
EXTENSIBLE METADATA REPOSITORY FOR INFORMATION
SYSTEMS AND ENTERPRISE APPLICATIONS

Ricardo Ferreira
UNINOVA – Instituto de Desenvolvimento de Novas Tecnologias, Quinta da Torre, 2829-516 Caparica, Portugal

João Moura-Pires
CENTRIA/FCT, Quinta da Torre, 2829-516 Caparica, Portugal

Keywords: Metadata, Repository, XML, Information Systems, Enterprise Applications.

Abstract: Today’s Information Systems and Enterprise Applications require extensive use of Metadata information. In
Information Systems, metadata helps in integration and modelling their various components and
computational processes, while in Enterprises metadata can describe business and management models,
human or physical resources, among others. This paper presents a light and no-cost extensible Metadata
Repository solution for such cases, relying on XML and related technologies to store, validate, query and
transform metadata information, ensuring common operational concerns such as availability and security yet
providing easy integration. The feasibility and applicability of the solution is proved by a case study where
an implementation is running in operational state.

1 INTRODUCTION

In the context of this article, metadata (data about
data) is understood as any information needed to
develop and maintain an Information System
(Vaduva and Dittrich, 2001). Metadata Information
can be classified in several types and groups
(Tannenbaum, 2002): business metadata (for
modelling business or domain subjects) and
operational metadata (for technical details on
operations and processes), which can be further
categorized in documentation metadata and
operational metadata. With the increasing
complexity of Information Systems in the last years,
metadata started to gain its importance and
acceptance, since it provides a backbone for systems
integration, management, evolution and
documentation.

With its raising importance, metadata standards
appeared as a solution for solving common problems
enabling sharing and interoperability of metadata
between tools and systems. According to (Marco,
2000), a metadata standard must be: (i) Technology-
independent, in terms that it shall not be tied to a
specific technology only available for a few; (ii)
Vendor-neutral, since all interested vendors shall
participate equally in its definition; (iii) Realistic in

scope, as it shall limit its scope to a realistic ground,
not covering everything; (iv) Widely implemented, if
it is in fact implemented in tools of major software
vendors. In a first stage metadata standardization
efforts focused on tool interchanging with standards
such as the CDIF (CASE Data Interchange Format)
for interchanging of data between CASE tools or
CWM (Common Warehouse Model) and OIM
(Open Information Model) (Vetterli, Vaduva et al.,
2001) for Data Warehousing tools. Other initiatives
have been taken, such as the Dublin Core Metadata
Initiative1 whose major goal was the definition of
standards for documentation management purposes.

However, for describing technical and domain
details of Information Systems or Enterprises, the
use of limited-scope metadata standards are not
appropriate solutions. Most of the times the solution
is to create custom standards. For that effect major
software companies started developing general-
purpose Metadata tools aiming at the enterprise-
wide metadata management. These expensive “off-
the-shelf” tools support extensibility natively and
allow the representation of metadata in different
abstraction levels, providing repositories and their
correspondent management tools with advanced

1 http://dublincore.org

344
Ferreira R. and Moura-Pires J. (2007).
EXTENSIBLE METADATA REPOSITORY FOR INFORMATION SYSTEMS AND ENTERPRISE APPLICATIONS.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 344-350
DOI: 10.5220/0002364503440350
Copyright c© SciTePress

metadata importation and exportation capabilities
from and to other tools or repositories. As
enterprise-wide tools these have advanced user
access procedures, featuring user views for
restricting access within metadata information, and
highly complex architectures. However, due to their
price and complexity these are not appropriate to
medium size Information Systems with limited
budget. For such cases, a metadata solution shall be
low cost, light weighted, extensible and easy to
integrate.

Since its appearance, XML2 has been used in
Information Systems for data and metadata
interchanging, being adopted by most metadata
standards. Several technologies were developed
around XML for various purposes: (i) for validation,
XML Schema3 and Schematron4; (ii) for
transformation and processing XSL5, which allows
the transformation of data in an input XML
document into another format, such as XML or
HTML; (iii) for querying and updating, XQuery6 and
Xupdate7.

This paper presents a Metadata Repository
solution, evolution of a previous work in the area
(Ferreira, Moura-Pires et al., 2005), based on the use
of XML and related technologies, providing means
for an easy integration in existing Information
Systems and featuring extensive metadata querying
and transformation mechanisms for documentation
generation.

The paper is structured as follows: this section
presents the motivation, section two presents the
design of the Metadata Repository, with section
three presenting its architecture. Section four
presents the implementation and section five a case
study. Section six draws some conclusions and
future work in this field.

2 REPOSITORY DESIGN

For the Metadata Repository design a set of
requirements are considered. According to (Marco,
2000), the following data and operational
requirements should be considered for the design of
a Metadata Repository:

 Ability to handle metadata standards and
custom metadata types;

2 http://www.w3.org/TR/2006/REC-xml-20060816
3 http://www.w3.org/TR/xmlschema-0
4 http://www.schematron.com
5 http://www.w3.org/TR/xsl
6 http://www.w3.org/TR/xquery
7 http://xmldb-org.sourceforge.net/xupdate

 Ensure that metadata maintains its integrity and
consistency while in the repository;

 Handle evolution of metadata through time by
providing versioning and impact analysis;

 Support for various presentation styles
providing advanced querying and
transformation mechanisms for metadata;

 Support for Web-based formats such as HTML
and XML;

 Provide simple interfaces for easy
interoperability with other tools;

 Include means for recovery from error
situations such as power or server failures,
without affecting metadata and the operation
of the systems that depend on it;

 Include access control and security mechanisms
on metadata;

 Handle concurrency in distributed
environments detecting and solve conflicting
situations such as multiple users writing the
same metadata;

 Provide metadata dependency navigation and
analysis;

 Provide effective mechanisms for storing and
finding metadata in the repository.

From our experience (Ferreira, Moura-Pires et

al., 2005; Pantoquilho, Viana et al., 2005), a
Metadata Repository should support all the stages of
Information Systems’ development lifecycle. A
design option is to use XML and related
technologies beyond data interchanging, but as the
foundations for representing, storing, querying and
transforming metadata information, in the
repository. From the information point of view the
Metadata Repository must be able to store and
manage metadata information in various abstraction
levels. A mapping of the information abstraction
levels defined in the MetaObject Facility (MOF)8
metadata standard, with the repository terminology
and XML technologies is shown next:

Concepts
(XML Schema + SchemaTron)

Instances
(XML)

relations

External Entities

versions

(XML Namespaces) Metamodels

Rules
(XML Schema +

SchemaTron + Java code)

M2
Metamodel

M1
Model

M0
Instance Object

M3
Meta-

Metamodel

Figure 1: Metadata Information Model.

8 http://www.omg.org/mof/

EXTENSIBLE METADATA REPOSITORY FOR INFORMATION SYSTEMS AND ENTERPRISE APPLICATIONS

345

Analysing the standard MOF model, on the left
of Figure 1, the base of the hierarchy is the M0
level. This level refers to source objects in a given
reality, either being physical or non-physical entities
such as persons, or information stored in a database.
These objects are considered external, therefore are
not included within the Metadata Repository.

The M1 level (model) describes objects in the
M0 level. A model is a finite description of a source
object for a specific purpose. For example, the
model of a conference paper can be composed of the
paper title, abstract, conference name and authors.
For dealing with change management requirements,
a versioning system is proposed to allow storage of
multiple versions of a model, and a model
relationship mechanism for allowing the explicit
establishment of relationships between models to
represent their source object relations or other
logical relations. In the Metadata Repository
context, models are called instances, their versions
are represented by XML documents and relations
are established by using a pre-defined XML syntax.

The M2 level (metamodel) describes the various
models in the M1 level. A metamodel is the
definition of a language to be used for a type of
models, defining their fields and relations to other
models. In the Metadata Repository, metamodels are
called concepts and are defined using XML
Schema and Schematron that are used for ensuring
validity: all instances are checked if they are
compliant with their concept definitions prior to
their storage. By allowing custom definitions for
concepts, the Metadata Repository is able to deal
with any kind of metadata including metadata
standards, a common requirement for Metadata
Repositories (Marco, 2000). Furthermore, concepts
can be grouped in metamodels according to the
target XML namespaces defined in their schemas:
two or more concepts that share the same target
namespace belong to the same metamodel. The use
of namespaces eases the integration of external
metamodels, including metadata standards.

The M3 level (meta-metamodel) defines
descriptions for the various metamodels in the M2
level such as rules and common structure definitions
for all metamodels. In the Metadata Repository these
are called as rules and include properties and
predefined structures to be used in every concept,
with the purpose of enforcing concept structure
consistency and standardization. Examples of those
rules are: (i) common structures to be used in every
concept (identification, versioning and authoring
information); (ii) properties that every XML Schema
must satisfy; (iii) syntax structures to declare and
specify relationships between instances; (iv) checks
to ensure instance and concept names uniqueness
within the same metamodel; (v) syntax of internal

global identifiers for instances and their versions.
These rules are internal to the Metadata Repository,
are implemented by XML Schema, Schematron
and Java code, and are used for performing validity
and support operations on concepts and instances.

Summarizing, instances are XML documents
that follow the language defined by an XML
Schema of a single concept; concepts can be
grouped in metamodels by their schemas’ target
namespaces; and a set of design rules apply to all
concepts. These rules include that every concept
XML Schema and consequently every instance
XML has in its root element attributes for storing its
instance identifier and version identifier (1), and
elements for storing the instance name (2), version
creation and modification dates (3). This is shown in
the following instance XML example:

<Paper globalId="1.1.1"
 version="last"
 xmlns:mdr="http://di.fct.unl.pt/mdr">
 <mdr:Name>Metadata Repository
for...</mdr:Name>
 ...
 <mdr:CreationDate>2006-12-
05</mdr:CreationDate>
 <mdr:ModificationDate>2007-03-
05</mdr:ModificationDate>
 ...
 <Authors type="relation">
 <mdr:Relation name="Ricardo Ferreira"
semantic="paper author"/>
 <mdr:Relation name="João Moura-Pires"
semantic="paper author"/>
 </Authors>
</Paper>

Figure 2: Instance XML example.

Note in (1) the syntax of global identifiers for
instances (serverId . databaseId . instanceId) and the
syntax for version identifiers (numeric or “last” for
the last version). The presented example shows an
instance to model this paper, with its authors
specified as relations to other instances (4). The
predefined syntax for referring related instances is
presented in (5), identifying the related instances by
their name (that acts as identifier within the current
namespace) and specifying a semantic for the
relation using attributes. Other attributes exist for
specifying the target namespace of the instance,
which in this case was not used since the reference is
within the same namespace, the identifier of the
target instance version, which if omitted the last
version is considered, and an XPath expression to
refer to a fragment inside the target instance XML.
Like all other instance elements, relation elements
are declared in the concept XML Schema using a
predefined complex type, and configured with an
annotation where relation cardinality and eligible
instance targets are defined by their concept names
and namespaces.

1

2

3

4
5

ICEIS 2007 - International Conference on Enterprise Information Systems

346

3 REPOSITORY ARCHITECTURE

The Metadata Repository architecture is a service-
based architecture that includes a logic engine
running in a Web Service environment, accessible
by an authenticated Web Service interface. This
interface is used by all applications that interact with
the repository, such as Metadata Importers (whose
task is to import metadata from existing external
sources), Management Tools (for managing
repository configuration and metadata contents), and
Information Systems or Applications (that manage
their behaviour according to the metadata
maintained by the repository). A management tool is
provided with the repository for administering and
managing its contents, allowing end users to upload,
view, navigate and query metadata stored in the
repository. Figure 3, shows the diagram of this
architecture, and next paragraphs discuss each of the
identified blocks inside the logic engine of the
repository.

Metadata Repository

Web Server

Management Tool

Web Service + Authentication

Database Access

Change
notifications

XML
Database

Metadata
Importers

W
eb

S
er

vi
ce Information Systems /

Applications

Information Model

Querying &
Transforming

Subscriptions

Notifications

Figure 3: Metadata Repository architecture.

The Database Access block deals with all the
accesses to the supporting databases, providing high-
level functionalities to all the other blocks. Since the
repository information model is based XML
technologies, a XML database should be used. As
requirements, this database must support XQuery,
and preferably XUpdate technologies, and allow
multiple instances running simultaneously, since
each repository server can have more than one
database. As functionalities this block shall interface
with the database directly, managing database users
and their access permissions on stored resources as
well as providing a transaction management system
for protecting all operations from logical or physical
server failures. This last feature is one of the most
important for ensuring the database integrity, and if
the database does not implement it, this block shall
ensure ACID (Silberschatz, Korth et al., 1997) on
the database access, what can be achieved by using

shared and exclusive locks acquired and released in
a two-phase locking fashion, with deadlock
prevention algorithms such as the Wound-Wait
algorithm (Tanenbaum and Steen, 2002).

The Information Model is a core block that
implements the model presented in the previous
section. It is responsible for validating, storing and
maintaining integrity of concepts, instances, and
their versions. Instance versions are managed by this
block, ensuring that each version has its version
identifier, and that each instance has at least one
version. Furthermore instance relations are also
validated and maintained by this block, validating
them in target and cardinality (according to their
definition in the concept), and keeping their integrity
once stored: the repository guarantees that the target
of a relation always exists, by not allowing the
removal of a referenced instance version.

The Querying and Transforming block provides
advanced querying capabilities to the Repository,
allowing the definition and execution of queries in
XQuery language to be executed in the supporting
XML database, to return concepts or instance
versions. The XQuery language allows the definition
of an output document that can be either an XML
document or HTML, Text, or other type of
document. If the query results are XML, they can be
further transformed using a Single Transformation
(XSLT) or a Transformation Pipeline (set of XSLT
to be processed in pipeline). These are commonly
used for generating HTML outputs from query
results, offering documentation generation
capabilities. The complete querying and
transforming capabilities are depicted in Figure 4:

XML
Database

Query
(XQuery) XML

TXT /
HTML /
other

Query
(XQuery)

Single
Transformation

(XSLT)
XML /

HTML /
other

Transformation
Pipeline
(XSLT[1])

XML
XML /

HTML /
other

...

Transformation
Pipeline
(XSLT[n])

Figure 4: Complete querying and transforming
capabilities.

The Notifications block allows the set-up of
notifications from the repository to external web
services to signal about instance modifications in a
given repository database. These can be triggered
once one of the following occurs: (i) a given set of
instances are modified or removed; (ii) instances are
added, modified or removed on a given set of
concepts; (iii) instances selected by a given XQuery
are modified or removed. Notifications help in
integrating external systems and application with the

EXTENSIBLE METADATA REPOSITORY FOR INFORMATION SYSTEMS AND ENTERPRISE APPLICATIONS

347

repository, informing them when some changes
occur on metadata needed for their operation.

The Subscriptions block allows subscribing
instances from other repository databases of local or
remote servers. The process of subscribing metadata
from database A to database B is described as
follows: (i) database A declares linked database B
and sets the instances to share, that can be
subscribed by database B; (ii) database B declares
linked database A and chooses the instances to
subscribe from the available. Once this process is
completed and subscriptions processed, the
subscribed instances will be made available in the
repository database. These are treated differently
from local instances, as presented next: (i)
Subscribed instances are read-only and cannot be
modified; (ii) Subscribed instances are updated
automatically if modified in their source database;
(iii) Relation integrity is not guaranteed for
subscribed instances: the target instance might not
be available if it was not subscribed; (iv) Local
instances can relate with subscribed instances if
specified in their concept definitions; (v) If a
subscribed instance that being referred by a local
instance is removed from the subscription, it will not
be deleted from the Repository until the local
instance keeps referencing it, therefore ensuring the
restriction on local instance relations’ integrity.
Automatic update of subscribed instances is
performed using notifications: once a subscription
on a set of instances from a source database is
established, a notification on that same set of
instances is created on the source database, for
invoking a method of the repository web service to
refresh the remote database subscribed instances.

3.1 Fault Tolerance

From our view Information Systems and
Applications shall model their behaviour and
processes according to metadata stored and managed
by the Metadata Repository. However if the
repository is not available due to a fault, the
operation of such systems and applications can be
compromised or highly affected. Consequently fault
tolerance mechanisms must be considered to ensure
maximum availability of the repository.

To address availability, replication is a
commonly used solution. In database systems
several replication modes are available
(Silberschatz, Korth et al., 1997), depending on data
availability requirements and usage profiling.
However the usage profiling of database systems is
distinct from the usage profiling of a Metadata
Repository: in a Metadata Repository writing
operations are few, as opposed to reading and

querying operations, that can be performed several
times, and can involve large result sets. Therefore
server replication can be simplified and targeted for
reading and querying operations. Replication applies
not only to the databases but also to the Metadata
Repository server. For better results, multiple
machines can be used, each one with a Web Server
running Metadata Repository Web Service and
supporting databases.

The proposed architecture for server replication
is based on a Primary-Backup solution (Tanenbaum
and Steen, 2002), where the primary server performs
all the writing operations in first place, propagating
them to the backup servers. The selection of the
primary server in the group is performed
automatically by using an election algorithm like the
Bully Algorithm (Tanenbaum and Steen, 2002). For
dealing with faults, all the servers know each other
by being placed in a group, and if the primary server
fails a backup server can take its place. Reading can
be performed from any server, including the primary
one (the most updated results are obtained by
reading from the primary server, since write
operations are propagated asynchronously to backup
servers). This architecture is transparent for external
applications, which communicate with the repository
using a provided library. At start-up this library only
needs to know the address of one of the servers in
the group, after that it forwards the writing and
reading operations to the available servers in the
group.

4 IMPLEMENTATION

An implementation of the solution presented in this
paper is currently running in operational state. The
solution was implemented in the form of a Java Web
Service (J2SE 5.0) running in Apache Tomcat 5.0.
As supporting database, eXist Native XML
Database9 was used, since it is a Java-based open-
source solution, with a wide community support,
providing a large set of features: eXist includes an
automatic index mechanism that indexes all the
XML documents in proprietary data store, supports
XQuery and XUpdate for querying and for updates
in the databases, and provides various choices for
integration, by its various interfaces. All presented
functionalities were implemented with exception for
Fault-tolerance, whose algorithms and techniques
were simulated. The metadata subscription
mechanism works by using Really Simple

9 http://exist.sourceforge.net/

ICEIS 2007 - International Conference on Enterprise Information Systems

348

Syndication10 (RSS) 2.0 feeds and web service calls
between repository databases.

A Management Console was developed in form
of a windows desktop application, developed in
Microsoft C# and Visual Basic .NET 1.1. This
management console features an easy and simple
user interface, supporting multiple servers and
databases, allowing visualization, navigation and
management of all local and subscribed metadata,
definition and testing of queries and transformations,
notification management, definition of metadata
shares and subscriptions. Screenshots and further
information about the implementation is available in
http://centria.fct.unl.pt/~jmp/mr.

5 CASE STUDY – SESS PROJECT

The Space Environment Support System for
Telecom/Navigation Missions (SESS)11, is a project
sponsored by the European Space Agency which
goal is to provide to spacecraft operators and
scientists a set of tools to monitor and analyse
information about the space environment and its
effects on spacecrafts. This project is an evolution of
a previous project in the same area, the Space
Environment Information System (Pantoquilho,
Viana et al., 2005).

The basic infrastructure architecture of the
system is the following:

Public Data

Service Providers
(http / ftp)

Private Data
Service Provider

(http / ftp)

SESS Infrastructure Architecture

Data
Procesing

Module

txt

txt Data
Integration

Module

Monitoring
Tool

Reporting
and

Analysis
Tool

Metadata Repository

...

txt

Figure 5: SESS infrastructure architecture.

Space Environment data is obtained from Public
Data Service Providers (DSP), and proprietary data
such as Spacecraft telemetry is obtained from
Private DSP. This data is provided as semi-
structured text files, human readable, containing
tables and lists. The Data Processing Module (DPM)
(Raminhos and Moura-Pires, 2007) downloads these
files from their sources, extracts the relevant data
from them (values), delivering it to the Data

10 http://blogs.law.harvard.edu/tech/rss
11http://telecom.esa.int/telecom/www/object/index.cfm?fo

bjectid=20470

Integration Module (DIM). The DIM has a set of
databases to store this data, namely an Operational
Data Store, containing the most recent data, and a
Data Warehouse, containing all historical data.
Several data loading processes are included in DIM,
for populating the databases automatically with data
delivered by DPM. Two client tools are provided to
the end-users, with distinct purposes: the Monitoring
Tool provides near-realtime monitoring and
alarming of space environment conditions, while the
Reporting and Analysis Tool allows analysis of past
data and creation of reports.

This system is rich in both domain and technical
metadata. The description of each Space
Environment measure (e.g.: radiation level,
magnetic field intensity) and each spacecraft from
which the measures are taken from, are examples of
domain metadata. As for technical metadata some
examples can be the Data Service Providers
definitions, the files to download and their schedule,
the format and subsequent transformation process to
apply to these files and extract data, behaviour of
database loading programs, database model
diagrams, or global configurations of the system. As
every component of the system is metadata-driven
the metadata can be considered as the “glue” of the
system. Therefore the Metadata Repository has an
important role in the architecture, considered as the
backbone of all the system, to which all the system
components access. The Metadata Repository has
around 30 concepts and 1400 instances.

The complete architecture of SESS was designed
in accordance to a specific scalability requirement:
the system must support multiple missions each
having its private data. Therefore the architecture
includes multiple Mission Infrastructures and a
Common Infrastructure. The Common Infrastructure
is controlled by the European Space Agency (ESA)
and includes public space environment data that can
be subscribed by any mission. Furthermore, a
mission can also publish data from its Mission
Infrastructure to the Common Infrastructure making
it available for all missions. This architecture is
shown next for ESA missions (XMM, ENVISAT
and INTEGRAL):

Mission Infrastructure: XMM Metadata Repository

DPM DIM Client
Tools

Mission Infrastructure: ENVISAT Metadata Repository

DPM DIM Client
Tools

Common Infrastructure: ESA

Mission Infrastructure: INTEGRAL

Public data
subscription

Private data
publication

Public DSP

XMM DSP

ENVISAT DSP

INTEGRAL DSP

Metadata Repository

DPM DIM Client
Tools

Metadata Repository

DPM DIM Client
Tools

Figure 6: SESS Multi Mission Architecture.

EXTENSIBLE METADATA REPOSITORY FOR INFORMATION SYSTEMS AND ENTERPRISE APPLICATIONS

349

As explained before, each space environment
measure stored in the database is described as
instances in the Metadata Repository. Therefore, the
data subscription mechanism is controlled by
metadata subscriptions of such instances between
infrastructure Metadata Repositories, using the
process explained previously.

5.1 Documentation Generation

In the SESS project the Metadata Repository was
also used as support tool for the automatic
generation of management and technical
documentation. One example is support to the
analysis, requirements and testing phases of the
project. In the first phases, the architecture of the
system was discussed and meetings were held to
define the user and system requirements of the
system. By the definition of a set of concepts,
analysis results and requirements were normalized,
structured and saved in the Metadata Repository as
instances. In the testing phase of the project, a
concept for describing tests was defined, allowing
the description of tests to be performed, their
correlation to requirements and their results. Taking
advantage of the instance versioning mechanism it
was possible to evolve these instances during all
project development phases, and thanks to the
querying and transforming mechanisms, automatic
documentation was generated, such as requirements
tables or traceability matrices. The next diagram
represents the concepts and their relationships for
supporting these activities:

Entity

Component

User Requirement

Has
responsible

Elicitated
by

Refering Refering

Complies
to

Requirement

Parent of

Tests

Tests

Test Case

Dependencies,
Order

*

*

*

Executed
by

Figure 7: Concepts and relationships representation for
supporting the analysis, requirements and testing phases.

6 CONCLUSIONS AND FUTURE
WORK

The solution presented in this paper has proved by
its implementation in the presented case study to be
an appropriate answer for the integration and use of
metadata in Information Systems or Enterprise
Applications. The main advantages of the solution

are its flexibility, lightness, ease of use and
integration capabilities. In the near future, the
presented implementation will be applied in other
scenarios.

The use of XML technologies to represent, store,
query and transform metadata information, proved to
be most appropriate and pragmatic, given the
maturity and wide availability of tools, parsers and
databases, comparing to other formats for
representing metadata such as the Resource
Description Framework (RDF)12 and RDF Schema13
which have fewer tool support and immature
technologies.

REFERENCES

Ferreira, R., J. Moura-Pires, et al. (2005). XML based
Metadata Repository for Information Systems. 12th
Portuguese Conference on Artificial Intelligence,
Covilhã, Portugal.

Marco, D. (2000). Building and Managing the Meta Data
Repository: A Full Lifecycle Guide.

Pantoquilho, M., N. Viana, et al. (2005). SEIS: A Decision
Support System for Optimizing Spacecraft Operations
Strategies. IEEE Aerospace Conference, Montana,
USA.

Raminhos, R. and J. Moura-Pires (2007). Extraction and
Transformation of Data from Semi-Structured Text
Files using a Declarative Approach. ICEIS 2007 - 9th
International Conference on Enterprise Information
Systems, Funchal, Portugal.

Silberschatz, A., H. F. Korth, et al. (1997). Database
System Concepts, McGraw-Hill.

Tanenbaum, A. S. and M. v. Steen (2002). Distributed
Systems - Principles and Paradigms, Prentice-Hall.

Tannenbaum, A. (2002). Metadata Solutions – Using
Metamodels, Repositories, XML and Enterprise
Portals to Generate Information on Demand, Addison-
Wesley Professional.

Vaduva, A. and K. R. Dittrich (2001). Metadata
Management for Data Warehousing: Between Vision
and Reality. 2001 International Database Engineering
& Applications Symposium (IDEAS '01), Grenoble,
France.

Vetterli, T., A. Vaduva, et al. (2001). Metadata Standards
for Data Warehousing: Open Information Model vs.
Common Warehouse Metamodel. 2001 International
Database Engineering & Applications Symposium
(IDEAS '01), Grenoble, France.

12 http://www.w3.org/RDF
13 http://www.w3.org/TR/rdf-schema

ICEIS 2007 - International Conference on Enterprise Information Systems

350

