
SPECIFICATION OF A TOOL FOR MONITORING AND
MANAGING A WEB SERVICES ARCHITECTURE

Youcef Baghdadi
Department of Computer Science, Sultan Qaboos University, Po Box 36 – PC 123, Al-Khoud, Oman

Keywords: Middleware, Web Services Architecture, Monitoring and Management Tool, Tool Architecture, Tool
Specification.

Abstract: Enterprises willing to realize the service-oriented architecture with Web services, to gain advantages of an
Internet and standard-based IT infrastructure, need to monitor and manage the deployed Web services
architecture for an effective use, namely for flexible composition of business processes. The paper presents
architecture and a specification of a tool for Web services monitoring and management. It mainly specifies
the components of the architecture that are: (1) an information system that represents the properties of Web
services architecture with different perspectives, namely their description, transport protocols, discovery,
deployment platform, and the business processes composed out of them, and (2) the required monitoring
and management artefacts built on top of the Web services architecture information system.

1 INTRODUCTION

Web services, principled by the service-oriented
computing (SOC) paradigm to support low-cost
composition of distributed applications (Huhns and
Singh 2005; Papazoglou and Georgakopoulos,
2003), constitute a middleware that realizes an
Internet and standard-based service-oriented
architecture (SOA), which provides a methodology
and a technology platform to re-architect the IT
infrastructure. In fact, Web services: (i) have a
machine-readable standard format (XML) of their
specifications, and (ii) communicate through
messaging protocols built on top of the Internet
protocols (Curbera et al., 2003; Kreger, 2003).

Therefore, the Web services architecture,
intended to be the main IT infrastructure, becomes
an important asset of the enterprise. Accordingly, it
needs to be monitored and managed for an effective
realization and use, namely for composing flexible
business processes.

The monitoring and management of a Web
services architecture is an extension of the enterprise
application management (Alonso et al. 2003). It
enables a control over:

 The performance of each Web services with
respect to an efficient use

 The performance of the platform, i.e. the server
(Web server or application server), the Web

services server, the Web services container,
and the SOAP engine with respect to their
workloads

 The performance of the internal and crossing
business processes as well

This makes the Web services monitoring and
management a complex task, especially when the
number and types of Web services deployed grow
without any control over them. Such a complexity
requires tools that automate and support the
monitoring and management efforts (Alonso et al.,
2003; Casati et al., 2003; Papazoglou and van den
Heuvel, 2005).

This paper presents architecture and a
specification of a tool (with UML) for Web services
monitoring and management. It mainly specifies two
main components that are: (1) an information system
representing the Web services architecture. It
consists of three subsystems that represent the Web
services, the platform, i.e. the servers, the container
and the SOAP engine, and the business processes,
and (2) a set of artefacts (subsystems built on top of
the aforementioned information systems) to monitor
and manage the Web services architecture, including
Web services manager, business processes manager,
servers manager, container manager, and SOAP
engine.

The architecture of tool is meant to be flexible
and scalable. Accordingly, it is made up of a set of
cohesive UML packages. Each package contains the

51
Baghdadi Y. (2007).
SPECIFICATION OF A TOOL FOR MONITORING AND MANAGING A WEB SERVICES ARCHITECTURE.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - SAIC, pages 51-56
DOI: 10.5220/0002408500510056
Copyright c© SciTePress

related elements of the aforementioned components
of the Web services architecture. These are:

1. The Web services architecture information
systems package that contains a set of class
diagrams modelling the information related to
the running Web services, the platform and
the business processes.

2. The monitoring and management interface
package contains the management use cases
and the collaborations realizing them. The
classes that participate in the collaborations
are provided by the class diagrams of the Web
services architecture information systems
package.

3. The Web services interface package contains
the modelling of the performance parameters
of the Web services as running applications
(within the Web services container), including
their dependencies with each other and with
other legacy systems such as databases and
legacy applications.

2 WS ARCHITECTURE

There are many definitions given to Web service.
Generally, Web services are software components
provided by organizations, located on the Web, and
accessible from any Web-connected application
using a set of standard messaging protocols.

A definition close to this work considers a Web
service as “a software application identified by a
URI, whose interfaces and binding are capable of
being defined, described, and discovered as XML
artefacts. A Web service supports direct interactions
with other software agents using XML-based
messages exchanged via Internet-based protocols.”
(Austin et al., 2002).

In this work, Web services are considered as a
new form of middleware based on industry standards
such as XML, which is used as data format of the
messages exchanged between the service and its
clients. This middleware is implemented with a set
of technology as shown in Figure 1, including
SOAP, WSDL, and UDDI..

Service Registry

Service Consumer Service Provider

Publish (WSDL)

Bind (SOAP/HTTP)

Find (UDDI)

Figure 1: Web services architecture.

These XML-based technologies describe
respectively the transport of the exchanged

messages, the description, and the discovery of the
service. Application can interpret a SOAP message
using XML processing tools

2.1 Web Services Transport

The transport functional components define the data
format, the protocol used to package the data into
messages, and the protocol used to transfer the
message.

SOAP which is based on Internet protocols is
used to exchange XML messages communicating
content: request, response, fault message and invoke
operations offered by the services, where the SOAP
data format is in XML, the encoding of data may be
RPC-style or document-style, and the transfer may
be any of the protocols such as HTTP, HTTPS,
SMTP, POP3, IMAP, JMS, or other protocols.

2.2 Web Services Discovery

The discovery functional components provide a
mechanism to register and find services. Web
services architecture is implemented using UDDI,
which is a mechanism for registering and finding
services on the Web. A UDDI manages information
about service providers and service types.

2.3 Web Services Description

The description of a Web service should be specified
with a language that is readable by machine
(Curbera, al., 2003). It concerns with: (a) the
functional and non-functional requirements of the
Web service, i.e. what functionality a Web service
provides, (b) the communication style, i.e. how it
communicates, and (c) its locations on the Web, i.e.
where to find it. Accordingly, a description language
such as WSDL expresses three distinct parts as
shown in Table 1: (1) the abstract part expresses the
functionality, (2) the concrete binding part expresses
the communication, and (3) the implementation part
expresses the location of the service. These three
parts are related to each other by inclusion
relationships.

2.3.1 Abstract Part

The abstract part expresses the interface of the
service. It is structured as follows:

 Each Web service has one service interface
(abstract part)

 Each service interface has one or more port
types

ICEIS 2007 - International Conference on Enterprise Information Systems

52

 Each port type contains one or more abstract
operations. An operation is a specification of
the logic implemented by the service. The port
type is equivalent to a component interface.

 An operation is a sequence of messages. An
operation references a set of messages

 Messages are defined independently of the
operations, so they can be used by other
operations. A message may be: an input
message that conveys the request content,
output message that conveys the response
content, or fault message that conveys errors
exceptions. A message consists of a list of
parameters (called parts), where a parameter is
of a certain data type (e.g. String)

2.3.2 Concrete Binding

The concrete binding in a WSDL expresses the
communication aspect and style, namely:

 The binding of the abstract part (or interface) to
a concrete set of protocols

 The message structure: RPC-style or document-
style

 The XML encoding data: encoding style or
XML schema

 The protocol used to construct the envelop
 The header blocks to be included
 The transfer protocol: HTTP, FTP, or SMTP
The concrete part includes the abstract part

2.3.3 Implementation Part

The implementation part expresses the location of
the Web services, namely:

 A collection of one or more related ports
 Each port implements a specific concrete

binding of an abstract interface
 The port specifies the access point of service

endpoint
A business may offer multiple access points to a

particular service, each implementing a different
binding.

The implementation part includes or imports the
associated concrete binding.

2.4 Web Services Implementation

Web services are deployed within a Web services
server, i.e. the run-time server. A Web service server
can run standalone, a Web server, or within an
application server provided by an environment such
as J2EE or .NET.

A Web services server consists of a Web service
container that manages the life cycle of the

application implementing the services, and a SOAP
processor that processes the exchanged messages.

The Web services container is responsible for:
 Managing the lifecycle of the application

implementing the service
 Generating the WSDL which will be registered

in the UDDI, where the client applications can
find it and generate a client proxy. At run
time, the client uses the proxy to construct and
send SOAP message to the Web services

The SOAP processor is responsible for:
 Processing of incoming message
 Converting from XML into native PL data

types
 Routing the request to the application that

implements the service

Table 1: The three parts of Web service description and
their relationships.

Part Aspect Content Relation
Abstract
Interface

What
functionality

<types>
<message>
<portType>
<operation>

//

Concrete
Binding

How to
communicat

e
<binding>

Includes
Abstract
Interface

Implement
ation

Where is it
located <service>

<port>
Includes
Concrete
Binding

3 WS MANAGEMENT

The monitoring and management of a Web services
architecture is an extension of the enterprise
application management (Alonso et al. 2003). It
enables a control over:

 The performance of each Web services with
respect to an efficient use

 The performance of the platform, i.e. the server
(Web server or application server), the Web
services server, the Web services container,
and the SOAP engine

 The configurability and the workloads of all the
servers

 The performance of the internal and crossing
business processes as well

This functionality of monitoring and
management requires an information system
representing:
1. The deployed Web services, including the

three parts of their description
2. The platform, including the configuration and

the workload of the Web services server, the
Web services container, and the SOAP engine

SPECIFICATION OF A TOOL FOR MONITORING AND MANAGING A WEB SERVICES ARCHITECTURE

53

3. The applications and business processes using
the Web services

Therefore, a monitoring and management tool
should consider different perspectives to come up
with a unified management vision.

The management perspectives discussed here
extend the business perspective, application
perspective, and infrastructure perspective defined
by Casati et al. in (Casati et al., 2003) to: (a) the
deployed Web services, including the three parts of
their description, (b) the platform, including the Web
services server, the Web services container, and the
SOAP engine, and (c) the applications and business
process using the Web services. This extension
comes up with the following elements that are
categorized into: (C1) an information system
representing the Web services architecture, and (C2)
a set of artefacts (subsystems built on top of the
different information systems) to monitor and
manage the Web services architecture, where the
built-in subsystems use the information provided by
the information system.

The Web services architecture information
system is made up of the following information
subsystems:
1. The Web services information system that

represents the information related to the
deployed Web services, their dependencies
with each other and with legacy systems such
as databases and legacy applications

2. The platform information system, including
information about the workloads and the
configuration of the Web/Application server,
the Web services server, the Web services
container, and the SOAP engine

3. The business processes information system,
including their respective flow and their
composition in terms of Web services

The set of artefacts used for monitoring and
managing the Web services architecture .are
subsystems built on top of the previous information
systems. These are:
1. A Web services management subsystem. It

expresses the performance parameters of the
Web services as running applications within
the Web services container, including their
dependencies with each other and with other
legacy systems such as databases and legacy
applications.

2. Four platform monitoring and management
subsystems that express the performance
parameters, the workloads and the
configuration of (1) the Web services server,
(2) the Web services container, (3) the SOAP
engine, and (4) the business processes. It is

worth noting that the four subsystems are
depending on each other because the Web
services container and the SOAP engine are
depending on the Web services server, and the
Web services server depends, in its turn, on the
Web/Application server though it may be a
standalone server. That is, the performances of
the Web services and the business processes
are depending not only on the performance of
the Web services themselves, but also on the
underlying platform.

4 TOOL SPECIFICATION

This section specifies the tool in terms of use cases
specifying the monitoring and management
functionality, the collaborations realizing them, and
the class diagrams that participate to these
collaborations. The use case and the collaborations
model the built-in subsystems, whereas the class
diagrams model the different information systems
representing the Web services architecture. These
use cases, collaborations and class diagrams are
packaged into a Web services interface package, a
management interface package, and a Web services
architecture information system package.

4.1 Architecture Specification

The architecture of the tool is sketched out with
UML in Figure 2, where:

1. The Web services architecture information
systems package expresses the information
systems related to the running Web services,
the platform, and the business processes.
Therefore, it contains three packages, where
the business processes IS package depends on
the Web services architecture IS package,
which, in its turn, depends on the platform IS
package.

2. The Web services interface package expresses
the performance parameters of the Web
services as running applications within the
Web services container, including their
dependencies with each other and with other
legacy systems such as databases and legacy
applications. This interface depends on the
Web services architecture IS packages.

3. The management interface package expresses
the management use cases and the
collaborations realizing them. It contains four
other packages that are: (i) the Web services
server interface package dedicated to the
management of the Web services server, (ii)

ICEIS 2007 - International Conference on Enterprise Information Systems

54

the Web services container interface package
dedicated to the Web services container, (iii)
the SOAP engine package dedicated to the
management of the SOAP engine, and (iv) the
business processes interface package
dedicated to the composition and management
of the business processes composed out of the
deployed Web services. The four packages are
depending on each other. The Web services
container and the SOAP engine are depending
on the Web services server, which, in its turn,
depends on the Web/Application server.

Platform IS

Management Interface (MI)

Server
Interface (SI)

Web services server
Interface (WSSI)

Web services container
Interface (WSCI)

SOAP engine
Interface (SEI)

Web services architecure Information System

Web services
architecture IS

Business
Processes IS

Web services
Interface (WSI)

Figure 2: Architecture of the WS management tool.

4.2 WS Architecture IS

The information system representing the Web
service architecture is specified with UML as shown
in Figure 3. The Web services architecture
information system represents the different
perspectives, namely: (i) the deployed Web services,
including the three parts of their description, (ii) the
platform, including the Web services server, the
Web services container, and the SOAP engine, and
(iii) the applications and business process using the
Web services.

4.3 Built-in Managers

The built-in subsystems (artefacts) are used to
monitor and manage: (i) the deployed Web services,
(ii) the business processes, the server; (iii) the
Web/Application server, (iv) the Web services
server, (v) the Web services container, and (vi) the
SOAP engine. These managers ensure that the Web
services architecture is flexible and configurable to
make up for any change in the Web services, their
platform workloads and configuration, and the
business processes composed out of them.

4.3.1 Web Services Manager

The Web services manager handles information
about the performance and the quality of services of
the deployed Web services themselves (as running
applications).

The required parameters may be categorized into
configuration, workload, quality assurance, and
statistics. The quality assurance parameters include
the quality of services, security, dependability, cost,
billing, and maintenance. The statistics are related to
performance such resources consuming (e.g. CPU
time, communication time, memory); and the use of
the Web services such as the number of clients using
the service by unit of time, the number of running
copies of the service and so on.

4.3.2 Business Processes Manager

The business processes manager handles information
such as: type of BP (internal, crossing), flow and the
composition out of the Web services, flexibility,
dependency, performance, and number of
occurrences.

4.3.3 Web/Application Server Manager

The Web/Application server manager handles
information about: performance of the server,
number of services running simultaneously, load
balancing, and workload.

4.3.4 Web Services Server

The Web services server manager handles
information about: performance of the server,
number of services running simultaneously, load
balancing, and workload.

4.3.5 Web Services Container Manager

The Web services container manager handles
information such as: performance, service life cycle,
and number of generated WSDL.

4.3.6 SOAP Engine Manager

The SOAP engine manager handles information
such as: performance, number of messages
communicated, and number of proxies generated.

5 RELATED WORK

Although the Web services architecture is a critical
asset for any enterprise re architecting its IT

SPECIFICATION OF A TOOL FOR MONITORING AND MANAGING A WEB SERVICES ARCHITECTURE

55

Figure 3: Class diagrams for the Web services architecture information system.

infrastructure with SOA, only few work concern
with their management. The authors in (Alonso et al.
2003), in their synthesis work on Web services,
consider the management a critical issue; but they
only set the principles for the monitoring and
management. In their work on the extended SOA,
Papazoglou al. in (Papazoglou and Georgakopoulos,
2003; Papazoglou and van der Heuvel, 2005) have
added a layer to SOA dealing with management
perspectives. The authors in (Casati et al., 2003)
have categorized the perspectives of Web services
management into business, applications, and
infrastructure perspectives.

The approach presented here is an extension of
the aforementioned work. IT mainly aims at
specifying the management tool including its
architecture with well-known modelling language
that is UML.

6 CONCLUSION

This work has specified a tool for Web services
architecture monitoring and management. The
specification has taken into account different
perspectives of the Web services architecture. It is
expressed with UML in order to be readily and
promptly implemented.

The architecture of the tool mainly consists of
three packages, where each package contains other
related packages, having in mind the design
decisions such as cohesion and coupling to make the
tool flexible and scalable.

The information system representing the Web
services architecture has been specified in term of
class diagrams modelling al the properties.

This tool is readily extensible to capture an
exhaustive list of monitoring and management
properties.

REFERENCES

Alonso, G., Casati, F., Kuno, H. and Machiraju, V., 2003.
Web services: Concepts, Architecture and
Applications, Springer.

Austin, D., Barbir, A., Ferris and Garg, S., 2002. Web
Services architecture requirements. In W3C Working
Group Draft 14.

Casati, F. Shan, E., Dayal U. and Shan M., 2003.
Business-oriented management of Web services.
Communications of the ACM, Vol. 46, No. 10, pp. 55-
60.

Curbera, F., Khalaf, R., Mukhi, N., Tai, S. and
Weerawarana S., 2003. The Next step in Web
Services. Communications of the ACM, Vol. 46, No.
10, pp. 29-34.

Huhns M. N. and Singh, M. P., 2005. Service-oriented
computing: Key concepts and principles. IEEE
Internet Computing (January-February), pp. 75-81.

Kreger H., 2003. Fulfilling the Web services Promise.
Communication of the ACM. Vol. 46, No. 6, pp. 29-34.

Papazoglou M. P. and van den Heuvel W. J., 2005. Web
service management: A survey. IEEE Internet
computing Nov-Dec, pp. 58-64.

Papazoglou, M. P. and Georgakopoulos, D., 2003.
Service-Oriented Computing. Communications of the
ACM Vol. 46, No. 10, pp. 25-28.

Abstract Part

Port Type

name

Implementation Part

Service

name

Port

name
URI

1..*

Part

name

Type

data type

Standalone Web server Application server

WS Container

manage lifecycle()

Web services server

generate wsdl()

Running server

Operation

name

Message

name

input

output

fault

Binding

name
XML encoding
protocol
message struct
header block

Binding Part

SOAP engine

process message()
generate proxy()
convert()
route()

Legacy

Database

Application

implements

runs inside

1..*

Proxy

WSDL

UDDI

register()
find()

Client

Web service

name
language

Business Process

ICEIS 2007 - International Conference on Enterprise Information Systems

56

