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Abstract:  Optimizing the performance of OLAP queries in relational data warehouses (DW) has always been a major 
research issue. There are various techniques that can be used to achieve its goals, such as data partitioning, 
indexing, data aggregation, data sampling, redefinition of database (DB) schemas, among others. In this 
paper we present a simple and easy to implement method which links partitioning and indexing based on 
the features present in predefined major decision making queries to efficiently optimize a data warehouse’s 
performance. The evaluation of this method is also presented using the TPC-H benchmark, comparing it 
with standard partitioning and indexing techniques, demonstrating its efficiency with single and multiple 
simultaneous user scenarios. 

1 INTRODUCTION 

Performance optimization in data warehousing 
(DWH) is always an important research issue. There 
are various techniques which can be used for OLAP 
performance optimization of relational databases 
such as, among others: 1) Partitioning (Bellatreche, 
2000), which reduces the data to scan for each 
OLAP query; 2) Materialized Views (Agrawal, 
2000), (Baralis, 1997) (Gupta, 1999), which store 
summarized data and pre-calculated attributes, also 
aiming to reduce the data to be scanned and 
reducing time consumption for calculating aggregate 
functions; 3) Indexing (Chaudhuri, 1997) (Chee-
Yong, 1999) (Gupta, 1997), which speeds up 
processes such as accessing and filtering data; 4) 
Data Sampling (Furtado, 2002), giving approximate 
answers to queries based on representative samples 
of subsets of data instead of having to scan the entire 
data; 5) Redefinition of DB schemas (Vassiliadis, 
1999) (Bizarro, 2002), trying to improve data 
distribution and/or access by seeking efficient table 
balancing; 6) Hardware optimization, such as 
memory and CPU upgrading, distributing data 
through several physical drives, etc.  
In our opinion, sampling should not be preferred, for 
it has an implicit statistical error margin attached 
and almost never supplies an accurate answer 

according to whole original data. Using materialized 
views is often considered as a good technique, but it 
has a big disadvantage. Since they consist on 
aggregating the data to a certain level, they have 
limited generic usage and each materialized view is 
usually built for speeding up one or two queries 
instead of the whole set of usual decision or ad-hoc 
queries. Furthermore, they may take up much 
physical space and increase DB maintenance efforts. 
Hardware improvements for optimization issues is 
not part of the scope of this paper, neither is 
changing the data structures in the DW’s schema(s). 
Although much work has been done with these 
techniques separately, few have focused on their 
combination (Bellatreche, 2004) (Bellatreche, 2002). 
The author in (Sanjay, 2004) states that decision 
making OLAP queries which are executed 
periodically at regular intervals is by far the most 
used form of obtaining decision making information. 
This implies that this type of information is based 
almost always on the same regular SQL instructions.  

In this work we present an efficient alternative 
method for a partitioning and indexing schema 
aiming to optimize the DW’s global performance. 
This method is based on analyzing the existing 
features within the SQL OLAP queries which are 
assumed as the DW’s main decision making queries. 
The rest of this paper is organized as follows. In 
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section 2, we refer issues and existing solutions 
related to relational DW performance optimization 
using partitioning and/or indexing. In section 3 we 
present our optimization method. In section 4 we 
illustrate an experimental evaluation of our method 
using the TPC-H benchmark, and the final section 
contains concluding remarks and future work. 

2 RELATED WORK 

DWH technology uses the relational data schema for 
modeling the data in a warehouse. The data can be 
modeled either using the star schema or the 
snowflake schema. In this context, OLAP queries 
require extensive join operations between fact and 
dimension tables (Bellatreche, 2004). Several 
optimization techniques have been proposed to 
improve query performance, such as materialized 
views (Agrawal, 2000) (Baralis, 1997) (Bellatreche, 
2000B) (Gupta, 1999), advanced indexing 
techniques using bitmapped indexes, join and 
projection indexes (Agrawal, 2000) (Chaudhuri, 
1997) (Chee-Yong, 1999) (Gupta, 1997) (O’Neil, 
1997), and data partitioning (Bellatreche, 2000) 
(Bellatreche, 2002) (Kalnis, 2001) (Sanjay, 2004), 
among others. 

The authors in (Agrawal, 2000) automatically 
choose an appropriate set of materialized views and 
consequent indexes from the workload experienced 
by the system. This solution is integrated within the 
Microsoft SQL Server 2000 DBMS’s tuning wizard. 
In (Gupta, 1999) a maintenance-cost based selection 
is presented for selecting which materialized views 
should be built. In (Chaudhuri, 1997) (Chee-Yong, 
1999) (Gupta, 1997) authors illustrate features on 
which types of indexing should be performed based 
on system workload, attribute cardinality and other 
data characteristics. The work in (Bellatreche, 2005) 
presents a genetic algorithm for schema 
fragmentation selection, focused on how to fragment 
the fact table based on the dimension table’s 
partitioning schemas. Fragmenting the DW as a way 
of speeding up multi-way joins and reducing query 
execution cost is another possible optimization 
method, as shown in (Bellatreche, 2000). In (Sanjay, 
2004) the authors propose novel techniques for 
designing a scalable solution as how to adequately 
incorporate partitioning with DB design. In 
(Bellatreche, 2004) the authors obtain tuning 
parameters for better use of data partitioning, join 
indexes and materialized views to optimize the cost 
in a systematic usage form. 

As stated previously, we discard materialized 
views because of their poor general application for a 
considerably large set of major queries, hence the 
number of necessary materialized views is 
proportional to the number of different queries. 
Furthermore, the significant amount of space they 
might take up in the DB is also a negative aspect, 
along with increase of maintenance costs. Therefore, 
we focus our work on two major performance 
techniques for an alternative optimization schema: 
partitioning and indexing. Considering that the most 
efficient techniques rely on those which minimize 
the amount of data to be scanned for producing each 
major query’s response, our method proposes how 
to implement an efficient partitioning schema and 
consequent best practice indexing based on the 
features presented in that set of the DW’s major 
queries. Our method also minimizes DB 
maintenance effort by defining an efficient number 
of partitions per table, for an excessive amount of 
partitions may result in poor performance 
(Bellatreche, 2005). 

3 PIN OPTIMIZATION METHOD 

In order to guarantee data validation and integrity, 
we advise maintaining the DB schema’s primary 
keys and referential integrity constraints. Our PIN 
(Partitioning and INdexing) method aims for 
determining the best fragmentation attribute for each 
table and how many fragments should be defined, 
according to an overall ratio that combines all the 
major OLAP query restriction predicates and 
execution time, as well as all attribute’s cardinality. 
This will accelerate OLAP queries having restriction 
predicates on that attribute. 

3.1 Defining the Partitioning Attributes 

The first type of performance measurement we need 
for our method is to evaluate the percentage for the 
total number of records in each table in relation to 
the total number of records which exist in the DW, 
which will be used as a ratio for our method. 
Consider cTk as the number of existing records 
within table Tk and ΣcTk as the total number of 
existing records within the DW. The percentage of 
records for Tk in the DW (ratio RPITk) is given by: 

 cTk 
ΣcTk 

Another type of performance measure to 
consider for our method is the impact of each 

RPITk  =
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isolated query execution time in the total time 
needed for executing a workload with all of the 
major queries. Consider tQi as the average execution 
time for each main DW query Qi, and ΣtQj as the 
average execution time of the workload with all the 
selected major queries. To obtain the percentage of 
time corresponding to the execution of query Qi 
compared with the time spent in the execution of all 
queries, representing another ratio for our method, 
we can calculate the total time percentage impact for 
each query (ratio TIPQi) by:  

tQi 
ΣtQj 

We also need to know the impact given by the 
number of records to be scanned related to each 
attribute filtered values defined in the WHERE 
clause of each OLAP query instruction. For 
example, suppose a common sales table with a 
record data structure (Sale_ID, Sale_Customer_ID, 
Sale_Date, Sale_Amount) and an OLAP query in 
which we needed to filter the sales records only with 
attribute Sale_Date between [1-1-2006; 31-1-2006] 
in order to produce the query’s answer. If the sales 
table has a total of 100.000 records and there are 
1.000 records which comply with the filtered 
Sale_Date desired values, then the percentage of 
interesting records within the sales table would be 
equal to 1.000 / 100.000 = 0,01 in this particular 
OLAP query. Consider an attribute Aj belonging to a 
table Tk existing in the WHERE clause of a query Qi 
defining an interval of absolute values [Ia; Ib] for 
including records in that query’s processing. 
Consider cTk as the total number of records of Tk and 
fcTk as the number of records in Tk where the 
recorded values of Aj match the interval [Ia; Ib]. The 
percentage of non-interesting records in Tk given the 
Aj values filter which would not need to be scanned 
for query Qi (NIPQiTkAj) is given by: 

cTk - fcTk 
    cTk 

For our method, we calculate an attribute interest 
ratio for each attribute Aj of table Tk in each query Qi 
(AIRQiTkAj) present in the WHERE clause of those 
queries, given by: 

   AIRQiTkAj = RPITk x TIPQi x NIPQiTkAj 
This calculus combines the impact produced by 

data filtering due to the existing features of the 
attributes present in the WHERE clause of all major 
queries with the impact due to the execution time of 
each query, resulting in an overall ratio for each 
referred attribute. Our intention with this is to 
present a balanced evaluation of the importance of 

each attribute in the set of major OLAP queries and 
its real individual impact in those queries’ 
performance. 

After these ratios are calculated, we summarize 
the values grouping them per individual attribute. 
Thus, the final ratio for each attribute Aj (FRAj) is the 
sum of all calculated ratios for AIRQiTkAj: 

FRAj = ΣAIRQiTkAj 

Then, we consider the attribute Aj of table Tk 
with the highest value of FRAj as the attribute that 
will be used for partitioning that table: 

Partitioning attribute (PAj) for Tk is Aj with 
max(FRAj) 

If a table Tk does not have any of its attributes 
involved as a restriction predicate in the whole set of 
OLAP major queries, or if Tk is insignificantly small 
in size (holding less than 0,1% of the database’s 
total number of records), then Tk will not be 
partitioned. 

3.2 Defining the Partitioning Schema 

We shall now explain how the partitioning schema 
is implemented, based on the features of the 
previously defined fragmentation attributes. Data 
partitioning of databases can be divided into two 
major types: horizontal and vertical. Horizontal 
partitioning allows data sets such as tables, indexes 
and materialized views to be partitioned into disjoint 
sets of rows that are stored and accessed separately. 
On the other hand, vertical partitioning allows a 
table to be partitioned into disjoint sets of columns. 
In our method, we implement horizontal 
partitioning, for it is usually the most efficient form 
of DW partitioning (Bellatreche, 2005). Several 
work and commercial systems show its utility and 
impact in optimizing OLAP queries (Bellatreche, 
2000) (Bellatreche, 2004) (Kalnis, 2001) (Sanjay, 
2004), but few have formalized the problem of 
selecting a horizontal partitioning schema which 
would speed up a set of queries, except for the 
proposed in (Bellatreche, 2005). 

There are several types of horizontal 
partitioning: (1) Range partitioning, where the rows 
are grouped according to defined intervals of the 
partitioning attributes’ values; (2) List partitioning, 
where each partition fragment contains rows that are 
grouped according to a defined set of absolute 
values for the partitioning attributes; (3) Hash 
partitioning, in which rows are grouped into bundles 
where each  has approximately the same number of 
records, that are accessed through a generated hash 

NIPQiTkAj  = 

TIPQi  = 
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key when they are needed; (4) Mixed partitioning, 
which combines more than one of the previous 
techniques. 

Our method proposes to set the fragmentation 
schema on range and list partitioning, depending 
each table on its partitioning attribute’s cardinality 
as a restriction predicate in the set of OLAP queries. 
The existence of up to 100 partitions has been 
proven efficient for most general cases (Bellatreche, 
2000). Therefore, we define the following 
partitioning rule: If the cardinality of the 
partitioning attribute is relatively high (more than 
100 different atomic values exist in the table for that 
attribute) range partitioning is applied, otherwise 
list partitioning is used. After defining the type of 
partition for each table according to their partition 
attribute’s cardinality, we determine the values to 
use for range or list partitioning, attending the 
following rules: 

a) If list partitioning is to be used in accordance 
with the first rule we mentioned, the data will 
be partitioned creating one fragment per 
each partitioning attribute’s value; 

b) If range partitioning is to be used, a 
definition of a set of intervals that will define 
each fragment must be determined. Consider 
a partitioning attribute PAj for a table Tk, 
where min(PAj) is the minimum atomic value 
for PAj within Tk and max(Aj) as the same 
attribute’s maximum atomic value in the 
same table. Secondly, the major OLAP 
queries should be analyzed, isolating the 
instructions holding PAj in their WHERE 
clause. For this subset of queries, hold the 
smallest defined interval of values for PAj in 
their WHERE clause, within all those queries. 
The cardinality of this interval and of interval 
[min(PAj); max(PAj)] gives us the measure 
that defines how many fragments will result 
for the partitioning of Tk, according to the 
following algorithm: 
NFTk =      # [min(PAj); max(PAj)]      A 
      # [min(PAjQValue); max(PAjQValue)] 
While NFTk > 100 Do 
   NFTk = NFTk div 2 
EndDo 

where NFTk is the number of fragments to be 
implemented in Tk, # [min(PAj); max(PAj)] is 
the cardinality of that interval, and # 
[min(PAjQValue); max(PAjQValue)] the 
cardinality of the smallest defined major 
OLAP query filtering interval in the WHERE 
clause using Sales_Date for the whole 
workload of major OLAP queries. After this, 

the partitioning schema for Tk would be 
defined by creating NFTk partitioned 
fragments, with range values defined as 
[min(PAj); min(PAj) + # [min(PAjQValue); 
max(PAjQValue)] ] for the first fragment and 
incrementing the following range values by # 
[min(PAjQValue); max(PAjQValue)]. 

To clearly explain the fragmentation schema’s 
definition, let us illustrate an example. Consider a 
sales table similar to the one referred in section 3.1, 
assuming that the partitioning attribute is 
Sales_Date, min(Sales_Date) is 1-1-2006 and 
max(Sales_Date) is 31-12-2006. The cardinality of 
this attribute is 365, the number of possible different 
atomic values in [1-1-2006; 31-12-2006]. According 
to our method and since this cardinality is greater 
than 100, the table will be range partitioned. 
Supposing that in the set of major OLAP queries 
there were four of them which used this attribute in 
their WHERE clause: the first requiring rows with 
Sales_Date between 01-01-2006 and 31-03-2006; 
two queries asking for rows with Sales_Date 
between 01-01-2006 and 31-12-2006; and a fourth 
query asking for rows with Sales_Date between 01-
10-2006 and 31-12-2006. The smallest defined 
major OLAP query filtering interval using 
Sales_Date would be the one in the first or last 
query, corresponding to an interval of 90 days 
(equals a cardinality of 90). Therefore, the number 
of fragments for that sales table would be 365/90 = 
4. The table would be fragmented starting from 
min(Sales_Date) and incrementing it with as many 
days as those defined in the smallest defined major 
OLAP query, resulting in the following partitioned 
fragments: (1) Partition 1, all rows with Sales_Date 
values between 1-1-2006 and 31-3-2006; (2) 
Partition 2, all rows with Sales_Date between 1-4-
2006 and 30-06-2006; (3) Partition 3, all rows with 
Sales_Date between 1-7-2006 and 30-9-2006; and 
(4) Partition 4 containing all rows with Sales_Date 
between 1-1-2006 and 31-12-2006. 

Limiting the amount of partitions to a maximum 
of 100 prevents exaggerated data fragmentation, 
therefore avoiding degradation of performance due 
to excessive partitioning. Furthermore, exaggerated 
partitioning will cause extensive table 
fragmentation, which implies managing hundreds or 
even thousands of sub star schemas instead of 
managing just one, making the DW Administrator’s 
maintenance task extremely hard. According to our 
tests, up to 100 partitions will not produce negative 
impact in the database’s performance. As referred in 
(Bellatreche, 2005), all partitioning methods should 
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ensure two main objectives in what concerns 
defining the number of partitioned fragments: (1) 
avoid an explosion of the number of fragments for a 
single table; and (2) ensure a good performance of 
OLAP queries. 

3.3 Defining the Indexing Schema 

As we mentioned earlier, we advise maintaining all 
primary keys and referential integrity constraints. It 
is recommended to build a bitmap index on an 
attribute when that attribute has a low cardinality of 
values; if not, a B*Tree index should be preferred 
(Agrawal, 2000) (Chee-Yong, 1999) (Gupta, 1997). 
Therefore, additionally to primary keys and 
referential integrity constraints, our method uses the 
following simple unique rule for defining which 
other indexes should be created: An index should be 
created for every attribute existing in any WHERE 
clause of any major OLAP query. This index is to be 
a B*Tree index if the cardinality of that attribute is 
higher than 25% of the total number of rows in the 
table to which it belongs, Bitmap index otherwise. 

This indexing schema works with the 
partitioning schema in the overall query processes 
by optimizing the data filters defined by the 
attributes present in the major OLAP query WHERE 
clauses while the partitioning reduces the amount of 
scanned data. 

4 EXPERIMENTAL 
EVALUATION OF PIN 

We used TPC-H benchmark [TPC] generator 
(DBGen) for building the experimental DW in 
ORACLE DBMS 10g with four different scale size 
scenarios (1GB, 2GB, 4GB and 8GB) on a Celeron 
1.4GHz CPU with 512MB PC-133 DDRAM and a 
80GB 7200rpm hard drive. All 22 TPC-H queries 
were used and considered as the major decision 
making queries for applying our optimization 
method. We tested the query results execution with 
1, 2, 4 and 8 simultaneous users, which ran each 
query in random order in a workload composed by 
TPC-H Queries 3, 4, 5, 6, 7, 10, 12 and 14. These 
queries represent a wide variety of OLAP 
instructions involving important operations such as 
grouping, aggregations, joins, mathematical 
functions, among others. We chose to consider their 
execution against several scale sizes of its DB with 
the purpose of widening the scope of features for 
testing our method. 

4.1 Partitioning the Data Warehouse 

We shall illustrate how we obtained the partitioning 
schema for the 1GB TPC-H DW and not include the 
schemas of the remaining 2GB, 4GB and 8GB, due 
to space constraints in this paper. The remaining 
schemas were obtained in a similar form. The 
explained processes for the smaller DW should be 
enough for understanding how work was done. 

Table 1 presents the final overall ratio (FRQiTkAj) 
for each attribute. According to our method, the 
attribute with the highest FRQiTkAj value for each 
table is the chosen partitioning attribute. This means 
that for table Customer, the partitioning attribute is 
C_MktSegment; LineItem will be partitioned by 
L_ShipDate; Orders by O_OrderDate; table Part by 
P_Brand; and Supplier by S_Comment. Since table 
PartSupp does not have any attribute present as a 
predicate restriction in the set of OLAP queries, it 
shall not be partitioned. Nation and Region will not 
be partitioned because of their insignificant size. 

To determine how many partitions will be 
created for each table and their range values, we 
need to analyze their cardinality and range of values 
as restriction predicates in the OLAP queries. This 
analysis is presented in Table 2. Since partitioning 
attributes C_MktSegment and P_Part have a small 
cardinality (<100), tables Customer and Part will be 
list partitioned, with 1 fragment per each attribute’s 
atomic value. For table Supplier, since S_Comment 
is only used once as a restriction predicate (in Query 
16) with a unique range value 
(‘%Customer%Complaints%’), we can apply list 
partitioning to this table defining one fragment for 
this restriction value and another for all the rest. 

Table 3 presents the resulting partitioning 
schema. 
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Table 1: FRAj ratios for 1GB TPC-H data warehouse. 

Attribute (Aj) Table (Tk) FRAj   (ΣAIRQiTkAj) 
C_MktSegment Customer 0,0004 
C_Phone Customer 0,0000 
L_ShipDate LineItem 0,0740 
L_ShipMode LineItem 0,0438 
L_ShipInstruct LineItem 0,0384 
L_Quantity LineItem 0,0284 
L_ReturnFlag LineItem 0,0142 
L_ReceiptDate LineItem 0,0125 
L_Discount LineItem 0,0106 
O_OrderDate Orders 0,0738 
O_OrderStatus Orders 0,0213 
O_Comment Orders 0,0000 
P_Brand Part 0,0020 
P_Container Part 0,0017 
P_Size Part 0,0014 
P_Name Part 0,0009 
P_Type Part 0,0008 
S_Comment Supplier 0,0000 

Table 2: Partitioning attributes cardinality and range 
values. 

Partitioning 
Attribute (PAj) 

Cardinality of 
PAj in Tk (#) 

Range Values of  
PAj in Tk 

C_MktSegment 5 
‘AUTOMOBILE’, 

FURNITURE’, ’MACHINERY’, 
’HOUSEHOLD’, ’BUILDING’ 

L_ShipDate 2526 02-01-1992…01-12-1998 
O_OrderDate 2406 01-01-1992…02-08-1998 

P_Brand 25 ‘Brand#11’…‘Brand#55’ 
S_Comment 9999 ‘Customer%’…‘water%’ 

Table 3: Partitioning schema for 1GB TPC-H using PIN. 

Table (Tk) Partitions 

Customer 

Create partition by List on C_MktSegment ( 
   Partition 1 with values 'BUILDING', 
   Partition 2 with values 'AUTOMOBILE', 
   Partition 3 with values 'FURNITURE', 
   Partition 4 with values 'MACHINERY', 
   Partition 5 with values 'HOUSEHOLD') 

LineItem 

Create partition by Range on L_ShipDate ( 
   Partition 1 with values between [01-01-92; 31-01-92], 
   Partition 2 with values between [01-02-92; 28-02-92],  
   … 
   Partition 84 with values between [01-12-98; 31-12-98]) 

Orders 

Create partition by Range on L_ShipDate ( 
   Partition 1 with values between [01-01-92; 31-03-92], 
   Partition 2 with values between [01-04-92; 30-06-92],  
   … 
    Partition 27 with values between [01-07-98; 30-09-98]) 

Part 

Create partition by List on P_Brand ( 
   Partition 1 with values 'Brand#11', 
   Partition 2 with values 'Brand#12',  
   … 
   Partition 25 with values 'Brand#55') 

Supplier 
Create partition by List on S_Comment ( 
   Partition 1 with values '%Customer%Complaints%', 
   Partition 2 with all other values) 

4.2 Indexing the Data Warehouse 

As stated previously, primary keys and referential 
integrity constraints will be maintained, so we will 
only refer to other indexing for our method. This 
means that all attributes used as restriction 
predicates in the OLAP queries will be indexed 
according to the rule defined in section 3.3 of this 
paper. The resulting indexing schema is presented in 
Table 4. 

Table 4: Indexing schema for TPC-H using PIN. 

Attribute (Aj) Table (Tk) Index Type 
C_MktSegment Customer Bitmap 
C_Phone Customer B*Tree 
L_ShipDate, L_ShipMode, 
L_ShipInstruct, L_Quantity, 
L_ReturnFlag, L_ReceiptDate, 
L_Discount 

LineItem Bitmap 

O_OrderDate, O_OrderStatus Orders Bitmap 
O_Comment Orders B*Tree 
P_Brand, P_Container, P_Size, _Type Part Bitmap 
P_Name Part B*Tree 
S_Comment Supplier B*Tree 

4.3 Results 

To analyze the performance of our method, we have 
conducted four series of experiments for each setup: 
(1) implemented without optimization techniques, 
just maintaining its standard primary keys and 
integrity constraints; (2) optimized using standard 
indexing techniques, such as join indexes; (3) 
optimized only by standard partitioning techniques 
using our fragmentation rules; and (4) with full 
optimization using our method with partitioning and 
indexing. Figures 1 and 2 present the results relating 
the execution of the workload for size 1GB and 8GB 
data warehouses, while Figure 3 presents the results 
according to predefined scenarios on 8 simultaneous 
users executing the workload. 

For performance optimization of the fourth series 
of experiments (our method), we executed many 
performance optimization tests that included bitmap 
join indexes, which usually improve OLAP query 
performance (Bellatreche, 2004), and in this case it 
did not improve. Contrarily, performance degraded. 
We observed that, for our method, only the 
restriction predicates should be indexed. This 
enforces the validity for our rule defining the 
indexing schema, only building indexes for all the 
attributes that appear in the OLAP queries WHERE 
clause after adequately partitioning the tables 
according to our method. 

Figures 1 to 3 and Tables 5 and 6 show that PIN 
has best scalability features and is the most efficient 
technique, outstanding the others in every execution, 
both relating to DW size and number of 
simultaneous users. Analyzing average gains from a 
DB size point of view, the gain for standard 
indexing is around 25%, while for standard 
partitioning the results show an average gain of 
48%. PIN has an average gain of 55%. In 
simultaneous users execution, PIN’s advantage is 
also evident, with an average gain of 56% against 
49% for standard partitioning and 25% for standard 
indexing. It also increases the gain compared with 
other methods as the DB grows in size and/or 
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number of simultaneous users increases, showing a 
better performance in heavy usage. 
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Figure 1: Workload execution time for 1GB TPC-H. 
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Figure 2: Workload execution time for 8GB TPC-H. 
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Figure 3: Workload execution for 8 simultaneous users. 

Table 5: Performance gain comparison between 
techniques in several size TPC-H data warehouses. 

1 GB 2 GB 4 GB 8 GB Methods Min Max Min Max Min Max Min Max
Standard Index 19% 36% 20% 23% 16% 22% 17% 28%
Standard Partit. 48% 64% 46% 63% 28% 60% 32% 56%

PIN 56% 72% 48% 68% 30% 67% 45% 57%

Table 6: Performance gain comparison between 
techniques with workload execution by simultaneous 
users. 

1 User 2 Users 4 Users 8 Users Methods Min Max Min Max Min Max Min Max
Standard Index 19% 26% 20% 36% 22% 30% 16% 28%
Standard Partit. 28% 56% 51% 64% 44% 62% 32% 57%

PIN 30% 57% 57% 72% 55% 69% 45% 68%

5 CONCLUSIONS AND FUTURE 
WORK 

We present an efficient simple and easy to 
implement alternative method for optimizing the 
performance of data warehouse OLAP queries by 
combining partitioning and indexing techniques 
based on the existing features of a set of predefined 
major SQL data warehouse queries. It also 
introduces simple modifications in the database’s 
data structures, minimizing the taken up space and 
maintenance costs of the data warehouse, in contrast 
with other complex partitioning/indexing methods. 
The experiments illustrate its efficiency in time 
execution and simultaneous user querying, showing 
that it overcomes isolated partitioning and indexing 
techniques. As future work, we intend to implement 
this method in real live data warehouses and 
measure its impact on real world system’s 
performance. 
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