
A VIRTUALIZATION APPROACH
FOR REUSING MIDDLEWARE ADAPTERS

Ralf Wagner
University of Stuttgart, IPVS, Germany

Bernhard Mitschang
University of Stuttgart, IPVS, Germany

Keywords: Middleware, adapter, reuse, virtualization, integration.

Abstract: Middleware systems use adapters to integrate remote systems and to provide uniform access to them. Different
middleware platforms use different adapter technologies, e.g. the J2EE platform uses J2EE connectors and
federated database systems based on the SQL standard use SQL wrappers. However, a middleware platform
cannot use adapters of a different middleware platform, e.g. a J2EE application server cannot use an SQL
wrapper. Even if an SQL wrapper exists for a remote system that is to be integrated by a J2EE application
server, a separate J2EE connector for that remote system has to be written.
Tasks like that occur over and over again and require to invest additional resources where existing IT infras-
tructure should be reused. Therefore, we propose an approach that allows to reuse existing adapters. Reusing
adapters is achieved by means of a virtualization tier that can handle adapters of different types and that pro-
vides uniform access to them. This enables middleware platforms to use each others adapters and thereby
avoids the costly task of writing new adapters.

1 INTRODUCTION

Middleware systems are commonly used in IT infras-
tructures. They integrate diverse remote systems and
allow applications to uniformly access them. Remote
systems are integrated by means of adapters that are
plugged into the middleware and that natively access
the remote systems. Generally, there is a number
of different middleware platforms and adapter tech-
nologies. They comprise commercial off-the-shelf
(COTS) products as well as research prototypes or in-
house integration platforms.

Well-known examples of COTS products are
IBM WebSphere Message Broker, Microsoft Biztalk
or SAP Netweaver. Often they support industry
standards such as the J2EE connector architecture
(Sun, 2003), SQL Management of External Data
(SQL/MED) (ISO, 2003) or the Web Services Archi-
tecture (Booth et al., 2004). Well-known examples of
research prototypes are TSIMMIS (Chawathe et al.,
1994), Information Manifold (Levy, 1998) or Garlic
(Roth and Schwarz, 1997).

A company’s tasks and processes change over

time and thus its IT systems have to be reengineered
to adapt to these changes. This reengineering task
is complex and requires to modify, extend or differ-
ently arrange and interconnect applications, middle-
ware systems, database system and other back-end
systems.

1.1 Example Scenario

Imagine the following example of a typical integra-
tion scenario as shown in Figure 1: a J2EE-based
decision support system is calculating some enter-
prise information. It already uses two remote sys-
tems, a customer relationship management system
(CRM system) and a database system of a human re-
sources application (HR DBS). The enterprise appli-
cation now has to be extended (dark shaded boxes)
to additionally comprise information available from
a product management system (PDM system), which
is already integrated into a federated DBS by means
of a PDM SQL wrapper. Analogously, we now need
a PDM J2EE connector to integrate the PDM system
into the J2EE application server and to use it with the

78
Wagner R. and Mitschang B. (2007).
A VIRTUALIZATION APPROACH FOR REUSING MIDDLEWARE ADAPTERS.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 78-85
DOI: 10.5220/0002365600780085
Copyright c© SciTePress

���� �������	�
� �
��
�
��� �����
��
�	
�������	
�

��� �����
��
�	
�
�
����
� ����
�	 ���	
����������� ��	��������	
�

�
���
��
�

Figure 1: Integration Example: J2EE-Based Enterprise Ap-
plication.

decision support system.
The problem is that there is quite a number of pos-

sible combinations of middleware systems, adapters
and remote systems and thus it is very likely that there
is no PDM J2EE connector available, but that we have
to write a new one.

1.2 Proposed Solution

However, writing a new adapter usually is an expen-
sive, lengthy and error-prone task since it requires
substantial knowledge about the middleware, the re-
mote system to be integrated, and the adapter tech-
nology to be used for this integration task. The mid-
dleware comprises a processing model, a data model,
a programming model, an error model, quality of ser-
vice requirements, etc., which the adapter program-
mer has to know about and has to deal with. The
remote system usually owns a different processing
model, data model, programming model, etc., which
the adapter programmer also has to deal with. Fi-
nally, the adapter technology provides a programming
framework that allows to bridge between the middle-
ware and the remote system requiring further knowl-
edge and programming skills for writing an adapter.

In contrast, an existing adapter of course already
passed these tasks. Moreover, it has already been
tested and maintained in productive use and now
works properly. Thus, it would be beneficial to avoid
writing a new adapter and to use an existing adapter
instead. In our example, we would like to reuse the
PDM SQL wrapper instead of writing a new PDM
J2EE connector. The problem is that different adapter
technologies usually are not compatible, i.e. we can-
not use the PDM SQL wrapper with the J2EE appli-
cation server.

What we need is a mechanism that allows to reuse
adapters in different integration scenarios and with

different middleware platforms. Therefore, we pro-
pose a virtualization tier that uses adapters as their
respective middleware platforms would do, but that
additionally virtualizes them, i.e. allows to uniformly
handle and access the adapters. In Figure 2, the PDM
SQL wrapper is deployed into the virtualization tier.
Now, the J2EE application server can access the PDM
system by reusing the PDM SQL wrapper via the vir-
tualization tier. Hence, there is no need for writing a
new PDM J2EE connector.

 !"" #$$%&'()&*+ ,-./-.
012 !""0*++-')*.012,34)-5

6-'&4&*+ ,7$$*.) ,34)-5 68068,9:1 6()(;

<-=8.*>4-.
?&.)7(%&@()&*+ A&-.B62 ,CD<.($$-.B62,34)-5

Figure 2: Solution of the Integration Example Using the
Virtualization Tier.

Note that the proposed solution cannot just be re-
placed by adapters that are wrapping other adapters,
e.g. a J2EE connector wrapping the PDM SQL wrap-
per. The reason is that wrapping an adapter would
require to provide a complete adapter execution en-
vironment, which clearly is middleware functional-
ity since the middleware is executing and handling
adapters. Therefore, an “adapter” wrapping another
adapter would be more a middleware than an adapter.

Finally, the most important point when consider-
ing adapters for wrapping other adapters is that form
middleware platforms on the one hand andn adapters
with corresponding remote systems on the other hand
we would potentially needn ∗ m adapters that are
wrapping then remote system adapters. This means
that each of themmiddleware platforms would poten-
tially needn platform-specific adapters for wrapping
then remote system adapters.

In contrast, our virtualization approach reduces
then∗m complexity ton+ m due to the uniform ac-
cess that enables a remote system adapter to be used
by many middleware platforms. A more comprehen-
sive comparison of the different realization alterna-
tives is discussed in Section 3.2.

In summary, our contribution provides a virtual-
ization approach that allows to reuse adapters by uni-

A VIRTUALIZATION APPROACH FOR REUSING MIDDLEWARE ADAPTERS

79

formly handling and accessing them. Thereby, the
n∗ m complexity of required adapters forn remote
systems andm middleware platforms is reduced to
n+m. The approach is non-invasive, i.e. existing ap-
plications and processes of a middleware system are
not affected by this integration enhancement. They
still work as usual. Finally, the approach provides for
a more flexible IT infrastructure that can be more eas-
ily adapted to future changes.

In the next section we show the architecture of the
virtualization tier and its components. We describe
how requests are processed by the virtualization tier
and how the deployment of adapters works. Section 3
evaluates the characteristics of the virtualization tier
that are necessary to make our approach practically
applicable. Section 4 discusses related work and Sec-
tion 5 concludes the paper.

2 VIRTUALIZATION TIER

The architecture of the virtualization tier (VT) is
shown in Figure 3. The VT employs adapter man-
agers that allow to deploy adapters of a specific type,
respectively, into the VT and that are responsible for
using adapters to access remote systems. For exam-
ple, a J2EE connector manager would be responsible
for deploying and using J2EE connectors in the VT,
and an SQL wrapper manager would be responsible
for deploying and using SQL wrappers.

The VT uniformly represents data and operations
of remote systems as objects that consist of attributes
and methods. Access to a VT object results in access
to the proper adapter manager that is responsible for
using the proper adapter to access the remote data and
the remote operations associated with this VT object.

EFGHIJKEFGHIJK
EFGHIJKLGMGNJKEFGHIJKLGMGNJK

OPKIQGRPSGIPTM UPJKVWXJYI ZG[JK \]̂ _`a
EFGHIJK bJHTcPITK[

bJdTIJ e[cIJdf_gha_ ijajf_gha_ ijajkkkbJdTIJ e[cIJdf_gha_ ijajf_gha_ ijajkkkbJdTIJ e[cIJdf_gha_ ijajf_gha_ ijajkkk

\]̂ _`a

kkk
kkk
kkk

kkkkkk

Figure 3: Architecture of the Virtualization Tier.

The object model of the VT has to support the
needs of the different adapter technologies, i.e. it
has to be able to represent data and operations and it
has to be able to execute operations and access single
data items as well as whole data sets, preferably in a
set-oriented, declarative way. Therefore, we used the
ODMG object model (Cattell et al., 2000) to realize
the VT object model and we also used the associated
set-oriented, declarative object query language (OQL)
to realize the VT access language. This allows to rep-
resent remote operations as VT object methods and
it allows to represent set-oriented queries for remote
systems, e.g. SQL queries, as OQL queries in the VT.

A VT object is defined by means of an object con-
figuration consisting of four configuration chapters:

• The Object Definition Chapterdefines the at-
tributes and methods of a VT object according
to the ODMG object definition language (ODL)
(Cattell et al., 2000).

• The Object Information Chapterdefines any in-
formation concerning the correlation of a VT ob-
ject and the associated remote data and remote op-
erations, e.g. which API operation to call or which
database table to access in the remote system.

• TheAdapter Information Chapterdefines any in-
formation about an adapter. The information is
used by the associated adapter manager to deploy
and access the adapter properly, e.g. where to find
the adapter libraries or which parameters to apply
to the adapter.

• The System Information Chapterdefines any in-
formation about a remote system. The informa-
tion is used by an adapter to properly access the
remote system, e.g. authentication information or
connection management information.

Configuration chapters are stored in the VT repos-
itory. They are retrieved from the repository during
runtime and are used in the execution of OQL re-
quests, which is shown in the next section.

2.1 Processing VT Requests

The VT offers an API that allows to submit OQL re-
quests to the VT and to access VT objects. If a VT
object is accessed via an OQL request, the VT deter-
mines the proper VT object configuration and checks
the attributes and methods of the VT object used in
the OQL request. If the request is valid, the VT
loads the adapter manager associated with the adapter
that is responsible for resolving the requested VT ob-
ject. Then, the VT hands over the request to the
adapter manager, which in turn loads the correspond-
ing adapter and issues an adapter technology-specific

ICEIS 2007 - International Conference on Enterprise Information Systems

80

request to the adapter. The adapter finally accesses the
data or executes the operations in the remote system.

Figure 4 shows how the VT-based solution of the
integration example in Figure 2 looks like. The deci-
sion support system uses a VT J2EE connector to ac-
cess VT objectVTScrew, which is representing infor-
mation about screws stored in the PDM system (see
Section 3.1 for a discussion of the VT J2EE connec-
tor).

lmnn oppqrsturvw xyz{yz
|}~ lmnn|vwwysuvz|}~x��uy�

�ysr�rvw x�ppvzu x��uy�l��|��x��} �tut�

�y��zv��yz
�� lmnn|vwwysuvz

�rzu�tqr�turvw �ryz���ysu�t�yz �������x���ztppyz~twt�yzlmnn|vwwysuvz ~���������� ��~ x���ztppyz
���

��~x��uy�

m�� ¡¡
¢m

¢

£
¤
¥ ¦

¡§

Figure 4: Access to a Remote System by means of the VT.

The benefit of this solution is that the PDM SQL
wrapper can be completely reused whereas the con-
ventional solution shown in Figure 1 requires to write
a new PDM J2EE connector. In the following we give
an example of how the decision support system could
access the VT and the PDM system (cf. Figure 4):

1. A user opens a web browser and logs in to the
decision support system via a web page.

2. The user wants to access some information about
the screws in an air-conditioning machine unit,
e.g. material and manufacturer, and submits a cor-
responding HTML form request to the enterprise
application.

3. The enterprise application calls an EJB method to
resolve the screw information

4. The EJB in turn issues an interaction request to
the VT J2EE connector. Connector interactions

are the means by which J2EE connectors are ac-
cessed. An interaction object represents a request
with input parameters and output parameters. The
EJB issues an interaction with the following pa-
rameters:

• Input parameteraccessop and valuegetVTOb-
ject for the access operation.

• Input parameterobj nameand valueVTScrew
for the VT object to access.

• Input parameter attr restr and value
cunit=”air-cond unit” for further object
restrictions, i.e. the unit containing the screws
must be an air-conditioning unit.

• Output parameterscrews, which is containing a
list of identified screws as Java objects.

5. The VT J2EE connector translates the interaction
request into the OQL request

exists x in VTScrew:
x.cunit = "air-cond unit"

and submits it to the VT.

6. The VT checks the repository for the VT object
configuration ofVTScrewand then identifies the
SQL wrapper manager as the responsible adapter
manager.

7. The VT hands over the OQL request to the SQL
wrapper manager, which in turn translates the
OQL request into an SQL query accessing the for-
eign table containing the desired screw informa-
tion:

SELECT *
FROM SCREWS
WHERE CUNIT = ’air-cond unit’

8. The PDM SQL wrapper receives the SQL query
and translates it into the corresponding PDM sys-
tem API call

showUnitData("screw", "air-cond unit")

9. The PDM system returns the requested screw in-
formation to the PDM SQL wrapper, which trans-
forms it into SQL data, i.e a table, as the result of
the SQL query in 7.

10. The SQL wrapper manager transforms the SQL
data into VT object instances according to the
VTScrewobject definition chapter as requested in
5 and returns them to the VT.

11. The VT transfers the VT object instances to the
calling VT J2EE connector, which transforms
them into Java objects conforming to thescrews
output parameter of the connector interaction in
4.

A VIRTUALIZATION APPROACH FOR REUSING MIDDLEWARE ADAPTERS

81

12. The EJB processes the screw objects and the en-
terprise application creates a suitable HTML re-
sponse document answering the initial user re-
quest.

Other adapter managers work analogously to the
SQL wrapper manager that is submitting an SQL
query to an SQL wrapper. For example, a J2EE con-
nector manager would transform an OQL request into
a connector interaction with suitable input parameters
and output parameters and would execute the inter-
action on the proper J2EE connector, and a message
broker manager would transform an OQL request into
a business object request and issue it to a message bro-
ker adapter.

Steps 5, 6, 7, 10 and 11 (bold numbers in Figure
4) are introduced by the VT approach. The other steps
have to be performed in a conventional integration so-
lution as well; hence, the EJB in step 4 would access
a PDM J2EE connector instead of the VT J2EE con-
nector and the PDM J2EE connector would access the
PDM system analogous to steps 8 and 9.

2.2 Deployment Process

The skills required to define VT objects and to de-
ploy adapters into the VT comprise knowledge about
the VT and the VT object model as well as knowl-
edge about the different involved adapter technolo-
gies. Clearly, the complexity of the whole integra-
tion task must be reduced to make the VT practically
manageable. Therefore, the goal is to divide the de-
ployment process into two steps performed by differ-
ent persons (as depicted in Figure 5): adapters are de-
ployed in the first step (1) and suitable VT objects are
defined in the second step (2).

Deploying an adapter into the VT requires the
same deployment information as if the adapter is de-
ployed into its original middleware. A deployer that

¨ ¨

©ª«¬­®¯°«±¯­«²³ ´«µ¬ª«¬­®¯°«±¯­«²³¶³·«³µ ¸¹º»¼½¾¿ÀÁÂ¬¯ÃÃµ¬Ä¯³¯·µ¬ÅÆ¶¶Ç²³³µÈ­²¬ ÄÉ
ÊÊÊ

ÊÊÊ
ÊÊÊ ËÌÄ ¿ÀÁÂ¬¯ÃÃµ¬

ÍÍÍ

ËÌÄ¿ÎÏ­µÐ

ª´ ÑÒÓµÈ­ÌµÃ°²Îµ¬
ÅÆ¶¶Ç²³³µÈ­²¬ÅÆ¶¶ Ç²³³µÈ­²¬ÌµÃ°²Îµ¬ ¿ÀÁÂ¬¯ÃÃµ¬ÌµÃ°²Îµ¬

Figure 5: Two-Step Deployment Process.

is responsible for deploying adapters into a middle-
ware (short: adapter deployer; e.g. a J2EE connector
deployer or an SQL wrapper deployer) has to be fa-
miliar with the middleware, i.e. he knows how to de-
ploy adapters and how to define middleware-specific
data and operations that are representing data and op-
erations in the integrated remote systems.

Therefore, the first step of the deployment process
is performed by the corresponding adapter deployer.
The adapter deployer deploys an adapter into the VT
(adapter information chapter), correlates a remote
system with the adapter (system information chapter)
and specifies suitable middleware-specific data defi-
nitions and operation definitions (object information
chapter).

For example, if a J2EE connector has to be reused,
the responsible J2EE administrator acts as a J2EE
connector deployer in the VT scenario. He deter-
mines deployment properties of the J2EE connector
and of the remote system to access, and he specifies
interaction information for executing interactions on
the J2EE connector. Or if an SQL wrapper has to be
reused, the responsible federated database system ad-
ministrator acts as an SQL wrapper deployer in the
VT scenario. He prepares SQL statements for defin-
ing an SQL wrapper, an SQL server and some foreign
tables.

The only difference between an adapter deploy-
ment in the VT and an adapter deployment in the re-
spective middleware is that the adapter deployer uses
the VT deployment GUI for defining configuration
chapters instead of the middleware-specific adapter
deployment facility.

A deployer of objects in the VT (short: VT ob-
ject deployer) performs the second step of the deploy-
ment process, which requires to define VT objects by
means ofobject definition chapters. He correlates
the VT object definitions with middleware-specific
data definitions and operation definitions specified by
adapter deployers during the first step.

The VT object deployer does not have to define
the VT objects from scratch since adapter managers
comprise functionality that derives default VT object
definitions corresponding to the middleware-specific
data definitions and operation definitions created dur-
ing the first step of the deployment process. The VT
object deployer uses the generated default VT object
definitions as the starting point and only has to cus-
tomize them for proper usage in the VT.

In this way, the deployment process in the VT is
significantly alleviated and becomes practically man-
ageable: The adapter deployer is doing his job as
usual. He is only concerned with the middleware-
specific part of the VT deployment, i.e. adapter de-

ICEIS 2007 - International Conference on Enterprise Information Systems

82

ployment and definition of the middleware-specific
data and operations, but he does not need further
knowledge about the VT. The VT object deployer is
only concerned with the VT-specific part, i.e. defini-
tion of VT objects, but does not need to know about
the adapter-specific deployment tasks.

3 EVALUATION

There are two further points to be considered when
the VT approach has to become practically applica-
ble. First, does the VT affect existing integration pro-
cesses or middleware infrastructures? And second,
what does it cost to provide the VT and its compo-
nents? Finally, we discuss how the VT provides in-
creased flexibility for IT infrastructures.

3.1 Applicability of the VT

An important aspect of the VT approach is that ex-
isting middleware systems do not have to be mod-
ified and that the operation of existing applications
and processes is not affected. The VT enhances mid-
dleware systems in a non-invasive manner offering an
additional means of accessing remote systems. The
enhancement is achieved by using a middleware’s na-
tive adapter technology to access the VT, i.e. a VT
adapter. For example, the J2EE application server in
Figure 4 uses a VT J2EE connector to access the VT.

Figure 6 abstractly shows how existing and new
middleware applications coexist. On the one hand,
existing applications only use adapters of the middle-
ware that are directly accessing remote systems. On
the other hand, new applications can additionally in-
clude the VT in their processing.

Another point is that the VT requires a suitable
adapter manager to deploy and use adapters of a cer-
tain type, e.g. an SQL wrapper manager is required to
deploy and use SQL wrappers in the VT, a J2EE con-
nector manager is required to deploy and use J2EE
connectors, etc. If an adapter not yet supported by the
VT is to be reused, a suitable adapter manager for that
adapter type must be written. Writing a new adapter
manager is at least as costly as writing a new adapter.
But if it is necessary to write several new adapters
to integrate some remote systems and if this can be
avoided by reusing one or more adapters with the new
adapter manager, it is worth writing this adapter man-
ager. Writing the adapter manager has to be done only
once, but allows to use any adapter of that type in the
VT.

Similar considerations hold for middleware plat-
forms that want to access the VT since such a mid-

ÔÕÖ×ØÙÚÕÛÙ×ÕÜÝ ÞÕßÖ

àÕááÚßâÙÖß ãäå×ßæÔÞ çáÙè×ßÖ éã çáÙè×ßÖ
çèèÚÕêÙ×ÕÜÝçèèÚÕêÙ×ÕÜÝëìÕå×ÕÝíçèèÚÕêÙ×ÕÜÝåçèèÚÕêÙ×ÕÜÝîïðçèèÚÕêÙ×ÕÜÝîïðñßâçèèÚÕêÙ×ÕÜÝå

éßæÜ×ßãäå×ßæéßæÜ×ßãäå×ßæ
éã çáÙè×ßÖéã çáÙè×ßÖ éßæÜ×ßãäå×ßæéßæÜ×ßãäå×ßæéßæÜ×ßãäå×ßæéßæÜ×ßãäå×ßæéã ò éßæÜ×ß ãäå×ßæ

Figure 6: Enhancing Middleware Systems in a Non-
Invasive Manner (Abstract View).

dleware platform requires a suitable adapter to enable
VT access, i.e. a VT adapter. For example, a J2EE ap-
plication server requires a VT J2EE connector to ac-
cess the VT and a federated DBS requires a VT SQL
wrapper. If such an adapter is not available for a mid-
dleware platform, it must be written. But if it is neces-
sary to write a couple of new adapters for that middle-
ware platform to integrate some remote systems and
if this can be avoided by reusing existing adapters in
the VT, it is worth writing the VT adapter. Writing
the VT adapter has to be done only once, but allows
the middleware platform to use any adapter that is de-
ployed in the VT.

3.2 Increased Flexibility

An additional benefit of the VT approach is that it
increases the flexibility of an IT infrastructure since
future changes and requirements concerning such in-
tegration tasks can be solved with the VT again. The
more middleware systems in an IT infrastructure use
the VT and the more adapters are deployed into the
VT, the more likely is it that a desired combination
of middleware and remote system is already available
and that it can be used without writing a new adapter.

Abstractly seen, the VT can be considered as a
middleware multiplexer that allows a middleware sys-
tem to access any adapter that is deployed in the VT.
If mmiddleware systems have to accessn remote sys-
temswithoutusing the VT, we would potentially need
n∗madapters as shown in Figure 7. If we use the VT,

A VIRTUALIZATION APPROACH FOR REUSING MIDDLEWARE ADAPTERS

83

óôõõö÷øùú÷ûüýû þÿ ��� üý� þÿ óôõõö÷øùú÷�üýû þÿ ��� üý� þÿ
�
�

ü÷���÷ý�	�÷��

ü÷���÷ý�	�÷�û

 ü÷���÷ý�	�÷��

üý� þÿ
 ü÷���÷ ý�	�÷�� þõù��÷ú
� �

Figure 7: Conventional Integration Approach: Potentially
m∗n Adapters Required.

�����
�������������

��� ��� ��! ������������"
��"��� ��!

#$��%�&�!�'#$��%�&�!��
(((
(((

�� ��� ��!� �� ��� ��!'(((

�
��) ��� ��! (((������������) (((�� * ������ ������

�

Figure 8: Virtualization Tier: Multiplexer Characteristic;
only m+n Adapters Required.

this complexity is reduced tom+n adapters as shown
in Figure 8 (m adapters for accessing the VT andn
adapters for accessing the remote systems).

In other words: a conventional integration ap-
proach relying on a specific middleware system and
a specific adapter technology needs a specific adapter
to integrate a remote system whereas the VT allows
to use the same middleware system, but any adapter
that is available for that remote system.

4 RELATED WORK

The problem of incompatible adapter technologies is
inherently given with the usage of different middle-
ware platforms and different integration technologies.
To the extent of our knowledge systematic reuse of
adapters is not possible so far. However, the need for
flexibly dealing with adapters is a general requirement
and therefore there has already been done substantial
work on how to ease writing adapters.

Adapter technologies usually come with adapter
frameworks, which at least provide commonly used
adapter functionality as code libraries. For example,
the WebSphere Business Integration Adapters (IBM,

2004) divide an adapter into two parts. The so-called
connector frameworkthat contains the functionality
common to every adapter, e.g. communicating with
the integration broker. And the so-calledapplication-
specific componentthat contains the functionality that
is different for each adapter, e.g. calling the respective
remote system API.

More sophisticated adapter technologies comprise
complex system-internal interactions between mid-
dleware and adapter, e.g. see (Booth et al., 2004;
ISO, 2003; Sun, 2003). For example, J2EE connec-
tors (Sun, 2003) rely on functionality residing in the
application server. The application server provides
functionality, e.g. transaction management or con-
nection handling, that is commonly available to every
connector by means of so-called system contracts.

Advanced approaches aim at providing a high-
level specification of an adapter’s functionality so
that the desired adapter code is generated or exist-
ing adapter libraries are suitably parameterized, e.g.
see (Ashish and Knoblock, 1997; Baru et al., 1999;
Gruser et al., 1998; Hammer et al., 1997; Liu et al.,
2000; Raposo et al., 2002). For example, the TSIM-
MIS project (Hammer et al., 1997) puts common parts
of a wrapper implementation into a common library
used by any TSIMMIS wrapper. The library is pa-
rameterized for each wrapper by high-level, declara-
tive rules that determine what queries can be executed
by the wrapped remote system, what the answers look
like and how the transformation between the queries
and the data in TSIMMIS on the one hand and the
remote queries and remote data on the other hand is
performed.

Adapter frameworks and adapter generation ap-
proaches inherently can handle only that parts of an
adapter that are common to all adapters or that are
at least similar for a group of adapters. However, the
heterogeneity of remote systems would require gener-
ation approaches to flexibly deal with different access
paradigms, request processing styles, data structures,
data models, programming languages, APIs, etc. But
this complex task cannot be solved just by parameter-
izing a library or by specifying a set of declarative,
high-level rules to generate the necessary code.

Adapter generation only works if the targeted re-
mote systems are restricted to a specific type so that
most characteristics and properties are known in ad-
vance and can be considered in common libraries, rule
sets or high-level scripting languages. For example,
the generation approaches in (Ashish and Knoblock,
1997; Gruser et al., 1998; Liu et al., 2000; Raposo
et al., 2002) are targeted at web information sources,
i.e. primarily HTML pages. Other approaches such
as in (Baru et al., 1999; Hammer et al., 1997; Pan

ICEIS 2007 - International Conference on Enterprise Information Systems

84

et al., 2000) support more than one remote system
type based on semi-automatic adapter generation pro-
cedures, but each remote system type inherently re-
quires a separate adapter library, i.e. a different
adapter.

The recent evolution of universal metadata-driven
generation approaches such as OMG’s model-driven
architecture (MDA) (Miller and Mukerji, 2003) could
lead to techniques applicable to the generation of
adapters, too. But there are no results for this kind
of problem so far nor do we see any progress for that
in the next time.

In contrast, our virtualization approach provides
a practical solution for dynamically reusing adapters
without affecting existing applications and without
modifying existing middleware systems.

5 CONCLUSION

The use of different middleware platforms and differ-
ent adapter technologies leads to repeating program-
ming efforts, i.e. writing adapters. Writing a new
adapter is a costly task. Therefore, we proposed a
virtualization approach for reusing existing adapters.
The VT virtualizes adapters by uniformly handling
and accessing them and thereby reduces the current
complexity ofn∗m adapters form middleware plat-
forms andn remote systems ton+m.

There are crucial points that decide about the ap-
plicability of the VT approach. The first is the reduc-
tion of the deployment process complexity by divid-
ing the deployment process into two steps performed
by separate deployers. Adapter deployers are con-
cerned with their respective adapter technology only,
and the knowledge about the different adapter tech-
nologies that is required by a VT object deployer is
reduced to a minimum.

The other point is that the VT can be smoothly
used with existing IT infrastructures: their opera-
tion is not affected by the VT. Additionally, the VT
approach provides for more flexibility in integration
tasks. It leverages existing IT resources the better the
more middleware systems use the VT and the more
adapters are reused by the VT.

Currently, we are finishing our prototype and pre-
pare for extensive experiments to support our ap-
proach in kinds of quantitative results, which is the
last cornerstone of the VT evaluation. The experi-
ments will include different ways of realizing adapter
managers and they will consider different adapters,
adapter types and remote systems as well as different
workloads.

REFERENCES

Ashish, N. and Knoblock, C. A. (1997). Semi-Automatic
Wrapper Generation for Internet Information Sources.
In COOPIS ’97.

Baru, C., Gupta, A., Lud̈ascher, B., Marciano, R., Papakon-
stantinou, Y., Velikhov, P., and Chu, V. (1999). XML-
Based Information Mediation with MIX. InSIGMOD
’99.

Booth, D., Haas, H., McCabe, F., Newcomer, E., Cham-
pion, M., Ferris, C., and Orchard, D., editors (2004).
Web Services Architecture. World Wide Web Consor-
tium. W3C Working Group Note.

Cattell, R. G. G., Barry, D. K., Berler, M., Eastman, J., Jor-
dan, D., Russell, C., Schadow, O., Stanienda, T., and
Velez, F., editors (2000).The Object Data Standard:
ODMG 3.0. Morgan Kaufmann.

Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K.,
Papakonstantinou, Y., Ullman, J. D., and Widom, J.
(1994). The TSIMMIS Project: Integration of Hetero-
geneous Information Sources. In16th Meeting of the
Information Processing Society of Japan.

Gruser, J.-R., Raschid, L., Vidal, M. E., and Bright, L.
(1998). Wrapper Generation for Web Accessible Data
Sources. InCOOPIS ’98.

Hammer, J., Garcia-Molina, H., Nestorov, S., Yerneni, R.,
Breunig, M., and Vassalos, V. (1997). Template-Based
Wrappers in the TSIMMIS System. InSIGMOD ’97.

IBM (2004). A Technical Introduction to Adapters. In-
ternational Business Machines Corporation. WBIA
Adapter Framework, V2.4.

ISO (2003).Information technology – Database languages
– SQL – Part 9: Management of External Data
(SQL/MED). International Organization for Standard-
ization, 2nd edition. ISO/IEC 9075-9:2003 Published
Standard.

Levy, A. Y. (1998). The Information Manifold Approach to
Data Integration.IEEE Intelligent Systems, 13(5).

Liu, L., Pu, C., and Han, W. (2000). XWRAP: An XML-
Enabled Wrapper Construction System for Web Infor-
mation Sources. InICDE ’00.

Miller, J. and Mukerji, J., editors (2003).MDA Guide Ver-
sion 1.0.1. Object Management Group Inc.

Pan, A., Raposo, J.,́Alvarez, M., Montoto, P., Orjales, V.,
Ardao, J. H. L., Molano, A., and Viña,Á. (2000). The
Denodo Data Integration Platform. InVLDB ’00.

Raposo, J., Pan, A.,́Alvarez, M., Hidalgo, J., and Viña,Á.
(2002). The Wargo System: Semi-Automatic Wrap-
per Generation in Presence of Complex Data Access
Modes. InDEXA ’02.

Roth, M. T. and Schwarz, P. M. (1997). Don’t Scrap It,
Wrap It! A Wrapper Architecture for Legacy Data
Sources. InVLDB ’97.

Sun (2003). J2EE Connector Architecture Specification,
Version 1.5. Sun Microsystems Inc. Final Release.

A VIRTUALIZATION APPROACH FOR REUSING MIDDLEWARE ADAPTERS

85

