INTERCONNECTING DOCUMENTATION
Harnessing the Different Powers of Current Documentation Tools in Software
Development

Christian Prause', Julia Kuck?, Stefan Apelt!

Reinhard Oppermann' and Armin B. Cremers

2

Y Fraunhofer Institut fiir Angewandte Informationstechnik, Schloss Birlinghoven, St. Augustin, Germany

2 Institute of Computer Science III, University of Bonn, Germany

Keywords:

Software Documentation, Software Engineering Process, CASE, Collaboration, Information Retrieval, Hyper-

media, Document Management, Knowledge Management.

Abstract:

Current software documentation tools (like text processors, email, documentation generators, reporting, con-

figuration management, wikis) have different strengths in supporting the software engineering process. But
one weakness they all have in common is their inability to combine the advantages of the various techniques.
Integrating documentation with diverse origins would enhance the force of expression and compensate indi-

vidual failings of the different techniques.

In this paper, we present a new brand of documentation utilities — exemplified by the Drudrosdse-system — that
overcomes current problems with documentation. By processing information at negligible cost that common
tools ignore, our system represents an efficient way of improving software documentation.

1 INTRODUCTION

During the development of a software product, gener-
ally a mess of unsorted documentation texts arise be-
sides the official internal documentation. Such texts
are often only loosely connected, if not without any
internal references at all. These documents may con-
tain vital project information which could get lost if
the document itself gets lost.

In this context getting lost means that the docu-
ment can get lost physically — e.g. an email being
deleted — or it can get lost in the sense of being
undiscoverable under a justifiable investment of time.
Mailing list archives have already been identified as a
repository of valuable information, but only if one is
able to retrieve the relevant documents (Kirsch et al.,
2006). Classical search engines for searching such
repositories are only of limited help in such a situa-
tion, because the user has to actively start a search on
a repository. Search engines also often only search a
single! group of media.

'An exception to this is the Google Desktop Search
(http://desktop.google.com/). But using it might con-
flict with a company’s information security policies.

Prause C., Kuck J., Apelt S., Oppermann R. and B. Cremers A. (2007).

We consider all kinds of asynchronous communi-
cation in text form to be documentation. So emails
are not the only stand-alone documents and there are
more such sources like text files or logs from con-
figuration management. Even large units of docu-
mentation like those generated from source comments
using documentation generators can be considered
stand-alone compared to the entirety of available doc-
uments.

One might consider enforcing strict documenta-
tion guidelines on the software development process
to deal with the problem of insufficient documen-
tation, but this necessarily increases product cost.
Although documentation costs dropped significantly
during last decades, it still remains a major cost factor
with up to 30% of total project cost (Pressman, 2001).
In research facilities where products are developed
as prototypes and where organizational structures are
lacking rigorous management control this becomes
even more relevant. The lack holds for free/open soft-
ware environments, too.

In this paper we present the Drudrsdsr CASE tool?
which adapts smoothly to software projects which are

29eudrodse was first introduced in (Prause, 2006)

63

INTERCONNECTING DOCUMENTATION - Harnessing the Different Powers of Current Documentation Tools in Software Development.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - AIDSS, pages 63-68

DOI: 10.5220/0002375200630068
Copyright © SciTePress



ICEIS 2007 - International Conference on Enterprise Information Systems

already in progress. It will provide useful internal
documentation at very low cost. The Qeudrodse sys-
tem cannot and is not intended to replace good docu-
mentation nor does it directly aid the process of writ-
ing documentation, but it can alleviate the problems
arising from information getting lost or being undis-
coverable.

Facilitating a modular structure, Drudrsdse is
able to automatically collect documents from various
sources, to archive the documents and link them to
each other, so they can be accessed more easily and
more efficiently. The resulting hypermedia will be
integrated into the developers’ desktops. In a ref-
erence implementation we chose to make it accessi-
ble with common Internet browsers through a TCP/IP
network.

In Section 2, we discuss related work for software
documentation tools. We then present our concept,
followed by our implementation in Section 4. In Sec-
tion 5 we evaluate our approach. Finally, we conclude
this paper, and discuss future work.

2 RELATED WORK

The benefits of documentation have been subject of
many scientific surveys and the need for useful docu-
mentation is of paramount importance (Becker et al.,
2005). Guidelines on what has to be kept in mind
when writing documentation are numerous. For an
example look at (Lehner, 1993). Because of this
(Lethbridge et al., 2003) analyzed, which quality cri-
teria for documentation are really important in prac-
tice.

In addition to this we want to stress the necessity
of creating documentation as a parallel process while
software is being developed, as this preserves most of
the valuable information that should be contained in
documentation (Balzert, 1988).

(Vestdam and Ngrmark, 2005) have already iden-
tified the problem that often documentation is not up
to date with the program’s source code. With their
work they focus on the growing difference between
a program’s documentation D; and its source code P;
in the i-th iteration of program development, while
assuming that in the beginning (i = 0) Dy matches Py
perfectly. Although they relate code to documentation
texts, we think that this idea must be taken a step far-
ther and that it is important to obtain references auto-
matically to achieve high interconnectivity while not
burdening the documentation developer.

Various classical types of tools used in software
documentation have been identified and categorized
into the following groups (Prause, 2006):

64

e Word processors include tools from simple text
editors and Wikis to complex WYSIWYG pub-
lishing software. They do not constrain the author
to what he writes, nor do they facilitate informa-
tion other than that.

e Comment extractors transform code comments
into documentation. Such tools exploit impor-
tant inherent documentation (Didrich and Klein,
1996). A major advantage is the vicinity of code
and documentation in one file.

e Reporting tools generate project status reports by
incorporating up-to-date information into user de-
fined templates.

e There are further kinds of programs and
paradigms (like Outline processors and literate
programming) which are not really relevant in this
context.

Although the tools in one group have their respec-
tive advantages over another group, they all share a
common weakness, which is their inability to com-
bine documentation from different sources and to har-
ness their diverse strengths by doing so. Software
similar to the Drudrsdse system, which serves exactly
this purpose, is not known to the authors.

Another approach is to generate documentation
out of the source code which guarantees an all-time
correctness of the generated documentation and al-
lows different levels of abstraction (van Deusen and
Kuipers, 1999). Even though this attempt seems quite
promising, it still relies on information from just a sin-
gle source.

For the coordination of tasks in group work, which
is the basis for collaboration, research has been done.
(Malone and Crowston, 1994) found, that coordina-
tion can be seen as the process of managing depen-
dencies between activities. (Tellioglu, 2004) specifies
that dependencies happen when an activity’s output
is used by other activities, when multiple resources
use the same resource or when multiple activities pro-
duce a common resource. She uses temporal relations
between tasks to describe and manage these depen-
dencies. In case of software documentation, depen-
dencies arise, because multiple developers work on a
single software system. The documentation that a de-
veloper produces is read and may be supplemented by
other developers.

3 INTERCONNECTING
DOCUMENTATION

In this section we provide an overview of the most im-
portant concepts of the Deudrodsr system. The basic



INTERCONNECTING DOCUMENTATION - Harnessing the Different Powers of Current Documentation Tools in

idea is to automatically identify documents in various
document sources® and then retrieve the documents
from these repositories.

The process of generating interconnected docu-
mentation is subdivided into the phases:

1. analysis of documentation sources,
2. detection of dependencies,
3. generation of interconnected documentation.

Once rudrodsr detects a new document, it is
copied to an internal archive to prevent accidental loss
of valuable information, when a document is removed
from its respective source.

After that, the archived documents have to be cat-
egorized according to their origin and be tagged with
metadata (like time stamps and keywords) for infor-
mation retrieval processes in later steps. Additionally,
the layout will be isolated from the document con-
tent to achieve a higher integrability with documents
from other sources and to allow for a more sophis-
ticated appliance of information retrieval processes.
The layout will not be discarded completely, though,
to maintain a certain level of readability.

In a second stage, interconnections between the
documents will be detected. This phase makes use of
explicit and implicit relations. In this notion, explicit
means references that are already present in the docu-
ments like URLSs or the in-reply-to header field of
emails. Based on the proposition of (Tellioglu, 2004)
we decide to use temporal data to identify dependen-
cies, too. For this, we define documents as interde-
pendent, if one document is the successor of the other
doument.

An implicit reference denotes a reference which
involves a more complex strategy in order to be gath-
ered. This might be based on the appearing of a
class’s name in a document or document similarity in
terms of the information retrieval vector model.

Adding more documents to an initially empty
(information) space and interconnecting these doc-
uments with references to each other is essentially
nothing else than creating a graph, which has doc-
uments as its nodes and references as its edges.
Therefore this graph will be called the documentation
(hyper-)graph.

In a final processing step, this graph is handed
over to a visualization module which is responsible
for presenting the complex graph to the user in a com-
fortable way.

The didactically advanced hypermedia format al-
lows one to inspect the entire documentation with
an Internet browser tool in a very user-friendly way,

3Such sources include, but are not limited to, email ac-
counts, text and source files, Javadoc and CVS logs.

Software Development

Analyzer

Documentation
Hypertext

Enhancer

m
o
o
‘

\

Retriever é

4§ |sT
2

Archive

Figure 1: Documents passing through the Q¢udrodse system.

based on the rich dependency links, that exist be-
tween documents with temporal, thematic or author-
ship based similarities.

The path of the documents through Qrudrodse
from their sources to the final documentation can be
seen in figure 1.

As described above, different software documen-
tation tools can be interconnected by adequately
archiving, processing and interlinking the diverse
documents emerging during a software engineering
process. Using an interactive data visualization, our
approach assists developers in a meaningful way. Au-
tomatic support according to identify relevant docu-
mentation texts as well as browsing the documents
eases handling of the documentation. Most documen-
tation tools nowadays do not take into account differ-
ent documentation techniques as base for an intercon-
nected documentation.

Our contribution is enriching documentation and
simplifying access to information — gathered out of
various media types — to significantly enhance the
effectiveness of software development.

4 DENDRODOC - PROTOTYPE

eudrsdse is the platform on which the approach of
archiving, interlinking and visualization of the results
of multiple documentation strategies is affiliated. We
will introduce the architecture of the Qrudrodse sys-
tem. After that we present one of the obstacles that
we encountered and provide our respective solution
to 1t.

4.1 Design

Our prototype consists of three major subsystems,
which reflect the above mentioned three phases. Each

65



ICEIS 2007 - International Conference on Enterprise Information Systems

subsystem features a plug-in API to optimally adopt
Qeudrodse to project needs by allowing the develop-
ment of custom add-ons for the core functionalities:

1. The Input subsystem which scans sources and
archives for available documents

2. The Reference generation subsystem which
links the documents to each other using informa-
tion retrieval processes

3. The Output subsystem which prepares the gener-
ated documentation hypergraph for visualization

Deudrodoe currently uses Apache Forrest* on a
dedicated server to provide convenient accessibility
through the available intranet infrastructure. Forrest
is a publishing tool which comes with an integrated
web server that can convert XML Docbook files to
web pages on-the-fly.

4.2 References in Dendrodoc

Generating references between documents is one of
the primary tasks of the Qrudrsdse system. Naturally,
it is important to have a multiplicity of references be-
tween the documents to allow for a high interconnec-
tivity of information.

The version of Qrudredss which is used in the eval-
uation, is capable of generating internal references out
of the following information:

e Facilitating boolean information retrieval, oc-
curences of class names or other almost unique
identifiers will be detected and linked to accord-
ing documents.

e Documents with successive modify/creation time
stamps will be integrated into a time path of refer-
ences.

e Explicit references like in-reply-to headers of
emails will be converted into references.

e Links between documents of different types that
belong to each other logically will be established.
Such connections exist between class documenta-
tions and respective source files or change logs.

Where possible, Qrudrodoe integrates links into the
text by turning usual words into active hyperlinks. For
references where such an approach is not feasible,
we group links by their respective origin in a sepa-
rate References section at the end of a document. We
also investigated weighting the links by using a scalar
usefulness probability value, but discarded this idea
in favor of the aforementioned grouping by reference

type.

4http://forrest.apache.org

66

4.3 Dendrodoc Interface

The interface that is generated and delivered by For-
rest is plain HTML and can thus be accessed with
the user’s browser of choice. Another feature that
made Forrest the preferred candidate for visualizing
the documentation is its search capability. Forrest
comes with an integrated full-text search that allowed
us to concentrate our development efforts on provid-
ing more enhanced internal references.

Besides the search function, the Qrudrsdoe inter-
face provides various indexes as entry points to the
documentation. These indexes list the documents
from respective sources.

S EVALUATION

In this section we present the major questions that
have to be explored, how the evaluation is realized
and what the outcome was.

5.1 Topics

When evaluating Q¢udrodse one has to examine if and
what benefits arise for developers from using it. For
the time being, there is no other system which com-
pares to Qeudrsdse, so only a qualitative investigation
makes sense. To measure the quality of our prototype,
the evaluation concerned the following topics:

e Does eudrodsr improve development work
flows?

e Will project information be easily accessible?

o Can Qrudrsdsr be used in an effective and efficient
way?

e Is there a positive effect on product quality?
5.2 Experimental Setup

To measure the quality of Qeudrodse, we performed an
usability evaluation. Usability tests are conducted to
verify that the tested software achieves user and orga-
nizational objectives. Furthermore they provide feed-
back for improving design (ISO 13407, 1999). From
the various evaluation methods available for usabil-
ity tests, we decided to use a combination of subjec-
tive methods, because these allow to infer the accep-
tance of a software (Opperman and Reiterer, 1997).
The users’ first objective was to use Drudrodss to
work through a list of tasks while verbalizing their
thoughts. This so called Thinking Aloud technique
(Ericsson and Simon, 1980) is an established and well



INTERCONNECTING DOCUMENTATION - Harnessing the Different Powers of Current Documentation Tools in

known technique concerning usability testing, and is
especially useful in early development stages of a new
software (Nielsen and Landauer, 1993). During the
usability test, it may become necessary to remind the
subjects to express their thoughts. After that test a
semi-standardized interview was arranged with the
subjects to capture opinions and positions. Details on
the interview can be found in (Prause, 2006).

We used a documentation hypermedium based
on various documents that originated from the later
phases of development of the Advanced Learning En-
vironment (ALE) platform from the WINDS? project.
It consisted of nearly 4000 independent documents,
which were linked by 9eubdrsdse through almost
20000 internal references.

The subjects’ tasks were to get a first impression
of the documentation, search for “coding rules” and
specific class descriptions, find related classes and de-
termine time, origin and kind of code changes. Then
they were presented a task that required them to catch
up on a certain method, get to some other class by tak-
ing source code into account and finally learn about
undocumented issues with that class that had been
discussed on the mailing list.

One entire usability test would take a total of 30
minutes to complete; of which twenty minutes were
consumed by the usage part and ten minutes by the
final interview.

The individual tests were ran with a typical num-
ber of five developers (Krahmer and Ummelen, 2004)
and took place at the subjects’ respective workplaces.
The interviewer provided an introduction and as-
signed tasks one by one. Speech was recorded, so that
there was no need for taking notes during the evalu-
ation. When the respective subject had finished with
his last task, the investigator immediately started the
interview.

5.3 Results

The first part of the test mainly revealed usability
issues related to inadequate design and layout of
the documentation, which would be too detailed to
present here. We restrain to a condensed presentation
of the results of the questionaire:

The concept of compiling all texts into one large
hypermedium was valued by all of the subjects. Four
got the impression that they could get informed more
easily and three could image to using the software;
mainly because they thought that Qrubdrsdse, would
make their work more efficient.

SWeb based INtelligent Design tutoring System, http:
//winds.fit.fraunhofer.de/

Software Development

The overall results can thus be interpreted as to
support the idea of the Qeudrodse system.

6 CONCLUSION

The need for high quality software has always been an
important part of software engineering. Since then it
is commonly agreed on that documentation maintains
a vital role in achieving product quality. This is based
on the assumption that there are three primary factors
in quality assurance: process, technology and people.

Although documentation has an impact on the
process, too, it first and foremost increases motiva-
tion and quality of involved developers. But still the
various positions regarding documentation may be as
different as between the two extremes of ISO 9000,
with its extensive documentation requirements and
extreme programming, where documentation shall
not hinder the development process. Especially with
regard to the process, strict documentation guidelines
are sometimes even considered harmful to business
(Seddon, 1997).

Because of this, a lot of diverse documentation
tools exist, which on the one hand, do support the de-
velopment of suitable documentation and on the other
hand shall reduce documentation cost. We hold the
view that by no means these two aims are mutually
exclusive.

In fact we think that the most important quality
of documentation is its ability to inform the persons
that are directly involved in the development process,
without laying out any insentient documentation stan-
dards. A survey about existing documentation tools
revealed the flaw that all existing tools have in com-
mon, which is their inability to make further use of ex-
isting information. Qrudredse solves this problem by
building a project memory from existing documents.

From the conducted evaluation we conclude that
the usage of an advanced successor of the early 9ru-
drodoe prototype could bring many benefits into soft-
ware development processes, but some usability is-
sues have to be addressed first.

This paper proposes the realization of a prototype
for interconnecting documentation in software devel-
opment. Future work on the prototype will lead in
three directions. First we will investigate the impact
of the adaption of social information retrieval tech-
niques (Kirsch et al., 2006). Based on these tech-
niques, we will measure the reputation of individ-
ual developers, concerning their documentation texts.
The documentation texts of developers with a higher
reputation could then obtain a higher importance.

Second, a multi-perspective documentation

67



ICEIS 2007 - International Conference on Enterprise Information Systems

(Becker et al., 2005) is a promising next step, where
interconnected documentation adapts to different
information needs and roles of individual users. It
is also planned to enable developers to access the
documentation archive, so that archived documents
can be easily modified.

Third, we will examine ways of improving a user’s
reading experience by evaluating other visualization
methods. We will design plugins for major IDEs to
further reduce the sensed distance between the de-
velopers’ working environment and the documention
interface. Additionally we may investigate on more
convenient means of presenting the complex hyper-
link structure and giving navigational hints.

REFERENCES

Balzert, H. (1988). Okonomische software-wartung
durch adidquate software-konstruktion. In Wix, B.
and Balzert, H., editors, Softwarewartung. BI Wis-
senschaftsverlag.

Becker, J., Janiesch, C., Delfmann, P., and Fuhr, W. (2005).
Perspectives on process documentation - a case study.
In ICEIS (3).

Didrich, K. and Klein, T. (1996). A pragmatic approach to
software documentation. Technical Report 4, Technis-
che Universitit Berlin.

Ericsson, K. A. and Simon, H. A. (1980). Verbal reports as
data. In Psychological Review, 87(3).

ISO 13407 (1999). Human-centered design processes for
interactive systems. In ISO/TC 159 Ergonomics, 1SO
International Organization for Standardization ISO
13407 (E).

Kirsch, S. M., Gnasa, M., and Cremers, A. B. (2006).
Beyond the Web: Retrieval in Social Information
Spaces. In Proceedings of the 28th European Con-
ference on Information Retrieval (ECIR 2006), vol.
3936 of Lecture Notes on Computer Science, Berlin.
Springer Verlag.

Krahmer, E. and Ummelen, N. (2004). Thinking about
thinking aloud: A comparison of two verbal protocols
for usability testing. In IEEE Transactions on Profes-
sional Communication, 47(2).

Lehner, F. (1993). Quality control in software documenta-

tion based on measurement of text comprehension and
text comprehensibility. Inf. Process. Manage., 29(5).

Lethbridge, T. C., Singer, J., and Forward, A. (2003). How
software engineers use documentation: The state of
the practice. IEEE Software, 20(6).

Malone, T. W. and Crowston, K. (1994). The interdisci-
plinary study of coordination. ACM Comput. Surv.,
26(1).

Nielsen, J. and Landauer, T. K. (1993). A mathematical
model of the finding of usability problems. In Pro-
ceedings of the SIGCHI conference on Human factors

68

in computing systems, New York, NY, USA. ACM
Press.

Opperman, R. and Reiterer, H. (1997). Software evaluation
using the 9241 evaluator. Behaviour and Information
Technology, 16(4/5):232-245.

Prause, C. (2006). Design und evaluation von doku-
mentations- und qualititssicherungsmethoden am bei-
spiel der fit-lernplattform. Master’s thesis, Rheinische
Friedrich-Wilhelms-Universitit, Bonn.

Pressman, R. S. (2001). Software Engineering: A Practi-
tioner’s Approach. McGraw-Hill.

Seddon, J. (1997). In Persuit of Quality: The Case Against
1SO 9000. Oak Tree Press.

Tellioglu, H. (2004). CoMex - a mechanism for coordi-
nation of task execution in group work. In Cordeiro,
J. and Filipe, J., editors, Computer Supported Activ-
ity Coordination, In conjunction with ICEIS 2004. IN-
STICC Press.

van Deusen, A. and Kuipers, T. (1999). Building doc-
umentation generators. In Proceedings IEEE Inter-
national Conference on Software Maintenance 1999
(ICSM’99). IEEE.

Vestdam, T. and Ngrmark, K. (2005). Toward documenta-
tion of program evolution. In Proceedings of the 21st
IEEE International Conference on Software Mainte-
nance (ICSM’05). IEEE.



