by the rule of
transitivity, VaticanCity is locatedIn
Italy. While this implication is not explicitly
stated in OWL, the inferred relationship is made
explicit when the ontology is used to make
reasoning decisions. Inference engines, such as
RacerPro, read the OWL syntax and make the
implied link as defined by the transitive property.

3.4.3 Symmetric Properties

Symmetric properties allow individuals to have a
reciprocal or a bi-directional relationship. For
example, in the Geography Ontology, if
adjacentTo is defined as a symmetric property,
and individual A is adjacentTo individual B,
then individual B is also adjacentTo individual
A. Specifically, if individual Mexico is
adjacentTo United States, then it is inferred that
United States is adjacentTo Mexico.

3.4.4 Functional and Inverse Functional
Properties

A functional property indicates that, for a given
individual, there can be at most one value associated
with that individual along the property path. For a
functional property PF, individual X is associated
with at most one property value of individual Y.
However, if PF links X with another value, say
individual Z, then individual Y and individual Z are
one and the same. For example, in the Geography
Ontology, the property hasCapital is defined as
a functional property. The individual

UnitedStates is associated with two different
hasCapital values, namely
DistrictOfColumbia and WashingtonDC.
However, given that definition of functional
property, it must be inferred that
DistrictOfColumbia and WashingtonDC
are the same individual.

Similar to inverse property, inverse functional
property denotes that inverse property is functional.
Since functional property is restricted to one
property value, the same is applied to the inverse
functional property. More formally, if individual X
relates to individual Z via inverse functional
property PIF and individual Y relates to Z via the
same property, then it is assumed that individual X
is the same as individual Y. For example, in the
Geography ontology, if both
DistrictOfColumbia and WashingtonDC
have an inverse functional property isCapitalOf
with United States, this implies that the
inverse property hasCapital is functional and
therefore DistrictOfColumbia and
WashingtonDC are the same individual.

3.5 Describe Classes Using Property
Restrictions and Complex
Definitions

Properties are also used to restrict and define classes.
In order to associate a property with a class, it must
be used as part of a class description.

There are three types of class descriptions in
OWL DL, namely enumeration, property restriction,
and complex class definition. Enumeration describes
a class by exhaustively listing all of its members or
instances. Using the construct owl:oneOf, the
class description consists of every individual that
belongs to the class. Property restrictions describe
the constraints on relationships that the individuals
participate in for a given property. There are three
types of property restrictions, quantifier, hasValue,
and cardinality restrictions. A quantifier restrictions
constrain the range value of the property when
applied to the class definition. It can be either an
existential restriction or a universal restriction. A
hasValue restriction describes an anonymous class
of individuals that are related to another specific
individual along a specified property. Cardinality
restrictions constrain the number of property values
the class instance is allowed. Complex class
descriptions are defined using simple class
descriptions that are combined together using logical
operators of intersection (AND), union (OR) and

A METHODOLOGY FOR DEVELOPING ONTOLOGIES USING THE ONTOLOGY WEB LANGUAGE (OWL)

265

complement (NOT). They represent advanced class
logic of OWL DL.

Due to space limitation we will restrict our
discussion to quantifier restrictions as well as a
discussion of the related topics of open world
assumption, and primitive and defined classes. For a
comprehensive discussion of property restrictions
and complex definitions, the reader is referred to the
article by Horridge et al. (Horridge 2004).

3.5.1 Universal and Existential Restrictions

The existential restriction, denoted by ∃, states that
individuals of the class being defined must have at
lease one property relationship with a specified set
of individuals of a class. In other words, if a
property restriction for ClassX is ∃ PropertyE
ClassY, then individuals of ClassX have at least
one PropertyE relationship with the individuals of
ClassY. With existential quantifiers, it is possible
for individuals of ClassX to have PropertyE
relationship with individuals of other classes as long
as it satisfies the “at least one” requirement.

On the other hand, universal restriction, denoted
by ∀, states that individuals of the class being
defined must have all of their property relationships
with a specified set of individuals of a class. If
ClassX has a property restriction of ∀
PropertyU ClassY, then individuals of ClassX
have a PropertyU relationship only with
individuals of ClassY. However, it is possible for
individuals of ClassX not to have any PropertyU
values at all. Unlike the existential restriction,
universal restriction does not require the individuals
to have a property relationship with the defined set
of objects.

For example, if the class Country has the
existential restriction, ∃containsFeature
BodyOfLand, then each individual of the

Country class must have at least one a
containsFeature property value from the
individuals of BodyOfLand. Individuals of the
Country class may have containsFeature
property value from individuals from other classes,
as shown in Figure 1.

On the other hand if the class Country has the
universal restriction, ∀containsFeature
BodyOfLand, then if an individual of Country
has a containsFeature property value, it must
be an individual of BodyOfLand. This restriction
does not require all of Country individuals to have
a containsFeature property value, as shown in
Figure 2. Unlike the existential restriction,
individuals may not be associated with any
containsFeature relationships.

3.5.2 Open World vs. Closed World

While databases, logic programming and frame
languages are based on the “closed world
assumption,” which assumes that when something is
not specified, it is false, description logic based
languages, such as OWL DL, are based on “open
world assumption” which associates negation with
“unsatisfiability.” That is, falsehood can only be
asserted if it is made explicit.

For example, by using an existential quantifier in
the Geography ontology, we assert that an
IslandCountry has land type that is kind of
Island and has border that is kind of Ocean.
Because of the open world assumption, until we
explicitly say that an IslandCountry has only
these kinds of land types and borders, it will be
assumed by a reasoner that an IslandCountry

containsFeatures

containsFeatures

containsFeature

containsFeatures

containsFeatures

Individuals of
Country

Individuals of
BodyOfLand

Figure 1: Existential restriction example.

ICEIS 2007 - International Conference on Enterprise Information Systems

266

could have other land types and borders. By using
closure axioms that consist of a universal restrictions
along both the hasLandType and hasBorder
properties, we explicitly specify that an
IslandCountry has only land type of kind of
Island and only border that is kind of Ocean.

3.5.3 Primitive and Defined Classes

Unlike other languages, OWL differentiates between
“primitive” and “defined” classes. Primitive classes,
also referred to as “partial,” are those defined by
necessary conditions only. Defined, or “complete”
classes, have at least one necessary and sufficient
condition. The difference is the level of
completeness associated with the class definition.
Reasoning tools can base their classification
inferences only on defined or complete classes; no
definitive conclusions can be made on primitive
classes.

For example, CoastalCountry is a defined
class because it has necessary and sufficient
conditions as part of the class specification. The
necessary and sufficient conditions imply that any
class that is country and has a land type of
Coastline, amongst other things, is a
CoastalCountry. If this class definition was
primitive, with necessary conditions only, such
unambiguous inference cannot be made. It is crucial
for developers to understand that unless classes are
complete, using necessary and sufficient conditions,
the classifier will not infer class subsumption.

3.6 Classify Ontology with a Reasoning
Tool

One of the main advantages for developing an OWL
DL ontology is that it can be processed by a
reasoner. Based on necessary and sufficient
conditions of the classes, a reasoner will find those
classes that should be subsumed under more than
one class. Another service of the reasoner is
consistency checking which checks whether or not it

is possible for a class to have any instances. These
services are of a tremendous value, especially with a
large and complex ontology, because it helps
developers keep their ontologies modular and thus
more manageable, in addition to verifying the
consistency of the class descriptions as the
ontologies are being developed.

For the Geography ontology, the CityState
class was defined as a necessary and sufficient
condition of the intersection of two classes,
City∩Country. As a result, the reasoner
reclassified the CityState class as subclass of
both the City and Country classes.

3.7 Create Individuals and Fill
Property Values

The last step for developing an OWL ontology is
creating individuals and filling their property values.
Individuals represent the actual entities of the
domain of interest. Individuals are also used as part
of class description and restrictions. There are
specific OWL constructs used with individuals, such
as owl:hasValue, owl:sameAs, and
owl:differentFrom. Furthermore, individuals
are used to define enumerated classes with the
syntax owl:oneOf.

Many individuals are specified early in the
development process, when the domain concepts are
informally listed in Step 2 of the methodology. The
concepts that were at the lowest level of
specification, or can not be grouped as a class,
become individuals. Unlike the other components of
an ontology, such as classes and properties,
individuals are the actualization of the descriptions.
In the Geography ontology, some of the concepts
appropriate as individuals are Italy, France,
Mexico, Rome, VaticanCity,
PacificOcean, GangesRiver, MtVesuvius
and LakeOntario.

For each individual, there is an associated list of
properties as specified in the class definition. Since
properties denote relationships between individuals,

containsFeature

containsFeatures

containsFeature

Individuals of
Country

Individuals of
BodyOfLand

Figure 2: Universal restriction example.

A METHODOLOGY FOR DEVELOPING ONTOLOGIES USING THE ONTOLOGY WEB LANGUAGE (OWL)

267

or between an individual and a datatype string, the
developer needs to input those values at this stage of
the developments. For example, the individuals of
the City class have the
containsPhysicalGeography,
adjacentTo, locatedIn, and
hasPopulationCount property values to be
filled as part of the individual instantiation.

Although this step is the least difficult of
development stages, it could be the most time
consuming. Depending on the domain and scope of
the ontology, the number of individuals can be very
large. However, as long as the schema of the
ontology is developed and valid, creating and
managing individuals should not be much of a
challenge.

4 CONCLUSION

There is a general agreement that ontologies are the
knowledge representation component of the
Semantic Web. This paper presented a methodology
for developing semantically rich ontologies using
the OWL DL language. The proposed seven steps
methodology is based on related methodologies for
software and ontology development. Step 1 defines
the scope, purpose, and application of the ontology.
Step 2, enumerates a preliminary list of domain
concepts as the basis for defining the classes of the
ontology. Step 3 organizes those concepts into a
class hierarchy. Step 4 defines the properties of the
domain of interest using the property constructs
provided by OWL. Understanding the semantics of
the different types of property and the kinds of
relationship they imply are important for creating a
rich ontology. Step 5 uses the defined properties and
other constructs to further restrict and describe
classes. Step 6 uses a reasoner to check the
consistency of the classes and infer new
superclass/subclass relationships. Finally, Step 7
creates class instances (individuals) and specifies
their properties.

It is important to emphasize two aspects of
ontology development that are crucial to its success.
The first is that although the steps of the
methodology are presented in a linear fashion, and
as with contemporary software development
methodologies, their application is highly iterative.
The second is that there is no one correct way to
model an ontology for a given domain. Similar to
conceptual modeling, ontology development is to a
great extent an art rather than a science that will vary
from one developer to another.

Modeling real-world domain knowledge into
abstract ontological models is challenging. However,
armed with a thorough understanding of the
ontology language semantics, and the detailed
guidance of a development process, such as the one
presented in this paper, accurate and useful
ontologies can be successfully built.

REFERENCES

Berners-Lee, T., Hendler, J. & Lassila, O. 2001, “The
semantic Web: a new form of Web content that is
meaningful to computers will unleash a revolution of
new possibilities”, Scientific American, vol. 284, no. 5,
pp. 34.

Brickley, D. and Guha, R. 1999, “Resource Description
Framework (RDF) Schema Specification. Proposed
Recommendation, World Wide Web Consortium:
http://www.w3.org/TR/PR-rdf-schema

Gomez-Perez, A., Fernandez, M., and De Vicente, A.J.
1996, “Towards a Method to Conceptualize Domain
Ontologies”, Proc. ECAI-96 Workshop on Ontological
Engineering, Budapest.

Gruber, T.R. 1993, “A translation approach to portable
ontology specifications”, Knowledge Acquisition, vol.
5, pp 199-220.

Grüninger, M., Fox, M.S. 1995, “Methodology for the
Design and Evaluation of Ontologies”, Proc. IJCAI-95
Workshop on Basic Ontological Issues in Knowledge
Sharing, Montreal, August 19-20.

Horridge, M. 2004, “A Practical Guide to Building OWL
Ontologies with the Protégé-OWL Plugin”, Available
at www.co-ode.org/resources/tutorials/
ProtegeOWLTutorial.pdf

KBSI, 1994, “The IDEF5 Ontology Description Capture
Method Overview”, KBSI Report, Texas.

McGuinness, D. 2002, “Ontologies come of age” in
Spinning the Semantic Web; Bringing the World Wide
Web to Its Full Potential, eds. J. Hendler, H.
Lieberman & W. Wahlster, MIT Press.

McGuinness, D. and Van Harmelen, F. (eds) 2004, OWL
Web Ontology Language Overview”, W3C
Recommendation, Available at
http://www.w3.org/TR/owl-features/

Musen, M.A. 1992, “Dimensions of knowledge sharing
and reuse”, Biomedical Research, vol. 25, pp. 435-467

Noy, N. and McGuinness, D. 2001, “Ontology
Development 101: A Guide to Creating your First
Ontology”, Available at
http://protege.stanford.edu/publications/ontology_deve
lopment/ontology101.pdf

Uschold, M. 1996, “Building Ontologies: Towards A
Unified Methodology”, Proc. Expert Systems 96,
Cambridge, December 16-1

ICEIS 2007 - International Conference on Enterprise Information Systems

268

