
A METRICS PROPOSAL TO EVALUATE SOFTWARE
INTERNAL QUALITY WITH SCENARIOS

Anna Grimán, María Pérez, Maryoly Ortega and Luis Mendoza
Processes and Systems Department – LISI

Universidad Simón Bolívar
Caracas, Venezuela

Keywords: Software quality assurance, Evaluation, Internal quality, Metrics.

Abstract: Software quality should be evaluated from different perspectives; we highlight the internal and external
ones (ISO/IEC, 2002). Specially, internal quality evaluation depends on the software architecture (or
design) and programming aspects rather than on the product behaviour. On the other hand, architectural
evaluation methods tend to apply scenarios for assessing the architecture respect to quality requirements;
however, mainly scenarios aren’t effective enough to determine the level of satisfaction of the quality
attributes. In practice, each scenario could need more than one measurement. Also, we need a quantitative
way of comparing and reporting results. The main objective of this article is presenting a proposal of
metrics grouped by quality characteristics and sub-characteristics, according to ISO 9126 standard, which
can be applied to assess software quality based on architecture. Once selected the most important quality
requirements, these metrics can be used directly, or in combination with quality scenarios, into an
architectural evaluation method. Metrics proposed also consider some particular technologies, such as OO,
distributed and web systems.

1 INTRODUCTION

According to Barbacci et al. (1997) the software
quality is defined by the degree in which the
software exhibits the correct combination of desired
attributes. Such attributes encompass system
requirements which are different from the functional
requirements (Clements et al., 2002), and which
refer to the specific characteristics that the software
must meet. We know these characteristics or
attributes as quality attributes and they are defined
as properties inherent to a service rendered by a
particular system to its users (Barbacci et al., 1997).

In this sense, most of the Architectural
Evaluation Methods of Software Quality use
scenarios to assess the degree of satisfaction of the
quality attributes or requirements in a software. In
reality, however, these scenarios cannot be measured
directly; on the contrary they require an assigned
metric or measure whose value can be represented in
different scales and can be incorporated to the
results from the whole of the quality attributes.

Thus, the objective of this article is to present a
proposal of metrics organized into quality

characteristics and sub-characteristics, according to
the ISO 9126 standard, which can be applied to
assess software quality based on its architecture.
This study was inspired in a previous research
(Grimán et al., 2006) which established the elements
to be evaluated in software architecture in order to
estimate software quality.

There are different works which related ISO
9126 to software measurement (Mavromoustakos
and Andreou, 2007; Lee and Lee, 2006; Azuma,
1996; among others), however, they don’t present
the evaluation in an architectural level. In this
investigation we have used two related works
(Losavio and Levy, 2002) and (Ortega et al., 2003)
which proposed some metrics for software
evaluation considering internal (architectural)
elements according to ISO 9126.

In section 2 we briefly outline the theoretical
basis for this work; in sections 3 and 4 we propose a
set of metrics aimed at internal quality evaluation
and its application within a case study; finally in
section 5 we introduce the conclusions of our work
and our recommendations for future researches.

558
Grimán A., Pérez M., Ortega M. and Mendoza L. (2007).
A METRICS PROPOSAL TO EVALUATE SOFTWARE INTERNAL QUALITY WITH SCENARIOS.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 558-563
DOI: 10.5220/0002391905580563
Copyright c© SciTePress

2 BACKGROUND

The ISO 9126 standard (ISO/IEC, 2002) does not
define software quality incorporation; it simply
defines a model with the characteristics to be taken
into account when establishing quality requirements
for product evaluation. This standard outlines a
software quality model which includes internal and
external quality and quality of use. It specifies six
(6) characteristics for internal and external quality,
with subsequent divisions (or sub-characteristics),
which are the product of internal attributes and come
into play externally whenever the software is used as
a part of a computing system. The characteristics are
applicable to any type of software.

The ISO/IEC 9126 model organizes quality
attributes into six characteristics (Functionality,
Reliability, Usability, Efficiency, Maintainability,
and Portability). Each characteristic is, in turn,
subdivided into sub-characteristics that can be
measured through internal and external metrics. The
Quality of Use refers to the software’s capability to
allow users to attain specific goals effectively,
productively, securely and satisfactorily within a
particular context.

A metric of software quality refers to a
quantitative method and scale used to determine the
value of a particular quality characteristic in a
software product. According to ISO 9126 the
evaluation of software quality can be achieved
through internal and external metrics (ISO/IEC,
2002).

In this study we are particularly interested on
internal metrics which can be applied to a software
product without executing (to specifications or
source code) during the design or codification.
When a software product is developed the
intermediate product can be evaluated using internal
metrics to measure intrinsic properties.

In order to generate the internal metrics we used
the Goal Question Metric (GQM) approach (Basili,
1992) (sometimes called the GQM paradigm) which
supports a top-down approach to define the goals
behind measuring software processes and products,
and using these goals to decide precisely what to
measure (choosing metrics). It additionally supports
a bottom-up approach to interpreting data based on
the previously defined goals and questions.

In our case, the expected quality attributes, as
outlined by the ISO 9126 standard, were established
as goals, where the steps previously mentioned were
applied to each attribute. Due to space constraints
we have omitted the questions that emerged during
the research, focusing on the metrics generated
which are shown in the next section.

3 METRICS FOR EVALUATING
INTERNAL QUALITY OF
SOFTWARE

As previously stated, in this work we have
considered our previous findings about architectural
evaluation (Grimán et al., 2006). According to that
study an evaluation method include a quality model
to estimate the satisfaction of quality requirements.
Metrics can be used to compose a quality model and
evaluate software architecture. In this sense they
must assess architectural mechanisms (patterns and
styles) and models (composed by components,
relationships, and views). Grimán et al. (2006) also
established that ISO 9126 is a convenient framework
to organize the quality model needed in the
evaluation. This way, in this investigation the
organization of the proposed metrics followed the
ISO 9126 structure.

Based on this study we oriented the metrics
proposal towards the evaluation of: elements
(presence/absence, quantity), relationships
(presence/absence, type), views (consistency, layers,
and balance), models (consistency, layers, and
balance), and mechanisms (presence/absence of
architectural patterns or styles). These key
architectural aspects constituted the goal of our
assessment; the next step was proposing one or more
metrics to achieve each goal.

Respect to the metrics proposal, two other works
were considered as antecedents: (1) Ortega et al.
(2003), which, in turn, was inspired on ISO 9126
and proposed a seminal set of metrics to measure
mainly the external quality of the product, factoring
in efficiency and effectiveness for each one of the
characteristics. After analyzing, we found they
included 10 internal metrics (related to
Maintainability), which were generalized and
incorporated in our proposal; (2) Losavio and Levy
(2002) who proposed definitions and parameters to
measure and evaluate the quality characteristics and
sub-characteristics at the architectural level. Four
metrics proposed by (Losavio and Levy, 2002) were
incorporated in our proposal, they were related to
Functionality, Reliability and Portability.

As a result of this study we obtained a model of
117 internal metrics as follows: Functionality: 24,
Reliability: 30, Maintainability: 31, Efficiency: 15,
Portability: 4 and Usability: 13. We had also to
determine if all the sub-characteristics were
architectural in nature, as a result of this analysis we
were able to organize the 117 metrics into
characteristics and sub-characteristics.

These metrics were validated through the
application of different architectural evaluations
onto different case studies (Grimán et al., 2003;

A METRICS PROPOSAL TO EVALUATE SOFTWARE INTERNAL QUALITY WITH SCENARIOS

559

Grimán et al., 2003b; Grimán et al, 2004; Grimán et
al., 2005; Grimán et al., 2006) where Collaborative
Systems, Enterprise Information Systems, Financial
Systems, CASE tools, and Geographical Information
Systems were evaluated. In these validations 22
stakeholders (developers, architects, project
managers, etc.) were involved to evaluate the
proposal of metrics according to the following
features: appropriateness, feasibility, depth, and
scale. In general, we obtained values higher than the
minimal level of acceptance (75%) for each
evaluated metric.

Because of space restrictions, we only present a
sample of the 117 metrics. Figure 1 presents the
proposed metrics for Functionality which were
considered pertinent to the software’s architecture,
based on the definitions by Bass et al. (2003) and
Losavio and Levy (2002): Adequacy, Precision,
Security and Interoperability. Note that 2 metrics in
this set were marked (1) because they were proposed
by Losavio and Levy (2002). For each metric, we
have established a corresponding scale within the
range of 1 through 5, where 5 always represents the
highest value (see Table 1).

Table 1: Sample of ordinal scales.

Type 1 5: Yes; 1: No

Type 2 5 = All; 4= Nearly All; 3= Median.;
2=Few; 1=None

Type 3 1=Unacceptable; 2=Below Average;
3=Average; 4=Good; 5=Excellent

Type 4 5 = Completely satisf.; 4 = Almost
Always satisf.; 3= Occasionally Satisf.; 2
= Rarely satif.; 1= Never satisf.

Type 5 5=Completely satisf.; 3=somewhat
satisf.; 1= Not satisf.

In the case of Functionality, we must point out

that, even though the software’s functional
requirements can be regarded as orthogonal to the
architecture; there are specific architectural
strategies to achieve the desired Security, Precision
and Interoperability requirements.

3.1 Analysis of Metrics

Regarding Functionality we proposed metrics
essentially oriented to evaluating the presence of
elements or components within the architecture,
which support the identified requirements. Some of
the metrics proposed will have to be refined in order
to be applied upon each actual evaluation e.g. the
existence of any component/function/method for

each specific task within the requirements would
have to be specialized in as many metrics as
requirements have been identified.

Usability is a quality characteristic which can be
translated into Functionality; however in this work
we have also considered other internal aspects that
would have an impact on the software’s interaction
e.g. modules or components which are responsible
for only one task. The complexity of the required
interfaces are evaluated by a module or method i.e.
the more specific the method is, the simpler its
interface.

Regarding Reliability, the proposed metrics
evaluate the presence or existence of mechanisms to
prevent or handle exceptions. Some metrics can be
applied to Distributed Systems e.g. Presence of
mechanisms which allow shared access to the
resources within the system or Presence of
mechanisms which allow stopping non-operative
processes are metrics aimed at evaluating the
maturity of the architecture in order to prevent
malfunctions, whereas the metric Presence of
mechanisms of failure notification will evaluate
aspects regarding the management of exceptions The
metrics Presence of mechanisms which allow
restarting the system in degrade mode and Presence
of any mechanism which allows the recovery of the
previous status of the system are designed to
determine the probability for future software to
remain operative after a malfunction has occurred.

Even though Efficiency is a quality
characteristic that is difficult to estimate through the
architecture –especially because it is hardware
dependent, as well as dependent on the
communication aspects,- we proposed a set of
metrics aimed at evaluating resource management
within the architecture, in order to optimize resource
consumption within large or complex systems. This
will translate into a better response time ratio. Thus,
such metrics do not contemplate the platform where
the software will be executed, but rather the
performance inherent to a particular architectural
organization, e.g. Existence of unnecessary
connections between classes or Presence of
mechanisms which optimize broadband use.

As far as Portability we found that it is
fundamentally an architectural characteristic, even
though it can be translated into some functionality
especially regarding Installability e.g. Presence of
mechanisms which allow the system’s installation.
We proposed a number of general metrics designed
to evaluate the presence of mechanisms and
strategies which render the software usable within
multiple platforms e.g. Presence of mechanisms
(layer or subsystem) which encapsulates the
restrictions of the environment.

ICEIS 2007 - International Conference on Enterprise Information Systems

560

The last characteristic we found was
Maintainability, which originates a number of
important general metrics, which can be further
refined. These metrics are designed to evaluate the
effortlessness with which the architecture can be
understood and modified, focusing mainly on its
organization and distribution, e.g. Responsibility of
each object within the Interaction Diagrams. Our
proposal did not contemplate semiotic-related
metrics, such as the ideality of any particular
symbol.

Finally, the proposed metrics include
measurements at various levels which correspond to
different architectural views, in order to apply some
estimates even in cases where no refined design is
available.

4 CASE STUDY: GIS
EVALUATION

With the objective of showing a practical application
of the metrics proposed in this work, we present the
study of a particular case in which the architecture of
a Geographical Information System (GIS) for an
electrical distribution company’s was evaluated. The
system was very demanding in terms of quality, and
it was developmentally complex. The system’s
purpose was to address the optimization needs of
those processes inherent to electric energy

distribution while meeting the legal dispositions
outlined in the quality regulations of the National
Electrical Distribution System (GISEN).

The evaluation of this architecture was done
following the Architectural Trade-offs Analysis
Method – ATAM (Clements et al., 2002), which
required establishing the architectural drivers and
the utility tree. Given that the former is based on
quality scenarios, we included some of the metrics
proposed in our work in order to facilitate the
quantitative analysis of such scenarios.

The quality requirements as well as the expected
attributes of the system were: precision in the
calculations (Accuracy); communication with other
systems (Interoperability); access control (Security);
quantification of the permitted malfunctions,
management of internal and external errors
(Reliability); requirements of interface and
communication with users (Usability); speed,
response-timeframe and consumption of resources
(Efficiency).

Once we identified the characteristics we
designed a utility tree based on the quality scenarios
and on their weight and frequency. One or more of
the proposed metrics were assigned to each scenario
in order to allow an evaluation by the evaluating
group; two examples are shown next:

Scenario: We require communication with the
Incidence System. Metrics Proposed: Existence of
elements which allow connections with other

Fu
nc

tio
na

bi
lit

y

Existence of any component /function/method for each specific task within users’
requirement (e.g. enquiries, reports, transactions)

Type_1

System functions adequately refined in the architecture Type_2
Completion of Use-case Model vs. Logical Model Type_2
Completion of Concepts vs. Database Components Type_2
Completion of the Logical Model vs. Component Diagrams Type_2
Existence of mechanisms which promote communication Type_1
Re-configurable architecture in run-time Type_1
Design adapted to the original problem Type_3

Adequacy

Class conceptual diagram adapted to software specifications Type_1
Precision Presence of software components responsible for the calculations needed by the

client 1
Type_4

Presence of architecture components for detection of non-authorized system access Type_1
Presence of a mechanism/subsystem/kernel which determines user access when
users need to perform a particular operation

Type_1

Presence of a secure mechanism which allows users to remember their password Type_1
Presence of a mechanism which reminds users to change their password after some
time

Type_1

Presence of a mechanism within the software architecture which includes a function
to evaluate the amount of access logs within the system

Type_1

Presence of an access blocking mechanism after a number of failed attempts Type_1
Presence of mechanisms (methods, procedures or functions) which register user
operations in a log

Type_1

Compliance with security standards Type_5
Presence of mechanisms for recovery after failures due to attacks Type_1
Presence of mechanisms for data update used for authentication Type_1
Presence of mechanisms for data encryption Type_1

Security

Presence of mechanisms which limit domain access in the network (applicable to
intranet development

Type_1

Existence of elements which allow connections to other systems1 (e.g. middleware,
COBRA etc.)

Type_1

Components with clear communication interfaces Type_1
The Architecture uses certified components Type_5

Interoperability

Clear identification of architecture extension points (applicable to systems based on
plug-in and components

Type_1

Figure 1: Internal quality metrics for Functionality.

A METRICS PROPOSAL TO EVALUATE SOFTWARE INTERNAL QUALITY WITH SCENARIOS

561

systems (e.g. middleware CORBA, etc), Components
with clear communication interfaces.

Scenario: A transmission of sensitive is
preformed through a public network. Metrics
Proposed: Presence of mechanisms for data
encryption.

In order to evaluate the architecture quality, we
coordinated a one-day session with different
stakeholders to assign values to each
scenario/metric. After evaluating, the results
obtained were quantitative (see Figure 2) and
showed the required architectural improvements
upon those characteristics which are inhibited. In
this case, this was represented by those
characteristics whose values were less than 75%.

Figure 2: Percentages of coverage of quality
characteristics.

Based on these results, we were also able to
provide practical recommendations regarding the
architecture improvements. Some examples are: use
of concurrent processing and of dispatch policies,
mechanisms to manage the workload, helps for users
(including tool tips), use of mechanisms of data
updating for authentication, among others.

After illustrating the practical application of the
proposed metrics in a real context, we present the
conclusions and opened questions of this research in
the next section.

5 CONCLUSIONS

Through the results achieved in this work, it
becomes evident that some of the quality
characteristics or attributes (especially the non-
observable during execute time), are more easily
evaluated through the architecture (e.g.
Maintainability).

It is also evident, however, that those quality
attributes which are observable during execute time
are directly determined by the architecture. It is
possible then to establish objective measurements
about the architecture’s specifications which would
allow us to estimate the levels of product quality at
an early stage.

These metrics can be used in combination with
different architectural evaluating techniques, (e.g.
scenarios and simulations), in order to obtain
quantitative measures of quality. Similarly, the
metrics can be redefined so as to obtain more precise
evaluations of specific architectural mechanisms or
technologies. This way we have proposed a
compendium of metrics aimed at estimating internal
quality (based on standard ISO 9126) and which, at
the same time, functions as a model for
specification. This work provides important
orientation for the application of the different
methods of architectural evaluation which claim for
quantitative measurements.

In the future and as a complement to our
proposal, we intend to include aspects of
Consistency, Conceptual Integrity, Simplicity of
Construction and Comprehension of the
Architecture, which are regarded as inherent to the
quality of the architecture more so than to the
software quality.

REFERENCES

Azuma, M. 1996. Software products evaluation system:
Quality models, metrics and processes -international
standards and Japanese practice. Information and
Software Technology, 38 (3 SPEC. ISS.):145-154.

Barbacci, M, Klein, M., Weinstock, C., 1997. Principles
for evaluating the quality Attributes of a Software
Architecture. Technical Report CMU/SEI-96-TR-036.

Basili, V., 1992. Software modeling and measurement:
The Goal/Question/Metric paradigm. Technical Report
CS-TR-2956, Department of Computer Science,
University of Maryland, College Park, MD 20742.

Bass, L., John, B., Kates, J., 2001. Achieving Usability
through Software Architecture. CMU/SEI-TR-2001-
005. Software Engineering Institute.

Bass, L., Clements, P. and Kazman, R., 2003. Software
arquitecture in practice. Addison Wesley Longman
Inc., USA.

Clements, P., Kazman, R., Klein M., 2002. Evaluating
Software Architectures: Methods and Case Studies.
The SEI Series in Software Engineering.

Grimán, A., Pérez, M., Mendoza, L, 2003. Estrategia de
pruebas para software OO que garanticen
requerimientos no funcionales. In III Workshop de
Ingeniería del Software, Jornadas Chilenas de
Computación.

Grimán, A., Lucena, E., Pérez, M., Mendoza, L., 2003.
Quality-oriented Architectural Approaches for
Enterprise Systems. In 6th Annual Conference of the
Southern Association for Information Systems.

Grimán. A., Pérez, M., Mendoza, L, Hidalgo, I., 2004.
Evaluación de la calidad de patrones arquitectónicos a
través de experimentos cuantitativos. In Jornadas

Quality satisfaction by Characteristic
100 100 100 100

75 75

0

50
25

60

0
20
40
60
80

100

A
de

cu
ac

y

A
cu

ra
cy

In
te

ro
pe

rb

S
ec

ur
ity

B
eh

av
io

ur

R
es

ou
rc

es

O
pe

ra
bi

lit
y

R
ec

ov
er

y

M
at

ur
ity

Fa
ul

t T
ol

.

Functionality Efficiency Usability Reliability

ICEIS 2007 - International Conference on Enterprise Information Systems

562

Iberoamericanas de Ingeniería del Software e
Ingeniería del Conocimiento.

Griman, A., Valdosera, L., Mendoza, L., Pérez, M.,
Méndez, E., 2005. Issues for Evaluating Reliability in
Software Architecture. In 8th Americas Conference on
Information Systems.

Griman, A.; Chávez, L.; Pérez, M.; Mendoza, L.;
Dominguez, K. 2006. Towards a Maintainability
Evaluation in Software Architectures. In 8th
International Conference on Enterprise Information
Systems - ICEIS . Vol. 1: 555 - 558.

ISO/IEC, 2002. Software Engineering – Software quality
– General overview, reference models and guide to
Software Product Quality Requirements and
Evaluation (SQuaRE). Reporte. JTC1/SC7/WG6.

Lee, K. and Lee, S. 2006. A quantitative evaluation model
using the ISO/IEC 9126 quality model in the
component based development process. Lecture Notes
in Computer Science: 917-926.

Losavio, F., Levy, N., 2002. Putting ISO standards into
practice for Architecture evaluation with the Unified
Process. Journal of Object Technology, Vol. 2, Nº 2.

Mavromoustakos, S. and Andreou, A. 2007. WAQE: A
Web Application Quality Evaluation model. In
International Journal of Web Engineering and
Technology, 3 (1): 96-120.

Ortega, M, Pérez, M., Rojas, T., 2003. Construction of a
Systemic Quality Model for evaluating a Software
Product. Software Quality Journal. Kluwer Academic
Publishers, 11 (3): 219-242.

A METRICS PROPOSAL TO EVALUATE SOFTWARE INTERNAL QUALITY WITH SCENARIOS

563

