
PIN: A PARTITIONING & INDEXING OPTIMIZATION
METHOD FOR OLAP

Ricardo Jorge Santos (1) and Jorge Bernardino (1, 2)
(1) CISUC – Centre of Informatics and Systems of the University of Coimbra - University of Coimbra

(2) ISEC – Superior Engineering Institute of Coimbra – Polytechnic Institute of Coimbra

Keywords: Optimizing, partitioning, indexing, data warehouse.

Abstract: Optimizing the performance of OLAP queries in relational data warehouses (DW) has always been a major
research issue. There are various techniques that can be used to achieve its goals, such as data partitioning,
indexing, data aggregation, data sampling, redefinition of database (DB) schemas, among others. In this
paper we present a simple and easy to implement method which links partitioning and indexing based on
the features present in predefined major decision making queries to efficiently optimize a data warehouse’s
performance. The evaluation of this method is also presented using the TPC-H benchmark, comparing it
with standard partitioning and indexing techniques, demonstrating its efficiency with single and multiple
simultaneous user scenarios.

1 INTRODUCTION

Performance optimization in data warehousing
(DWH) is always an important research issue. There
are various techniques which can be used for OLAP
performance optimization of relational databases
such as, among others: 1) Partitioning (Bellatreche,
2000), which reduces the data to scan for each
OLAP query; 2) Materialized Views (Agrawal,
2000), (Baralis, 1997) (Gupta, 1999), which store
summarized data and pre-calculated attributes, also
aiming to reduce the data to be scanned and
reducing time consumption for calculating aggregate
functions; 3) Indexing (Chaudhuri, 1997) (Chee-
Yong, 1999) (Gupta, 1997), which speeds up
processes such as accessing and filtering data; 4)
Data Sampling (Furtado, 2002), giving approximate
answers to queries based on representative samples
of subsets of data instead of having to scan the entire
data; 5) Redefinition of DB schemas (Vassiliadis,
1999) (Bizarro, 2002), trying to improve data
distribution and/or access by seeking efficient table
balancing; 6) Hardware optimization, such as
memory and CPU upgrading, distributing data
through several physical drives, etc.
In our opinion, sampling should not be preferred, for
it has an implicit statistical error margin attached
and almost never supplies an accurate answer

according to whole original data. Using materialized
views is often considered as a good technique, but it
has a big disadvantage. Since they consist on
aggregating the data to a certain level, they have
limited generic usage and each materialized view is
usually built for speeding up one or two queries
instead of the whole set of usual decision or ad-hoc
queries. Furthermore, they may take up much
physical space and increase DB maintenance efforts.
Hardware improvements for optimization issues is
not part of the scope of this paper, neither is
changing the data structures in the DW’s schema(s).
Although much work has been done with these
techniques separately, few have focused on their
combination (Bellatreche, 2004) (Bellatreche, 2002).
The author in (Sanjay, 2004) states that decision
making OLAP queries which are executed
periodically at regular intervals is by far the most
used form of obtaining decision making information.
This implies that this type of information is based
almost always on the same regular SQL instructions.

In this work we present an efficient alternative
method for a partitioning and indexing schema
aiming to optimize the DW’s global performance.
This method is based on analyzing the existing
features within the SQL OLAP queries which are
assumed as the DW’s main decision making queries.
The rest of this paper is organized as follows. In

170
Jorge Santos R. and Bernardino J. (2007).
PIN: A PARTITIONING & INDEXING OPTIMIZATION METHOD FOR OLAP.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 170-177
DOI: 10.5220/0002398301700177
Copyright c© SciTePress

section 2, we refer issues and existing solutions
related to relational DW performance optimization
using partitioning and/or indexing. In section 3 we
present our optimization method. In section 4 we
illustrate an experimental evaluation of our method
using the TPC-H benchmark, and the final section
contains concluding remarks and future work.

2 RELATED WORK

DWH technology uses the relational data schema for
modeling the data in a warehouse. The data can be
modeled either using the star schema or the
snowflake schema. In this context, OLAP queries
require extensive join operations between fact and
dimension tables (Bellatreche, 2004). Several
optimization techniques have been proposed to
improve query performance, such as materialized
views (Agrawal, 2000) (Baralis, 1997) (Bellatreche,
2000B) (Gupta, 1999), advanced indexing
techniques using bitmapped indexes, join and
projection indexes (Agrawal, 2000) (Chaudhuri,
1997) (Chee-Yong, 1999) (Gupta, 1997) (O’Neil,
1997), and data partitioning (Bellatreche, 2000)
(Bellatreche, 2002) (Kalnis, 2001) (Sanjay, 2004),
among others.

The authors in (Agrawal, 2000) automatically
choose an appropriate set of materialized views and
consequent indexes from the workload experienced
by the system. This solution is integrated within the
Microsoft SQL Server 2000 DBMS’s tuning wizard.
In (Gupta, 1999) a maintenance-cost based selection
is presented for selecting which materialized views
should be built. In (Chaudhuri, 1997) (Chee-Yong,
1999) (Gupta, 1997) authors illustrate features on
which types of indexing should be performed based
on system workload, attribute cardinality and other
data characteristics. The work in (Bellatreche, 2005)
presents a genetic algorithm for schema
fragmentation selection, focused on how to fragment
the fact table based on the dimension table’s
partitioning schemas. Fragmenting the DW as a way
of speeding up multi-way joins and reducing query
execution cost is another possible optimization
method, as shown in (Bellatreche, 2000). In (Sanjay,
2004) the authors propose novel techniques for
designing a scalable solution as how to adequately
incorporate partitioning with DB design. In
(Bellatreche, 2004) the authors obtain tuning
parameters for better use of data partitioning, join
indexes and materialized views to optimize the cost
in a systematic usage form.

As stated previously, we discard materialized
views because of their poor general application for a
considerably large set of major queries, hence the
number of necessary materialized views is
proportional to the number of different queries.
Furthermore, the significant amount of space they
might take up in the DB is also a negative aspect,
along with increase of maintenance costs. Therefore,
we focus our work on two major performance
techniques for an alternative optimization schema:
partitioning and indexing. Considering that the most
efficient techniques rely on those which minimize
the amount of data to be scanned for producing each
major query’s response, our method proposes how
to implement an efficient partitioning schema and
consequent best practice indexing based on the
features presented in that set of the DW’s major
queries. Our method also minimizes DB
maintenance effort by defining an efficient number
of partitions per table, for an excessive amount of
partitions may result in poor performance
(Bellatreche, 2005).

3 PIN OPTIMIZATION METHOD

In order to guarantee data validation and integrity,
we advise maintaining the DB schema’s primary
keys and referential integrity constraints. Our PIN
(Partitioning and INdexing) method aims for
determining the best fragmentation attribute for each
table and how many fragments should be defined,
according to an overall ratio that combines all the
major OLAP query restriction predicates and
execution time, as well as all attribute’s cardinality.
This will accelerate OLAP queries having restriction
predicates on that attribute.

3.1 Defining the Partitioning Attributes

The first type of performance measurement we need
for our method is to evaluate the percentage for the
total number of records in each table in relation to
the total number of records which exist in the DW,
which will be used as a ratio for our method.
Consider cTk as the number of existing records
within table Tk and ΣcTk as the total number of
existing records within the DW. The percentage of
records for Tk in the DW (ratio RPITk) is given by:

 cTk
ΣcTk

Another type of performance measure to
consider for our method is the impact of each

RPITk =

PIN: A PARTITIONING & INDEXING OPTIMIZATION METHOD FOR OLAP

171

isolated query execution time in the total time
needed for executing a workload with all of the
major queries. Consider tQi as the average execution
time for each main DW query Qi, and ΣtQj as the
average execution time of the workload with all the
selected major queries. To obtain the percentage of
time corresponding to the execution of query Qi
compared with the time spent in the execution of all
queries, representing another ratio for our method,
we can calculate the total time percentage impact for
each query (ratio TIPQi) by:

tQi
ΣtQj

We also need to know the impact given by the
number of records to be scanned related to each
attribute filtered values defined in the WHERE
clause of each OLAP query instruction. For
example, suppose a common sales table with a
record data structure (Sale_ID, Sale_Customer_ID,
Sale_Date, Sale_Amount) and an OLAP query in
which we needed to filter the sales records only with
attribute Sale_Date between [1-1-2006; 31-1-2006]
in order to produce the query’s answer. If the sales
table has a total of 100.000 records and there are
1.000 records which comply with the filtered
Sale_Date desired values, then the percentage of
interesting records within the sales table would be
equal to 1.000 / 100.000 = 0,01 in this particular
OLAP query. Consider an attribute Aj belonging to a
table Tk existing in the WHERE clause of a query Qi
defining an interval of absolute values [Ia; Ib] for
including records in that query’s processing.
Consider cTk as the total number of records of Tk and
fcTk as the number of records in Tk where the
recorded values of Aj match the interval [Ia; Ib]. The
percentage of non-interesting records in Tk given the
Aj values filter which would not need to be scanned
for query Qi (NIPQiTkAj) is given by:

cTk - fcTk
 cTk

For our method, we calculate an attribute interest
ratio for each attribute Aj of table Tk in each query Qi
(AIRQiTkAj) present in the WHERE clause of those
queries, given by:

 AIRQiTkAj = RPITk x TIPQi x NIPQiTkAj
This calculus combines the impact produced by

data filtering due to the existing features of the
attributes present in the WHERE clause of all major
queries with the impact due to the execution time of
each query, resulting in an overall ratio for each
referred attribute. Our intention with this is to
present a balanced evaluation of the importance of

each attribute in the set of major OLAP queries and
its real individual impact in those queries’
performance.

After these ratios are calculated, we summarize
the values grouping them per individual attribute.
Thus, the final ratio for each attribute Aj (FRAj) is the
sum of all calculated ratios for AIRQiTkAj:

FRAj = ΣAIRQiTkAj

Then, we consider the attribute Aj of table Tk
with the highest value of FRAj as the attribute that
will be used for partitioning that table:

Partitioning attribute (PAj) for Tk is Aj with
max(FRAj)

If a table Tk does not have any of its attributes
involved as a restriction predicate in the whole set of
OLAP major queries, or if Tk is insignificantly small
in size (holding less than 0,1% of the database’s
total number of records), then Tk will not be
partitioned.

3.2 Defining the Partitioning Schema

We shall now explain how the partitioning schema
is implemented, based on the features of the
previously defined fragmentation attributes. Data
partitioning of databases can be divided into two
major types: horizontal and vertical. Horizontal
partitioning allows data sets such as tables, indexes
and materialized views to be partitioned into disjoint
sets of rows that are stored and accessed separately.
On the other hand, vertical partitioning allows a
table to be partitioned into disjoint sets of columns.
In our method, we implement horizontal
partitioning, for it is usually the most efficient form
of DW partitioning (Bellatreche, 2005). Several
work and commercial systems show its utility and
impact in optimizing OLAP queries (Bellatreche,
2000) (Bellatreche, 2004) (Kalnis, 2001) (Sanjay,
2004), but few have formalized the problem of
selecting a horizontal partitioning schema which
would speed up a set of queries, except for the
proposed in (Bellatreche, 2005).

There are several types of horizontal
partitioning: (1) Range partitioning, where the rows
are grouped according to defined intervals of the
partitioning attributes’ values; (2) List partitioning,
where each partition fragment contains rows that are
grouped according to a defined set of absolute
values for the partitioning attributes; (3) Hash
partitioning, in which rows are grouped into bundles
where each has approximately the same number of
records, that are accessed through a generated hash

NIPQiTkAj =

TIPQi =

ICEIS 2007 - International Conference on Enterprise Information Systems

172

key when they are needed; (4) Mixed partitioning,
which combines more than one of the previous
techniques.

Our method proposes to set the fragmentation
schema on range and list partitioning, depending
each table on its partitioning attribute’s cardinality
as a restriction predicate in the set of OLAP queries.
The existence of up to 100 partitions has been
proven efficient for most general cases (Bellatreche,
2000). Therefore, we define the following
partitioning rule: If the cardinality of the
partitioning attribute is relatively high (more than
100 different atomic values exist in the table for that
attribute) range partitioning is applied, otherwise
list partitioning is used. After defining the type of
partition for each table according to their partition
attribute’s cardinality, we determine the values to
use for range or list partitioning, attending the
following rules:

a) If list partitioning is to be used in accordance
with the first rule we mentioned, the data will
be partitioned creating one fragment per
each partitioning attribute’s value;

b) If range partitioning is to be used, a
definition of a set of intervals that will define
each fragment must be determined. Consider
a partitioning attribute PAj for a table Tk,
where min(PAj) is the minimum atomic value
for PAj within Tk and max(Aj) as the same
attribute’s maximum atomic value in the
same table. Secondly, the major OLAP
queries should be analyzed, isolating the
instructions holding PAj in their WHERE
clause. For this subset of queries, hold the
smallest defined interval of values for PAj in
their WHERE clause, within all those queries.
The cardinality of this interval and of interval
[min(PAj); max(PAj)] gives us the measure
that defines how many fragments will result
for the partitioning of Tk, according to the
following algorithm:
NFTk = # [min(PAj); max(PAj)] A
 # [min(PAjQValue); max(PAjQValue)]
While NFTk > 100 Do
 NFTk = NFTk div 2
EndDo

where NFTk is the number of fragments to be
implemented in Tk, # [min(PAj); max(PAj)] is
the cardinality of that interval, and #
[min(PAjQValue); max(PAjQValue)] the
cardinality of the smallest defined major
OLAP query filtering interval in the WHERE
clause using Sales_Date for the whole
workload of major OLAP queries. After this,

the partitioning schema for Tk would be
defined by creating NFTk partitioned
fragments, with range values defined as
[min(PAj); min(PAj) + # [min(PAjQValue);
max(PAjQValue)]] for the first fragment and
incrementing the following range values by #
[min(PAjQValue); max(PAjQValue)].

To clearly explain the fragmentation schema’s
definition, let us illustrate an example. Consider a
sales table similar to the one referred in section 3.1,
assuming that the partitioning attribute is
Sales_Date, min(Sales_Date) is 1-1-2006 and
max(Sales_Date) is 31-12-2006. The cardinality of
this attribute is 365, the number of possible different
atomic values in [1-1-2006; 31-12-2006]. According
to our method and since this cardinality is greater
than 100, the table will be range partitioned.
Supposing that in the set of major OLAP queries
there were four of them which used this attribute in
their WHERE clause: the first requiring rows with
Sales_Date between 01-01-2006 and 31-03-2006;
two queries asking for rows with Sales_Date
between 01-01-2006 and 31-12-2006; and a fourth
query asking for rows with Sales_Date between 01-
10-2006 and 31-12-2006. The smallest defined
major OLAP query filtering interval using
Sales_Date would be the one in the first or last
query, corresponding to an interval of 90 days
(equals a cardinality of 90). Therefore, the number
of fragments for that sales table would be 365/90 =
4. The table would be fragmented starting from
min(Sales_Date) and incrementing it with as many
days as those defined in the smallest defined major
OLAP query, resulting in the following partitioned
fragments: (1) Partition 1, all rows with Sales_Date
values between 1-1-2006 and 31-3-2006; (2)
Partition 2, all rows with Sales_Date between 1-4-
2006 and 30-06-2006; (3) Partition 3, all rows with
Sales_Date between 1-7-2006 and 30-9-2006; and
(4) Partition 4 containing all rows with Sales_Date
between 1-1-2006 and 31-12-2006.

Limiting the amount of partitions to a maximum
of 100 prevents exaggerated data fragmentation,
therefore avoiding degradation of performance due
to excessive partitioning. Furthermore, exaggerated
partitioning will cause extensive table
fragmentation, which implies managing hundreds or
even thousands of sub star schemas instead of
managing just one, making the DW Administrator’s
maintenance task extremely hard. According to our
tests, up to 100 partitions will not produce negative
impact in the database’s performance. As referred in
(Bellatreche, 2005), all partitioning methods should

PIN: A PARTITIONING & INDEXING OPTIMIZATION METHOD FOR OLAP

173

ensure two main objectives in what concerns
defining the number of partitioned fragments: (1)
avoid an explosion of the number of fragments for a
single table; and (2) ensure a good performance of
OLAP queries.

3.3 Defining the Indexing Schema

As we mentioned earlier, we advise maintaining all
primary keys and referential integrity constraints. It
is recommended to build a bitmap index on an
attribute when that attribute has a low cardinality of
values; if not, a B*Tree index should be preferred
(Agrawal, 2000) (Chee-Yong, 1999) (Gupta, 1997).
Therefore, additionally to primary keys and
referential integrity constraints, our method uses the
following simple unique rule for defining which
other indexes should be created: An index should be
created for every attribute existing in any WHERE
clause of any major OLAP query. This index is to be
a B*Tree index if the cardinality of that attribute is
higher than 25% of the total number of rows in the
table to which it belongs, Bitmap index otherwise.

This indexing schema works with the
partitioning schema in the overall query processes
by optimizing the data filters defined by the
attributes present in the major OLAP query WHERE
clauses while the partitioning reduces the amount of
scanned data.

4 EXPERIMENTAL
EVALUATION OF PIN

We used TPC-H benchmark [TPC] generator
(DBGen) for building the experimental DW in
ORACLE DBMS 10g with four different scale size
scenarios (1GB, 2GB, 4GB and 8GB) on a Celeron
1.4GHz CPU with 512MB PC-133 DDRAM and a
80GB 7200rpm hard drive. All 22 TPC-H queries
were used and considered as the major decision
making queries for applying our optimization
method. We tested the query results execution with
1, 2, 4 and 8 simultaneous users, which ran each
query in random order in a workload composed by
TPC-H Queries 3, 4, 5, 6, 7, 10, 12 and 14. These
queries represent a wide variety of OLAP
instructions involving important operations such as
grouping, aggregations, joins, mathematical
functions, among others. We chose to consider their
execution against several scale sizes of its DB with
the purpose of widening the scope of features for
testing our method.

4.1 Partitioning the Data Warehouse

We shall illustrate how we obtained the partitioning
schema for the 1GB TPC-H DW and not include the
schemas of the remaining 2GB, 4GB and 8GB, due
to space constraints in this paper. The remaining
schemas were obtained in a similar form. The
explained processes for the smaller DW should be
enough for understanding how work was done.

Table 1 presents the final overall ratio (FRQiTkAj)
for each attribute. According to our method, the
attribute with the highest FRQiTkAj value for each
table is the chosen partitioning attribute. This means
that for table Customer, the partitioning attribute is
C_MktSegment; LineItem will be partitioned by
L_ShipDate; Orders by O_OrderDate; table Part by
P_Brand; and Supplier by S_Comment. Since table
PartSupp does not have any attribute present as a
predicate restriction in the set of OLAP queries, it
shall not be partitioned. Nation and Region will not
be partitioned because of their insignificant size.

To determine how many partitions will be
created for each table and their range values, we
need to analyze their cardinality and range of values
as restriction predicates in the OLAP queries. This
analysis is presented in Table 2. Since partitioning
attributes C_MktSegment and P_Part have a small
cardinality (<100), tables Customer and Part will be
list partitioned, with 1 fragment per each attribute’s
atomic value. For table Supplier, since S_Comment
is only used once as a restriction predicate (in Query
16) with a unique range value
(‘%Customer%Complaints%’), we can apply list
partitioning to this table defining one fragment for
this restriction value and another for all the rest.

Table 3 presents the resulting partitioning
schema.

ICEIS 2007 - International Conference on Enterprise Information Systems

174

Table 1: FRAj ratios for 1GB TPC-H data warehouse.

Attribute (Aj) Table (Tk) FRAj (ΣAIRQiTkAj)
C_MktSegment Customer 0,0004
C_Phone Customer 0,0000
L_ShipDate LineItem 0,0740
L_ShipMode LineItem 0,0438
L_ShipInstruct LineItem 0,0384
L_Quantity LineItem 0,0284
L_ReturnFlag LineItem 0,0142
L_ReceiptDate LineItem 0,0125
L_Discount LineItem 0,0106
O_OrderDate Orders 0,0738
O_OrderStatus Orders 0,0213
O_Comment Orders 0,0000
P_Brand Part 0,0020
P_Container Part 0,0017
P_Size Part 0,0014
P_Name Part 0,0009
P_Type Part 0,0008
S_Comment Supplier 0,0000

Table 2: Partitioning attributes cardinality and range
values.

Partitioning
Attribute (PAj)

Cardinality of
PAj in Tk (#)

Range Values of
PAj in Tk

C_MktSegment 5
‘AUTOMOBILE’,

FURNITURE’, ’MACHINERY’,
’HOUSEHOLD’, ’BUILDING’

L_ShipDate 2526 02-01-1992…01-12-1998
O_OrderDate 2406 01-01-1992…02-08-1998

P_Brand 25 ‘Brand#11’…‘Brand#55’
S_Comment 9999 ‘Customer%’…‘water%’

Table 3: Partitioning schema for 1GB TPC-H using PIN.

Table (Tk) Partitions

Customer

Create partition by List on C_MktSegment (
 Partition 1 with values 'BUILDING',
 Partition 2 with values 'AUTOMOBILE',
 Partition 3 with values 'FURNITURE',
 Partition 4 with values 'MACHINERY',
 Partition 5 with values 'HOUSEHOLD')

LineItem

Create partition by Range on L_ShipDate (
 Partition 1 with values between [01-01-92; 31-01-92],
 Partition 2 with values between [01-02-92; 28-02-92],
 …
 Partition 84 with values between [01-12-98; 31-12-98])

Orders

Create partition by Range on L_ShipDate (
 Partition 1 with values between [01-01-92; 31-03-92],
 Partition 2 with values between [01-04-92; 30-06-92],
 …
 Partition 27 with values between [01-07-98; 30-09-98])

Part

Create partition by List on P_Brand (
 Partition 1 with values 'Brand#11',
 Partition 2 with values 'Brand#12',
 …
 Partition 25 with values 'Brand#55')

Supplier
Create partition by List on S_Comment (
 Partition 1 with values '%Customer%Complaints%',
 Partition 2 with all other values)

4.2 Indexing the Data Warehouse

As stated previously, primary keys and referential
integrity constraints will be maintained, so we will
only refer to other indexing for our method. This
means that all attributes used as restriction
predicates in the OLAP queries will be indexed
according to the rule defined in section 3.3 of this
paper. The resulting indexing schema is presented in
Table 4.

Table 4: Indexing schema for TPC-H using PIN.

Attribute (Aj) Table (Tk) Index Type
C_MktSegment Customer Bitmap
C_Phone Customer B*Tree
L_ShipDate, L_ShipMode,
L_ShipInstruct, L_Quantity,
L_ReturnFlag, L_ReceiptDate,
L_Discount

LineItem Bitmap

O_OrderDate, O_OrderStatus Orders Bitmap
O_Comment Orders B*Tree
P_Brand, P_Container, P_Size, _Type Part Bitmap
P_Name Part B*Tree
S_Comment Supplier B*Tree

4.3 Results

To analyze the performance of our method, we have
conducted four series of experiments for each setup:
(1) implemented without optimization techniques,
just maintaining its standard primary keys and
integrity constraints; (2) optimized using standard
indexing techniques, such as join indexes; (3)
optimized only by standard partitioning techniques
using our fragmentation rules; and (4) with full
optimization using our method with partitioning and
indexing. Figures 1 and 2 present the results relating
the execution of the workload for size 1GB and 8GB
data warehouses, while Figure 3 presents the results
according to predefined scenarios on 8 simultaneous
users executing the workload.

For performance optimization of the fourth series
of experiments (our method), we executed many
performance optimization tests that included bitmap
join indexes, which usually improve OLAP query
performance (Bellatreche, 2004), and in this case it
did not improve. Contrarily, performance degraded.
We observed that, for our method, only the
restriction predicates should be indexed. This
enforces the validity for our rule defining the
indexing schema, only building indexes for all the
attributes that appear in the OLAP queries WHERE
clause after adequately partitioning the tables
according to our method.

Figures 1 to 3 and Tables 5 and 6 show that PIN
has best scalability features and is the most efficient
technique, outstanding the others in every execution,
both relating to DW size and number of
simultaneous users. Analyzing average gains from a
DB size point of view, the gain for standard
indexing is around 25%, while for standard
partitioning the results show an average gain of
48%. PIN has an average gain of 55%. In
simultaneous users execution, PIN’s advantage is
also evident, with an average gain of 56% against
49% for standard partitioning and 25% for standard
indexing. It also increases the gain compared with
other methods as the DB grows in size and/or

PIN: A PARTITIONING & INDEXING OPTIMIZATION METHOD FOR OLAP

175

number of simultaneous users increases, showing a
better performance in heavy usage.

0

700

1400

2100

2800

3500

Simultaneous Users

Ti
m

e
(s

ec
on

d

Standard Schema 326 845 1538 3029

Standard Indexing 264 543 1077 2191

Standard Partitioning 158 306 708 1588

Using our PIN Method 143 237 481 973

1 User 2 Users 4 Users 8 Users

Figure 1: Workload execution time for 1GB TPC-H.

0

8000

16000

24000

32000

40000

Simultaneous Users

Ti
m

e
(S

ec
on

d

Standard Schema 3350 7966 17443 37524

Standard Indexing 2463 5725 13621 31038

Standard Partitioning 1458 3670 9854 25653

Using our PIN Method 1427 3386 7918 20745

1 User 2 Users 4 Users 8 Users

Figure 2: Workload execution time for 8GB TPC-H.

0

4000

8000

12000

16000

20000

24000

28000

32000

36000

40000

1GB 2GB 4GB 8GB

Ti
m

e
(S

ec
on

ds

Figure 3: Workload execution for 8 simultaneous users.

Table 5: Performance gain comparison between
techniques in several size TPC-H data warehouses.

1 GB 2 GB 4 GB 8 GB Methods Min Max Min Max Min Max Min Max
Standard Index 19% 36% 20% 23% 16% 22% 17% 28%
Standard Partit. 48% 64% 46% 63% 28% 60% 32% 56%

PIN 56% 72% 48% 68% 30% 67% 45% 57%

Table 6: Performance gain comparison between
techniques with workload execution by simultaneous
users.

1 User 2 Users 4 Users 8 Users Methods Min Max Min Max Min Max Min Max
Standard Index 19% 26% 20% 36% 22% 30% 16% 28%
Standard Partit. 28% 56% 51% 64% 44% 62% 32% 57%

PIN 30% 57% 57% 72% 55% 69% 45% 68%

5 CONCLUSIONS AND FUTURE
WORK

We present an efficient simple and easy to
implement alternative method for optimizing the
performance of data warehouse OLAP queries by
combining partitioning and indexing techniques
based on the existing features of a set of predefined
major SQL data warehouse queries. It also
introduces simple modifications in the database’s
data structures, minimizing the taken up space and
maintenance costs of the data warehouse, in contrast
with other complex partitioning/indexing methods.
The experiments illustrate its efficiency in time
execution and simultaneous user querying, showing
that it overcomes isolated partitioning and indexing
techniques. As future work, we intend to implement
this method in real live data warehouses and
measure its impact on real world system’s
performance.

REFERENCES

Agrawal, S., Chaudhuri, S., Narasayya, V., 2000.
Automated selection of materialized views and
indexes in SQL databases, 26th Int. Conf. on Very
Large Data Bases (VLDB).

Baralis, E., Paraboschi, S., Teniente, E., 1997.
Materialized view selection in a multidimensional
database, 23rd Int. Conference on Very Large Data
Bases (VLDB).

Bellatreche, L., Boukhalfa, K., 2005. An Evolutionary
Approach to Schema Partitioning Selection in a Data
Warehouse Environment, Int. Conf. on Data
Warehousing and Knowledge Discovery (DAWAK).

Bellatreche, L., Karlapalem, K., Schneider, M., Mohania,
M., 2000. What can partitioning do for your data

ICEIS 2007 - International Conference on Enterprise Information Systems

176

warehouses and data marts, Int. Database Engineering
and Applications Symposium (IDEAS).

Bellatreche, L., Karlapalem, K., Li, Q., 2000B. Evaluation
of indexing materialized views in data warehousing
environments, Int. Conference on Data Warehousing
and Knowledge Discovery (DAWAK).

Bellatreche, L., Schneider, M., Lorinquer, H., Mohania,
M., 2004. Bringing Together Partitioning,
Materialized Views and Indexes to Optimize
Performance of Relational Data Warehouses, Int.
Conference on. Data Warehousing and Knowledge
Discovery (DAWAK).

Bellatreche, L., Schneider, M., Mohania, M., Bhargava,
B., 2002. PartJoin: an efficient storage and query
execution design strategy for data warehousing, Int.
Conf. on Data W. and Knowledge Discovery
(DAWAK).

Bizarro, P., Madeira, H., 2002. Adding a Performance-
Oriented Perspective to Data Warehouse Design,
International Conference on Data Warehousing and
Knowledge Discovery (DAWAK).

Chaudhuri, S., Narasayya, V., 1997. An efficient cost-
driven index selection tool for Microsoft SQL Server,
23rd Int. Conf. on Very Large Data Bases (VLDB).

Chee-Yong, C., 1999. Indexing techniques in Decision
Support Systems, PhD Thesis, University of
Wisconsin, Madison.

Furtado, P., Costa, J. P., 2002. Time-Interval Sampling for
Improved Estimations in Data Warehouses, Int. Conf.
on Data W. and Knowledge Discovery (DAWAK).

Gupta, H., et al., 1997. Index selection for OLAP, Intern.
Conference on Data Engineering (ICDE).

Gupta, H., Mumick, I. S., 1999. Selection of views to
materialize under a maintenance cost constraint, 8th
Int. Conf. Database Theory (ICDT).

Kalnis, P., Papadias, D., 2001. Proxy-server architecture
for OLAP, ACM SIGMOD Int. Conf. on Management
of Data (ICMD).

O’Neil, P., Quass, D., 1997. Improved query performance
with variant indexes, ACM SIGMOD International
Conf. on Management of Data (ICMD).

Sanjay, A., Narasayya, V. R., Yang, B., 2004. Integrating
vertical and horizontal partitioning into automated
physical database design, ACM SIGMOD Int. Conf. on
Management of Data (ICMD).

Transaction Processing Council, TPC Benchmark H,
www.tpc.org

Vassiliadis, P., Sellis, T., 1999. A Survey of Logical
Models for OLAP Databases, ACM SIGMOD Int.
Conf. on Management of Data (ICMD).

PIN: A PARTITIONING & INDEXING OPTIMIZATION METHOD FOR OLAP

177

