
TASKS MODELS FOR COMPONENT CONTEXTUALIZATION

Arnaud Lewandowski, Grégory Bourguin
Laboratoire d’Informatique du Littoral, 50, rue Ferdinand Buisson, 62228, Calais, France

Jean-Claude Tarby
Laboratoire Trigone - Institut CUEEP, Université Lille 1, 59655 Villeneuve d’Ascq, France

Keywords: Component, Integration, Tasks Models.

Abstract: This paper proposes a solution to take into account the emerging and evolving nature of users’ needs in
software environments. This solution consists in giving the users the means to adapt these environments by
integrating new tools. Many technical solutions exist for software components integration, but their use is
limited to software development experts. One reason is that current dynamic integration approaches face a
semantic problem: to finely integrate a tool in an activity, its future place in this activity must be clearly
identified. In order to facilitate this comprehension and the dynamic integration of software components, we
propose a new approach of component design and integration, inspired by previous work on task modelling.

1 INTRODUCTION

Today, many researchers concentrate their efforts to
give an answer to the users’ emerging needs in the
software environments supporting their activities.
The great advances made in the last ten years have
largely contributed to make users more and more
demanding towards computer systems. If in the past
the user had no choice but adapt him/herself to a
rigid and concurrence-free system, the trend now
tends to reverse: if the user cannot adapt the system
to his/her emerging needs, s/he will probably choose
another one that better suits these needs. To give an
answer to this strong matter, one of the proposed
approaches consists in providing means to users to
adapt software environments, following the thread of
their needs. This involves introducing into these
environments the adequate mechanisms that will
allow users to integrate the tools they download on
the Web. Some advanced mechanisms can help in
realizing such an integration of computer tools from
a technical point of view. However, these solutions
still face a semantic problem: in order to finely
integrate a tool (or software component) in the
environment, one must understand 1) the functioning
of the tool, and 2) what will be its place in the global
activity supported by the environment. We think that
the current models and tools present some

shortcomings regarding this aspect, and remain
inaccessible to users. In order to palliate this lack,
we work on a new approach for the definition,
development and dynamic integration of software
components. We propose to better use the tasks
models coming from the CHI research field. In
classical design approaches, these tasks models tend
to ‘evaporate’ during the development process, and
finally completely disappear. We think that these
models could improve the understanding and
facilitate the fine integration of software components
by users. In the first part of this paper, we explain
the problematic tied to the fine and dynamic
integration of components, bringing up existing
solutions and the problems they face, especially
regarding their accessibility to end users. Then we
propose the Task Oriented (TO) design approach
aimed at adding semantic in the components thanks
to the use of tasks models, in order to assist their
integration — or contextualization.

2 THE PROBLEM OF
CONTEXTUALIZATION

Many theoretical and empirical studies have already
demonstrated the emerging nature of users’ needs

176
Lewandowski A., Bourguin G. and Tarby J. (2007).
TASKS MODELS FOR COMPONENT CONTEXTUALIZATION.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - HCI, pages 176-181
DOI: 10.5220/0002387301760181
Copyright c© SciTePress

towards their activities and the environments
supporting them (Cubranic et al., 2004, Kuutti,
1993, Suchman, 1987). Actually, many research
works tend to integrate in the software environments
the mechanisms suited to support these emerging
needs, and to give the users the possibility to make
these environments evolve by supporting what we
call the contextualization of new tools (or
components) in the environment.

2.1 A SHS-based Point of View

Since a long time, the CSCW (Computer Supported
Cooperative Work) research field has integrated the
results coming from researches in Social and Human
Sciences demonstrating clearly that users’ needs
cannot be completely and exhaustively defined a
priori. Thus, the Activity Theory (Bedny and
Meister, 1997) brings to the fore the fact that each
human activity – and the many elements composing
it – continuously evolves during its realization. This
is also true for the users’ needs that emerge during
and from the activity. Therefore, a computer system
intended to support a particular activity must also be
able to evolve. Following this trend, we try to
provide adequate software environments according
to the coevolution principle — defined in details in
(Bourguin et al., 2001) — by allowing end users to
dynamically and cooperatively (re)define their
software environment. An example of such a
(re)definition can be a change in the roles played in
the cooperative activity, or the dynamic integration
of new tools (as components) into the working
environment. Since our work is strongly inspired by
the Activity Theory, we have defined this dynamic
integration need in terms of inter-activities
management (Lewandowski and Bourguin, 2005).
This approach considers that each tool is intended to
support a particular kind of activity. But when
several tools are used in parallel by a group of
actors, they generally serve a more global activity
than the one they were created for. For example, let
us imagine a development team that uses in parallel
a synchronous discussion tool, a code editor and a
file-sharing tool such as CVS. Each of these tools
supports a particular activity (synchronous
discussion for the chat, etc.) but they do not know
each other. However, they are used in a
complementary way by the group since they
contribute to the realization of a particular global
cooperative activity of software development. The
coherence of the environment is generally mentally
managed by the users themselves. Our objective is to
provide an environment that creates the context of

use of the many tools implied in a global activity
and that supports for example a software
development activity by managing the links existing
between these various (sub-)activities, i.e. by
managing the inter-activities. Managing the inter-
activities mainly consists in managing the context of
execution of the tools use brought into play by users
in the realization of their global activity
(Lewandowski and Bourguin, 2005). For instance, a
particular context may configure the tools in order to
reflect the user’s role in the global activity supported
by the environment. Thus, the actors in charge of the
tests during a software production process will not
have the rights, for example, allowing them to
modify the source code of the product. The same
context will also be able to pilot the tools according
to the state changes in the global activity. The
implementation of such scenarios in the inter-
activities, that orchestrates a set of tools that do not
know each other, supposes that these tools or
components can be finely contextualized or
integrated in the global environment.

2.2 Technical Means

The software components integration problem is a
large and complex area of research and many
technical solutions try to solve it. For example,
distributed components such as CORBA
components (Wang et al., 2001), EJB (Enterprise
JavaBeans) (Blevins, 2001), or the Web Services
(Ferris and Farrel, 2003) have been conceived with
their future integration in mind. Some of them are
associated with composition languages (Van der
Aalst, 2003) that ease the fine integration of these
components or services inside software applications.
One can notice that such technical solutions are
exclusively meant for software development experts,
especially because of their complexity, of their
implementation cost and of the specificity of the
used techniques (Heineman and Councill, 2001).
However, these different methods follow the same
principle: it is possible to dynamically discover
objects on the Internet, to instantiate them, to
introspect their public methods and eventually their
event channels, and finally to use them. These
mechanisms can be very useful to manage the Inter-
activities. Nevertheless, they mainly bring a solution
to the technical dimension of the problem.
Integrating finely and dynamically a tool supposes
not only that we are able to use it, but also that we
understand how to use it. In order to overcome this
semantic problem inside components, Object
Oriented (OO) methods provide some supports for

TASKS MODELS FOR COMPONENT CONTEXTUALIZATION

177

their understanding, such as the WSDL (Booth and
Liu, 2006), a Web Services Description Language,
or the Javadoc, a documentation of JavaBeans
components generated from specific tags inserted in
the source code of these components. Thus, in the
example of the creation of a chat component, the
associated Javadoc could only describe the set of
public methods that will be used for its integration
and piloting, such as sendMessage,
authenticate, showGroup, etc. However, in
order to integrate such a component, this kind of
documentation that describes ‘what the methods do’
but not ‘how to use them’ is generally not sufficient.
Every developer has already encountered this
problem. For example, in which order these methods
must be invoked to contextualize properly the chat
component in the environment? A solution consists
in looking for some existing examples of such
integration, or in dissecting the source code of
another application that uses the same component, or
in the best case, in using a tutorial that will initiate
us in its use.

We think that these difficulties tied to the
dynamic integration of third party components in
software environments are due to a semantic loss in
the available means as for their documentation. Only
passionate computer scientists are generally capable
of properly integrating most of the components
coming from the Internet because, by studying
existing source codes, they have to mentally
reconstruct almost completely the functioning
mechanics of the tool they want to integrate. This
problematic restricts reutilization to very specialized
users. Moreover, even if many works in progress
(Kiniry, 2005) try to palliate this semantic gap inside
component models, the proposed solutions generally
still remain intended to skilled developers. In the
frame of our work on the coevolution principle
(Bourguin et al., 2001), it has been demonstrated
that it would be strongly valuable to facilitate this
fine and dynamic integration, especially for and by
users. These users, not necessarily computer
scientists, are not experts in the technology used, but
rather in the task they want to achieve.

2.3 What is a Tool from a
Task-oriented Point of View?

In harmony with our inter-activities approach, we
can consider that each tool supports the task it has
been designed for. In other words, every software
component can be seen as a generic support for a
particular task that is more or less implicitly
inscribed inside the tool. Indeed, the designer of the

tool has created the underlying mechanisms and its
interface in order to propose an adequate support for
a given task. Thus, a mailing component supports
the realization of mailing tasks; a chat component
supports synchronous discussion activities, and so
on. So we can consider that contextualizing a tool is
nothing else than contextualizing an existing task
into the framework of a more global task. In order to
facilitate this contextualization and to bring an
answer to the dynamic integration problems, we
propose to better use the component’s tasks model, a
kind of missing link that generally disappears
between the design stage and the delivered code.

3 FROM OBJECT-ORIENTED TO
TASK-ORIENTED

3.1 Tasks Models during the
Development Process

Software engineering provides more and more scope
for tasks usage, especially in the CHI domain. Many
works in this field are oriented towards the means of
expressing users’ tasks. This task-oriented approach
generally occurs prior to or after the production
process (Clerckx et al., 2004, Delotte et al., 2004, Lu
et al., 2003, Luyten et al., 2003, Luyten et al., 2005,
Paris et al., 2005, Paterno, 2004, Reichart et al.,
2004). However, one can notice that if these
methods propose to start the component design stage
with a task-modelling step, this approach
progressively fades during the process and finally
disappears behind an object-oriented design
approach inspired by the computer engineering
background. This classical design approach tends to
transform tasks models into objects models, from
which emerges implicitly the class-based structure
of the produced component (cf. top part of Figure 1).
The original tasks model is swamped, implicitly
inscribed in the complexity of the produced source
code. In addition, task-oriented approaches are
slightly used – or even not used at all – during the
design and development cycle, namely after the
requirements collection and analysis. Besides, most
of the current well-known design tools widely used
by the software engineering domain – such as
Integrated Development Environments (IDE)
intended to support the programming/test stages, or
CASE tools (Computer-Aided Software
Engineering) intended to support the whole
production process – do not integrate at all the task-
oriented approaches. UML itself does not integrate

ICEIS 2007 - International Conference on Enterprise Information Systems

178

the notion of tasks as it is known in the CHI research
domain. For example, UML does not take into
account the notions of users’ goals or users’
intentions; it does not permit the modelling of users
(knowledge, habits, etc.); the difference between
interactive task, system task, and hand operated task
does not appear in UML. Nevertheless, work has
been done in order to palliate this shortcoming
(Bruins, 1998, Nunes et al., 2000, Pinheiro da Silva,
2002, Scogings and Phillips, 2004), taking
advantage of similarities in the concepts between
UML and task-oriented approach in order to create
some kinds of translators.

Therefore, one can notice that the benefit
acquired upstream during the tasks modelling phase
totally disappears during the design and
implementation stages. Even if the produced source
code reflects the originally identified tasks, it is very
hard to recover the tasks model from the source
code. This fact is closely akin to the idea previously
mentioned concerning the need for integrators to go
into the code of a component in order to extract its
functioning logic from a computer science
viewpoint, and also its usage logic from an end user
point of view, which is nothing else than
reconstructing and making explicit again the
underlying tasks model. This is the same reason that
leads development teams, during final tests, to make
use of “spywares”, interviews, and other methods in
order to recover parts of this tasks model.
Consequently, we are convinced that keeping
explicit the tasks model inside the final software
component will be useful for the dynamic
integration of tools in the users’ activities.
Furthermore, tasks models also often serve, as
shared objects, to help a better communication
between the diverse actors (including the future
users) implied in the complex software development
process. Therefore, putting the tasks model to the
users’ disposal should not only help in the
understanding of the functioning of the tool, but also
facilitate – by providing the tool usage logic – its
integration in the global task by the end users
themselves. This is what we propose to realize
thanks to a new design approach.

3.2 A New Design Approach

As previously stated, there is a real benefit to use
tasks models in every step of the software
component’s life cycle, from its design to its
development and even in its integration. Our
proposition consists in a Task-Oriented (TO) design
approach, which is nothing else than a ‘classical’

design approach extended with the explicit keeping
of the links between the source code and the tasks
model it is based on. This approach does not require
a particular formalism for the tasks modelling, since
we focus on linking tasks models concepts (that are
independent from the formalism used) with source
code. In the same way, this design approach does not
modify the class-based structure of the component.
Indeed, our approach precisely consists in
identifying the links between the code (in other
words the structure of the component) and the
original tasks model. These links will be written in
the source code as tags during the implementation
stage — technical aspects about how these tags are
written will not be explained in this paper due to the
lack of space, but these tags are similar with the
Javadoc tags that are inserted into the code as
comments. This approach leads to provide software
components with their tasks model inside and linked
to the code (cf. bottom part of Figure 1).

The benefit of this method stands in the fact that
it is a very low cost approach that induces only a
small extra work for designers and developers.
Indeed, supposing that the tasks model has already
been realized during the requirements analysis stage,
the extra work will only consist in writing into the
code the links mentioned above, and in delivering
the final component with its tasks model inside. On
the other hand, the gain in terms of semantic
regarding the functioning of the tool is noticeable
and will help in its understanding. As for the
contextualization, we propose to provide handling
means that will associate introspection and classical
documentation mechanisms with the component’s
tasks model.

3.3 Perspectives for Contextualizing to
Components

From a TO component, we can apply the classical
introspection mechanisms to retrieve the public
methods we can use for its integration, the Javadoc
that describes the functioning of these methods in an
Object-Oriented way, but also the direct links
between these methods and the underlying tasks
model. In order to facilitate the contextualization of
this component in the global activity, we currently
develop a prototype that will allow this introspection
from the tasks model point of view, by navigating
between this model’s different hierarchical levels,
and by linking it with the global activity’s model.
The prototype provides a global view of the tasks
model related to the component we want to
integrate, and in this way it will help in its

TASKS MODELS FOR COMPONENT CONTEXTUALIZATION

179

understanding. Furthermore, it will give the means
to specify how this component will be integrated in
the global task, through the definition of links
between the component’s tasks model and the global
activity’s model.

We now work on the validation of the TO
approach and expect that it will give the following
benefits. First, as we mentioned before, this
approach should induce only a small amount of extra
work for designers and developers, provided that the
previous requirements analysis stage has produced a
usable tasks model. On the other hand, the addition
of a tasks model describing the component’s
functioning and usage to other documentation means
(Javadoc, etc.) should make its understanding more
intuitive. Its contextualization in the global
environment by the creation of fine links will thus
become easier. We also pursue our efforts in order to
make these features (the introspection mechanisms
on the tasks models and the tools manipulating them
and assisting components contextualization) more
accessible to users.

4 CONCLUSION

One of the solutions considered in order to answer to
the emerging nature of users’ needs consists in
proposing the dynamic integration of new tools in
their software environment. From a human activity
point of view, this dynamic integration raises a

semantic problem. Indeed, the fine integration of a
component implies the understanding of the task it is
intended to support, in order to define the place it
will hold in the global activity. Unfortunately, the
current means induce a semantic loss during the
development process of components. The Task-
Oriented (TO) approach we propose takes benefit
from the tasks modelling process that occurs during
the early requirements analysis stage of the
development process. Generally, these tasks models
are finally diluted in the source code of the delivered
component. Our approach tends to preserve these
models all along the development process, and to
pack them with the final component, keeping the
fine links existing between the original tasks model
and the corresponding source code that realizes it
written in the code. We have verified the feasibility
of such an approach by developing a chat
component according to the TO approach. We are
going to improve and complete these new
introspection means and their tooling in order to
facilitate the dynamic integration of tools or
components by end users, to reach a better co-
evolution (Bourguin et al., 2001).

ACKNOWLEDGEMENTS

We thank the organisms supporting this work, in
particular the French Research ministry for the ACI
Jeunes Chercheurs CooLDev, the TAC (Advanced

Figure 1: Schematization of the classical design approach, and of the Task-Oriented approach that tends to preserve the tasks
model all along the development process, for a better contextualization of the produced component.

ICEIS 2007 - International Conference on Enterprise Information Systems

180

Technologies for Communication) program financed
by the Région Nord/Pas-de-Calais and by the French
State in the framework of the NIPO/MIAOU and the
EUCUE projects, and the FEDER.

REFERENCES

Bedny, G., Meister, D. The Russian theory of activity,
Current Applications to Design and Learning.
Lawrence Erlbaum Associates, Publishers, 1997.

Blevins, D. Overview of the Enterprise JavaBeans
Component Model. In (Heineman and Councill, 2001),
pp. 589-606.

Booth, D. and Liu, C.K. Web Services Description
Language (WSDL) Version 2.0 6 January 2006.

Bourguin, G., Derycke, A., Tarby, J.C. Beyond the
Interface: Co-evolution Inside Interactive Systems – A
proposal Founded on Activity Theory. Springer
Verlag, Vanderdonckt, Gray (eds), 2001, pp. 297-310.

Bruins, A. The Value of Task Analysis in Interaction
Design. In Task to Dialogue: Task-Based User
Interface Design, Workshop, CHI’98, Los Angeles,
April 18-23, 1998.

Clerckx, T., Luyten, K., Coninx, K. DynaMo-AID: a
Design Process and a Runtime Architecture for
Dynamic Model-Based User Interface Development.
In The 9th IFIP Working Conference on Engineering
for Human-Computer Interaction, jointly with the 11th
International Workshop on Design, Specification and
Verification of Interactive Systems, Trems-büttel
Castle, Hamburg, Germany, July 11-13, 2004, Pre-
Proceedings, pp. 142-160, 2004.

Cubranic, D., Murphy, G.C., Singer, J., Booth, K.S.
Learning from project history: a case study for
software development. In Proceedings of CSCW04,
Chicago, Illinois, USA, ACM Press, 2004, pp. 82-91.

Delotte, O., David, B.T., Chalon R. Task Modelling for
Capillary Collaborative Systems based on Scenarios.
In (Slavík and Palanque, 2004), pp. 25-31.

Diaper, D. and Stanton, N. Handbook of Task Analysis for
Human-Computer Interaction. Lawrence Erlbaum
Associates Pubs, London, 2004.

Ferris, C. and Farrel, J. What are web services?
Communications of the ACM, 46(6), 2003, pp. 31.

Heineman, G.T. and Councill, W.T. Component-based
software engineering: putting the pieces together.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, 2001.

Kiniry, J.R. Semantic Component Composition. Third
International Workshop on Composition Languages,
in conjunction with 17th European Conference on
Object-Oriented Programming (ECOOP), Darmstadt,
Germany, 2003.

Kuutti, K. Notes on systems supporting “Organisational
context” – An activity theory viewpoint. COMIC
European project, deliverable D1.1, 1993, pp 101-
117.

Lewandowski, A. and Bourguin, G. Inter-activities
management for supporting cooperative software
development, in Proc. of the 14th Int. Conf. on
Information Systems Development (ISD'2005),
Karlstad, Sweden. Springer Verlag, 12p.

Lu, S., Paris, C., Vander Linden, K. and Colineau, N.
Generating UML Diagrams From Task Models. In
Proc. of CHINZ'03, July 3-4 2003, Dunedin, New
Zealand.

Luyten, K., Clerckx, T., Coninx, K., Vanderdonckt, J.
Derivation of a Dialog Model from a Task Model by
Activity Chain Extraction. In Interactive Systems:
Design, Specification, and Verification, 10th
International Workshop DSV-IS, Funchal, Madeira
Island, Portugal, June, 2003.

Luyten, K., Vandervelpen, C., Coninx, K. Task Modeling
for Ambient Intelligent Environments: Design Support
for Situated Task Executions. 4th Int. Workshop on
TAsk MOdels and DIAgrams for user interface design
(TAMODIA 2005), Gdansk, Poland, 2005, pp. 87-94.

Nunes, N. Falcão e Cunha, J. Towards a UML profile for
interaction design: the Wisdom approach. In Proc. of
the UML 2000 Workshop, 2000.

O'Neill, E., Johnson, P. Participatory task modelling: users
and developers modelling users’ tasks and domains. In
(Slavík and Palanque, 2004), pp. 67-74.

Paris, C., Colineau, N., Lu, S., and Vander Linden, K.
Automatically generating effective online help.
International Journal on Elearning, ISSN 1537-2456,
Volume 4, Issue 1, 2005, pp. 83-103.

Paterno, F. ConcurTaskTrees: An Engineered Nota-tion
for Task Models. In (Diaper and Stanton, 2004), pp.
483-501.

Pinheiro da Silva, P. Object Modelling of Interactive
Systems: The UMLi Approach. PhD's thesis,
University of Manchester, United Kingdom, 2002.

Reichart, D., Forbrig, P., Dittmar, A. Task models as basis
for requirements engineering and software execution.
In (Slavík and Palanque, 2004), pp. 51-58.

Richard, J-F. Logique de fonctionnement et logique
d'utilisation. Rapport de recherche INRIA N° 202,
Avril 1983.

Scogings, C., Phillips, C. Linking Task and Dialogue
Modeling: Toward an Integrated Software Engineering
Method. In (Diaper and Stanton, 2004), pp. 551-566.

Slavík, P., Palanque, P. (eds.). Proc. of the 3rd Int.
Workshop on Task Models and Diagrams for User
Interface Design - TAMODIA 2004. November 15 -
16, 2004, Prague, Czech Republic, ACM 2004.

Suchman, L. Plans and Situated Actions. Cambridge
University Press, Cambridge, UK, 1987.

Van der Aalst, W. Don't go with the flow: Web services
composition standards exposed. Trends Controversies
Jan/Feb 2003 issue of IEEE Intelli-gent Systems,
2003.

Wang, N., Schmidt, D.C., O’Ryan, C. Overview of the
CORBA Component Model. In (Heineman and
Councill, 2001), pp. 557-572.

TASKS MODELS FOR COMPONENT CONTEXTUALIZATION

181

