
TOWARDS THE DYNAMIC ADAPTABILITY OF SOA

Mehdi Ben Hmida1, Céline Boutrous Saab1, Serge Haddad1

Valérie Monfort1,2 and Ricardo Tomaz Ferraz2

1 LAMSADE-CNRS, Université Paris-Dauphine, Place du Maréchal de Lattre Tassigny, Paris Cedex 16, France

2 CRI, Universit́e Paris 1 Sorbonne, 90 rue de Tolbiac, 75013 Paris, France

Keywords: Service Oriented Architecture (SOA), Web Services (WS), Aspect Oriented Programming (AOP), Process
Algebra (PA), Dynamic Adaptability.

Abstract: Service Oriented Architectures (SOA) aim to give methodological and technical answers to achieve interoper-
abilty and loose coupling between heterogeneous Information Systems (IS). Currently, Web Services are the
fitted technical solution to implement such architectures. However, both Web Services providers and clients
are faced to some important difficulties to dynamically change their behaviours. From one side, Web Services
providers have no mean to dynamically adapt an existing Web Service to business requirements changes. From
the other side, Web Services clients have no way to dynamically adapt themselves to the service changing in
order to avoid execution failures. In this paper, we show how to achieve a dynamic adaptable SOA by using the
Aspect Oriented Programming (AOP) paradigm and Process Algebra (PA) formalism. We extend our previous
works to dynamically modify BPEL processes and to handle client-server communications issues. Then, we
use a process algebra formalism to specify a change-prone BPEL process and demonstrate how to generate
a client which dynamically adapt its behaviour to the service changes. We also present theAspect Service
Weaver(ASW) prototype which implements our approach.

1 INTRODUCTION

Web Services (WS) are “self contained, self-
describing modular applications that can be pub-
lished, located, and invoked across the Web” (Tid-
well, 2000). They are based on a set of XML (Bray
et al., 2004) standards to make it more portable than
previous middleware technologies. SOA-based ap-
plications are usually composed of simple WSs that
are offered by different providers. TheBusiness Pro-
cess Execution Language for Web Services(BPEL)
has been introduced for this purpose and becomes
a standard (Andrews et al., 2003). BPEL supports
two different types of business processes:Executable
processesexecuted on a BPEL engine andAbstract
business processesspecifying the interaction protocol
with the client.

Actually, SOA applications are faced to some im-
portant limitations concerning their adaptability to
business requirements changes. These limitations af-
fect both WSs providers and consumers.

First, the services providers have no mean to dy-
namically change their WSs implementation or com-
position. They need to undeploy the service, recodify
the business logic and redeploy it again. This scenario
is deficient in an industrial context with a high Time-
to-Market constraints and strong competitiveness be-
tween companies. Second, if a change on the service
description (WSDL) or in the interaction protocol (ab-
stract BPEL) is done (without new publication), the
service consumers could not more interact with the
modified service and this will lead to execution fail-
ures

Regarding the above limitations, we identified two
requirements that WS technology has to handle:

1. Service provider needs to dynamically change the
behaviour of an already existing service to adapt
it to the new applications requirements.

2. Service client needs to dynamically adapt itself to
the service changing to avoid execution failures.

In our previous works, we addressed dynamic ser-

474
Ben Hmida M., Boutrous Saab C., Haddad S., Monfort V. and Tomaz Ferraz R. (2007).
TOWARDS THE DYNAMIC ADAPTABILITY OF SOA.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - ISAS, pages 474-479
DOI: 10.5220/0002387504740479
Copyright c© SciTePress



vice adaptability and client interaction issues. We
proposed an Aspect Oriented Programming (AOP)
(Kiczales et al., 1997) approach which aims to change
elementary WSs at runtime (Hmida et al., 2006;
Tomaz et al., 2006). We also proposed a Process
Algebra (PA) approach which solves the interaction
problem between BPEL processes and its clients, by
formally specifying the interaction protocol (abstract
BPEL) and automatically generating a correct client
(Haddad et al., 2006). In this paper, we extend these
works in order to reach the objectives previously dis-
cussed.

This paper is organized as follows: Section 2
briefly presents our previous AOP approach for el-
ementary WSs, then shows its extension to support
BPEL processes and to handle interaction issues.
We also present the architecture of our Aspect Ser-
vice Weaver (ASW) tool which integrates these con-
cepts. Section 3 presents the process algebra formal-
ism which supports change-prone BPEL processes.
This formalism leads us to generate clients that adapt
themselves to the service changes. Section 4 dis-
cusses related works. We conclude and present some
future works in section 5.

2 DYNAMIC SERVICE
ADAPTABILITY

2.1 Aspect Oriented Programming

Many researches (Charfi and Mezini, 2004; Courbis
and Finkelstein, 2005; Verheecke et al., 2003) con-
sider Aspect Oriented Programming (AOP) as an an-
swer to improve WS flexibility. AOP is a paradigm
that enables the modularization of crosscutting con-
cerns into single units called aspects, which are mod-
ular units of crosscutting implementation. AOP con-
cepts were formulated by Chris Maeda and Gregor
Kiczales (Kiczales et al., 1997). Aspect-oriented lan-
guages are implemented over a set of definitions:

1. Joinpoints: They denote the locations in the pro-
gram that are affected by a particular crosscutting
concern.

2. Pointcuts: They specify a collection of condi-
tional joinpoints.

3. Advices: They are codes that are executedbefore,
after or arounda joinpoint.

In AOP, a tool namedweavertakes the code specified
in a traditional (base) programming language, and the
additional code specified in an aspect language, and
merges the two together in order to generate the final

behaviour. The weaving can occur at compile time
(modifying the compiler), load time (modifying the
class loader) or runtime (modifying the interpreter).

2.2 Applying Aop to Web Services : The
Aspect Service Weaver (ASW)

In our previous approach, we developed an AOP-
based tool namedAspect Service Weaver(ASW)
(Hmida et al., 2006; Tomaz et al., 2006). The ASW
intercepts the SOAP messages between a client and an
elementary WS , then verifies during the interaction
if there is a new behaviour introduced (advice ser-
vices). We use the AOP weaving time to add the new
behaviour (before, aroundor after an activity execu-
tion). The advice services are elementary WSs whose
references are registered in a file called “aspect ser-
vices file descriptor”. The pointcut language is based
on XPath (Clark and DeRose, 1999). XPath queries
are applied on the service description (WSDL) to se-
lect the set of methods on which the advice services
are inserted.

Figure 1: Interaction schema for the insertion of a security
policy.

We extend this approach to BPEL processes. The
ASWcontrols the BPEL process execution instead of
intercepting SOAP messages. It is integrated in the
BPEL engine in order to interpret the BPEL process
and apply the aspect services. It verifies before the ex-
ecution of each BPEL activity if someAspect service
has ti be inserted. Then, it executes the corresponding
advice service. We also add a new functionality to the
ASW. The tool dynamically generates messages called
executemessages, encapsulating the identifier and the
interaction protocol of theadvice service. These mes-
sages are sent to the client to advertise it about a new
behaviour inserted at runtime. This message is neces-
sary since the new behaviour can require new infor-
mation exchange involving messages not expected by

TOWARDS THE DYNAMIC ADAPTABILITY OF SOA

475



the client, leading to execution failures. At the client
implementation, the developer has to handle this type
of message: it has to extract the interaction protocol
of theadvice serviceand integrate it in its behaviour.
This part is detailed in the next section.

Considering a scenario where a service devel-
oper wants to change dynamically a Kerberos to-
ken security policy by a digital certificate ones. He
can develop an aspect service called “authentica-
tion” and specify, in the “aspect services file descrip-
tor”, that before the invocation of the authenticated
methods in the base BPEL process, the engine must
invoke a digital-certificate authentication instead of
the Kerboros token security. For instance, The “as-
pect services file descriptor” in Figure 1 indicates
to the engine that when the methods whose names
match with the XPath expression “//invoke[starts-
with(@name,“SendResult”)]” were invoked (equiv-
alent to the invocation of methods whose names
match the regular expression “SendResult*”), the en-
gine must invoke before the advice service digital-
certificate.

This way, during the normal process execution
(step 2 in Figure 1) , the ASW looks in the “aspect
services file descriptor” (step 3) foraspect services
applied to the current activity. It finds (for example)
a joinpoint matching between a “sendResult” method
invocation and the aspect “authentication”. Then, it
generates theexecutemessage encapsulating the in-
teraction protocol of theadvice serviceidentified by
id and sends it to the client (step 4). After that, the
ASWbegins the execution of theadvice service(step
5). When its execution terminates, theASWcontinues
the execution of the base process.

Figure 2: The extended abstract BPEL process.

The change-prone BPEL process interaction pro-
tocol is described by an extended abstract BPEL pro-
cess which integrates the sending ofexecutemes-

sages. The extended interaction protocol is generated
from the base BPEL process and theaspect service
file descriptorbased on the defined pointcuts and the
type of advices (before, after or around) (figure 2).

The generation process performs transforma-
tions on the base BPEL process syntactic tree. It
inserts the action of sendingexecute messages
in the selected joinpoints depending on the kind
of the advice service. The figure 3 shows the
transformations made on the abstract base process
sequence(receive(ResReq),switch(reply(ResResp),
reply(error)) which receives aResReqmessage then
replies by aResRespor error message depending on
an internal action (the switch process). In the case of
an aroundservice advice(figure 3.d), the specified
joinpoint is replaced by thereply(execute(id))
message because we consider that theadvice service
can encapsulate the joinpoint.

Figure 3: transformations on the syntactic BPEL process
tree.

In the extended abstract BPEL process, theexe-
cutemessage contains only the identifier of theadvice
service(id). The interaction protocol corresponding
to thatid is sent to the client at runtime.

3 DYNAMIC CLIENT
ADAPTABILITY

BPEL provides a set of operators describing in a mod-
ular way the observable behaviour of an abstract pro-
cess. As shown in (Staab et al., 2003), this kind
of process description is close to the process alge-
bra paradigm illustrated for instance by CCS (Milner,
1995).

However, time is explicitly present in some of the
BPEL constructors and thus the standard process al-
gebra semantics are inappropriate for the description

ICEIS 2007 - International Conference on Enterprise Information Systems

476



of such process. Thus, we defined a new process alge-
bra semantics that associates a timed automaton (TA)
(Alur and Dill, 1994) with an abstract process (Had-
dad et al., 2006). The theorical developments follow
these steps: associating operational rules with each
abstract BPEL construct, defining an interaction rela-
tion which formalizes the concept of a correct interac-
tion between two communicating systems (the client
and the WS), and designing an algorithm that gen-
erates a client automaton which is in an interaction
relation with the WS.

The client automaton is interpreted by our generic
client interpreter (figure 4). Our client downloads the
abstract BPEL process from an UDDI registry and
generates its corresponding TA. Then, based on the
TA of the service and the interaction relation, it gen-
erates the client TA if the service is not ambiguous.
Finally, it executes the client TA and displays graphi-
cal interfaces allowing to the human user to enter the
messages parameters.

Figure 4: Generic client interpreter.

3.1 The Dynamic Client Interpreter

In order to communicate with change-prone BPEL
processes, we extend the previous client interpreter.
The new client has to achieve the following tasks:

1. When the client receives anexecute(id) message,
it has to extract theadvice serviceinteraction pro-
tocol (identified byid) and generates its corre-
sponding server and client TA.

2. It simultaneously executes the client TAs of the
main process and itsadvices clientsTA.

3. It makes synchronisation between the main client
TA and the advices clients TA on the termination
of services advices execution.

Furthermore, the generation module of the dy-
namic client interpreter also integrates new opera-
tional rules for the sending and receiving processes
in order to handle theexecute(id) messages.

3.2 Formalisation Steps

In order to formalize BPEL as dense timed process
algebra, we have to define the actions (alphabet) of
the process algebra. The possible actions are message
receiving (?m) and sending (!m), internal actions (τ)
(not observable from the client side), raise of excep-
tions (e∈E), expiration of timeout (to) and the termi-
nation of the process (

√
). We distinguish three kinds

of actions: the immediate actions corresponding to a
logical transition(τ,e,

√
), the asynchronous actions

where an unknown amount of time elapses before the
occurrence of actions(?m, !m) and the synchronous
actions (to) which occur after a fixed delay.

Now, we present some operational rules and pre-
cisely the new rules for the sending and receiving pro-
cesses. To see all rules and in particular the handling
of clocks in TA, the reader is invited to refer to (Had-
dad et al., 2006).

For example, theemptyprocess which represents
the process that does nothing can only terminate by
executing the

√
action (0 is thenull process).

empty
√
−→ 0 (1)

For the sending and receiving processes, we define
the following rules.

∀m 6= execute

∗o[m]
∗m−→ empty avec∗ ∈ {?, !} (2)

!o[m]
!execute(id)−−−−−−→WaitAdvice(id) (3)

WaitAdvice(id)
id.

√
−−→ empty (4)

Rule 2 states that the process ?o[m] (resp. !o[m])
which corresponds to the reception of a message of
type m (resp. sending of message of typem) exe-
cutes the action ?m (resp. the action !m) which cor-
responds to the message reception action (resp. the
message sending action) and becomes theemptypro-
cess. In the case of sending anexecutemessage,
the automaton evolves to an intermediary state named
WaitAdvice(id) (rule 3). WaitAdvice(id) waits for
the termination of theadvice serviceidentified byid.
When advice service idterminates,WaitAdvice(id)
state executesid.

√
and becomesemptyprocess (rule

4).
The sequential processP;Q (P andQ are BPEL

processes) corresponds to the execution of the pro-
cessP followed by the execution of the processQ. It
becomes the processP′;Q if the processP executes
an actiona different from termination action and be-
comesP′. If P terminates and Q can execute an action

TOWARDS THE DYNAMIC ADAPTABILITY OF SOA

477



a and becomesQ′, the processP;Q executes the ac-
tion a then becomes the processQ′.

∀a 6= √ P
a−→ P′

P;Q
a−→ P′;Q

(5)

P
√
−→ and Q

a−→ Q′

P;Q
a−→ Q′

(6)

Finally, theswitch{Pi}i∈I process evaluates an in-
ternal condition represented byτ then becomes the
processPi .

∀ i ∈ I , switch{Pi}i∈I
τ−→ Pi (7)

3.3 Execution Scenario

Considering the abstract BPEL process defined in sec-
tion 2. If we want to add dynamically an authentica-
tion process before theswitchprocess, the extended
abstract BPEL process have to integrate a sending
execute(id) message process before theswitch pro-
cess.

?o[ResReq]; !execute(id);switch(!o[ResResp], !o[error])

At the execution, our dynamic client interpreter
downloads the extended abstract BPEL specification.
Then, it generates the corresponding service TA based
on the operational rules previously defined. Then,
based on the service TA and the interaction relation,
our client generates the client TA and begins its inter-
pretation. Figure 5 shows the generation process.

Figure 5: Adaptable service and client automata.

When our client receives anexecute(id)
message, it extracts the abstract BPELadvice
service process from the message. In our ex-
ample, the advice service is an authentication

process which abstract BPEL specification is
!o[authDataRequest] ; ?o[authDataResp] ;P1. This
process sends an authentication data request to the
client asking for authentication data, receives these
data then performs some actions to authenticate the
user. Our client generates the corresponding advice
client automaton, associates with the receivedid
and begins its execution (Figure 6, states in grey
represents the current execution step).

Figure 6: Receiving anexecute(id,Q) message.

When theadvice client idterminates, our client
makes synchronisation with the main client automa-
ton. it deletes theadvice client, performs theid.

√
action and continues the execution of the main client
automaton (figure 7).

Figure 7: Termination of the advice clientid.

4 RELATED WORKS

In (Charfi and Mezini, 2004) and (Courbis and Finkel-
stein, 2005), the authors define specific AOP lan-

ICEIS 2007 - International Conference on Enterprise Information Systems

478



guages to add dynamically new behaviours to BPEL
processes. But, neither of these approaches address
the client interaction issue. The client has no mean to
handle the interactions that can be added or modified
during the process execution.

The Web Service Management Layer (WSML)
(Verheecke et al., 2003) is an AOP-based platform for
WSs that allows a more loosely coupling between the
client and the server sides. WSML handles the dy-
namic integration of new WSs in client applications
to solve client execution problems. WSML dynam-
ically discover WSs based on matching criteria such
as: method signature, interaction protocol or quality
of service (QOS) matching. In a complementary way,
our work proposes to adapt a client to a modified WS.

Some proposals have emerged recently to ab-
stractly describe WSs, most of them are grounded
on transition system models (Labelled Transition Sys-
tems, Petri nets, etc.) (Hamadi and Benatallah, 2003;
Fu et al., 2004; Ferrara, 2004). These works pro-
pose to formally specify composite WSs and handle
the verification and the automatic composition issues.
But, neither of these works propose to formalize the
dynamics of SOA architectures and to handle runtime
interaction changes.

5 CONCLUSION AND FUTURE
WORKS

In this paper, we proposed a solution based on AOP
and PA to handle dynamic changes in the WS context.
We extended our previous AOP approach to support
BPEL processes and to handle interaction issues. We
also use process algebra formalism to specify change-
prone BPEL processes and generate dynamic clients.

As future works, we want to extend the work to
take into account the client execution context. We
also want to formally handle the aspects interactions
issue (aspects applied at the same joinpoint). Finally,
we plane to improve the current ASW prototype as
proof-of-concepts.

REFERENCES

Alur, R. and Dill, D. L. (1994). A theory of timed automata.
Theoretical Computer Science, 126(2):183–235.

Andrews, T. et al. (2003). Business Pro-
cess Execution Language for Web Ser-
vices. 2nd public draft release, Version 1.1,
http://www.ibm.com/developerworks/webservices/lib
rary/ws-bpel/.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.,
and Yergeau, F. (2004). Extensible markup lan-
guage(xml) 1.0, http://www.w3.org/xml/.

Charfi, A. and Mezini, M. (2004). Aspect-oriented web
service composition with AO4BPEL. InProceed-
ings of the 2nd European Conference on Web Ser-
vices (ECOWS), volume 3250 ofLNCS, pages 168–
182. Springer.

Clark, J. and DeRose, S. (1999). Xml path language (xpath)
ver. 1.0, http://www.w3.org/tr/xpath.

Courbis, C. and Finkelstein, A. (2005). Weaving aspects
into web service orchestrations. InICWS ’05: Pro-
ceedings of the IEEE International Conference on
Web Services (ICWS’05), pages 219–226, Washing-
ton, DC, USA. IEEE Computer Society.

Ferrara, A. (2004). Web services: a process algebra ap-
proach. InICSOC ’04: Proceedings of the 2nd inter-
national conference on Service oriented computing,
pages 242–251, New York, NY, USA. ACM Press.

Fu, X., Bultan, T., and Su, J. (2004). Analysis of interact-
ing bpel web services. InWWW ’04: Proceedings of
the 13th international conference on World Wide Web,
pages 621–630, New York, NY, USA. ACM Press.

Haddad, S., Moreaux, P., and Rampacek, S. (2006). Client
synthesis for web services by way of a timed seman-
tics. InProceedings of the 8th Int. Conf. on Enterprise
Information Systems (ICEIS06), pages 19–26.

Hamadi, R. and Benatallah, B. (2003). A petri net-based
model for web service composition. InADC ’03:
Proceedings of the 14th Australasian database con-
ference, pages 191–200, Darlinghurst, Australia, Aus-
tralia. Australian Computer Society, Inc.

Hmida, M. B., Tomaz, R. F., and Monfort, V. (2006). Ap-
plying aop concepts to increase web services flexi-
bility. Journal of Digital Information Management
(JDIM), 4(1):37–43.

Kiczales, G., Lamping, J., Maeda, C., and Lopes, C.
(1997). Aspect-oriented programming. InProceed-
ings European Conference on Object-Oriented Pro-
gramming, volume 1241, pages 220–242. Springer-
Verlag, Berlin, Heidelberg, and New York.

Milner, R. (1995).Communication and concurrency. Pren-
tice Hall International (UK) Ltd., Hertfordshire, UK.

Staab, S., van der Aalst, W., and Benjamins, V. R. (2003).
Web services: been there, done that?IEEE Intelligent
Systems [see also IEEE Intelligent Systems and Their
Applications], 18(1):72–85.

Tidwell, D. (2000). Web services: The web’s next revolu-
tion, http://whitepapers.techrepublic.com.com/.

Tomaz, R. F., Hmida, M. B., and Monfort, V. (2006).
Concrete solutions for web services adaptability us-
ing policies and aspects.The International Journal of
Cooperative Information Systems (IJCIS), 15(3):415–
438.

Verheecke, B., Cibŕan, M., and Jonckers, V. (2003). AOP
for Dynamic Configuration and Management of Web
Services. InProceedings of the International Con-
ference on Web Services Europe 2003, volume 2853,
pages 137–151. Springer.

TOWARDS THE DYNAMIC ADAPTABILITY OF SOA

479


