Checking Properties of Business Process Modelswith
L ogic Programming

\olker Gruhn and Ralf Laue

Chair of Applied Telematics / e-Businéss
Computer Science Faculty, University of Leipzig, Germany

Abstract. Logic programming has been successfully used for reasoning about
various kinds of models. However, in the area of business-process modeling it
has not yet gained the attention it deserves. In this article, we give some exam-
ples how logical programming can be exploited for verifying or finding proper-
ties of graphical models that are used by business process modelers, for example
event driven process chains (EPC)[1], UML activity diagrams[2], BPMN[3] or
YAWL[4].

We show how the approach works on different properties of business process
models, including semantic (structural) correctness and modeling style.

1 Introduction

Business process modelers can chose from various languages like event driven pro-
cess chains (EPC)[1], UML activity diagrams[2], BPMNI[3] or YAWL[4] for drawing a
model of a business process (BPM).

Often, such BPMs need to be exchanged between different organizations as well as
between different editors, workflow engines or process simulators. For the most BPM
languages, exchange formats based on the markup language XML are defined. When an
XML file that contains a BPM is imported into a tool, input validation should be done in
order to make sure that the XML file really contains a syntactically correct BPM. Often,
the structural requirements are much more difficult to test than the syntactic restrictions
that can be verified using schema languages like the W3X XML Schema. Examples for
such more complex syntactic requirements will be shown in Sect. 2.

In this paper, we show how logic programming with languages like PROLOG can
be used for the validation of syntactic requirements that cannot be validated with XML
Schema.

Furthermore, we also show how PROLOG can be used for reasoning about more
complex properties of a BPM, for example for finding patterns in a model or for check-
ing cross-model consistency.

2 TheBPM Language EPC and its Exchange Format EPM L

In order to keep the examples simple, we will use the notation of EPCs in this paper.
EPCs consist of functions (activities which need to be executed, depicted as rounded

* The Chair of Applied Telematics / e-Business is endowed by Deutsche Telekom AG

Gruhn V. and Laue R. (2007).

Checking Properties of Business Process Models with Logic Programming.

In Proceedings of the 5th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 84-93
DOI: 10.5220/0002413100840093

Copyright © SciTePress

85

customer
order
arrived

check

availability

article is
not available

article is

available
send
article

order
processed

Fig. 1. Simple Business Process modeled as EPC.

reject

boxes), events (pre- and postconditions before / after etifumis executed, depicted
as hexagons) and connectors (which can split or join the flioeontrol between the
elements). Arcs between these elements represent thelcibmtr. The connectors are
used to model parallel and alternative executions. Therdvew kinds of connectors:
Splits have one incoming and at least two outgoing arcssjoave at least two incom-
ing arcs and one outgoing arc.

AND-connectors (depicted a@) are used to model parallel execution. When an
AND-split is executed, the elements on all outgoing arcehawe executed in parallel.
The corresponding AND-join connector waits until all pé&ebtontrol flows that have
been started are finished.

XOR-connectors (depicted a@) can be used to model alternative execution:
A XOR-split has multiple outgoing arcs, but only one of therifl ae processed. The
corresponding XOR-join waits for the completion of the cohflow on the selected
arc.

Finally, OR-connectors (depicted a@) are used to model parallel execution
along one or more control flow arcs. An OR-split starts thecpssing of one or more
of its outgoing arcs. The corresponding OR-join waits ualticontrol flows that have
been started by the OR-split are finished.

The EPC elements described above are sufficient for modsilimgie business pro-
cesses like the following one: “When a request from a cust@reres, the availability
of the product has to be checked. If it is available, the iteithhe sent; otherwise the
customer will get a negative reply.” Fig. 1 shows this busgprocess modeled as EPC
diagram.

Nuttgens and Mendling[5] defined the XML-based EPC MarkupdLeage (EPML)
as a tool-neutral interchange format for EPC business psog®dels. The basic ele-

86

ments of EPML are easy to understand: Events and functierepresented by the tags
event andf uncti on, connectors are represented by the &agd, or andxor . Ev-
ery event, function and connector has a unique attributeccatl. The control flow is
represented by elements nanadc. Inside an arc-element, there is an element called
f I ow that names the source and target of the control flow arrowdsemted by the
i ds of the source and target element.)

The BPM shown in Fig. 1 is represented by the following EPMe:fi

<epm :epm xm ns:epm ="http://ww. epni . de"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="epm _1 draft.xsd">
<epc Epcl d="1" Nane="EPC'>
<event id="1">
<nane>cust oner order arrived</nane>
</ event >
<function id="2">
<nanme>check avail ability</nanme>
</function>
<xor id="4">
<name/ >
</ xor >
<event id="5">
<nane>article is avail abl e</ nane>
</ event >
<event id="6">
<nane>article is not avail abl e</ nanme>
</ event >
<function id="7">
<nane>send arti cl e</ name>
</ function>
<function id="8">
<nane>r ej ect order </ nane>
</ function>
<xor id="9">
<name/ >
</ xor >
<event id="10">
<nanme>or der processed</ nane>
</ event >
<arc id="11">
<fl ow source="1" target="2"/>
</arc> ... nore arc-elenents omtted...
</ epc>
</ epm : epm >

3 Redated Work

Mendling and Nittgens[6] have shown that W3C XML Schema(7, 8] as well as)Rela
NG[9] can be used for validating rather simple syntactiaements only. They pro-

87

pose to use the language Schematron[10] which enabled theatidate the most (but
not all) syntactic requirements. However, a drawback of #tiproach is that it requires
that the modeler adds redundant information to the mod@rbefor example, for an
event without incoming arcs, one has to write

<event id="1" type="StartEvent">

which adds undesirable redundancy to the XML file.

An approach that is powerful enough to check even the mosirad syntactic
requirements in XML files is the Constraint Language in XMLL(EML)[11]. Even
though the authors of CLIiXML admitted in [11] that expregsangraph in the way it is
done in EPML makes “things unnecessarily complicated” faiXBAL, it is possible
to check all necessary syntactic requirements. The maiaradges of our PROLOG
based approach over special-purpose solutions like Sdhamar CLiIXML are that
the PROLOG source files used to reason about a model are elyrshort and that
existing PROLOG systems that offer a lot of interfaces t@ogirogramming languages
can be integrated into other tools very easily.

Another approach that makes use of a special-purposettwiilhas been published
by Mammar[12]. Mammar uses the Object Constraint Langu@ggl j for specifying
required structural properties of UML diagrams an traeslahe diagrams into the in-
ternal representation of the USE tool[13]. Afterwardss thiol can be used for checking
the required properties. This work has a lot of similaritieth our logic programming-
based approach.

The related work discussed so far, lies the focus on valigataither “simple” se-
mantic properties. However, logic programming can be usedell for discovering
more advanced model properties. For example, it has be osédding errors related
to the consistency between several models[14], locatittgqe in a model[15], apply-
ing metrics to models[16, 15] and for deciding which diagrarsion among several al-
ternative possibilities is the best one according to recended design guidelines[17].
The preceding list of references (which is by far not exheestontains papers that
deal with various kinds of models, including UML class demps, structure charts and
flow diagrams. As far as we know, there is less work on applttiegdeas on business
process models in languages like EPC or BPMN.

4 ModesasLogical Facts

Logic Programming deals with logical facts and logical sulét first, let's have one
more look at the example model in Fig. 1. The EPML represemtatf the model
contains these lines:

<event jd="10">

<nane>or der processed</nane>
</ event >
<arc id="11">

<fl ow source="1" target="2"/>
</ arc>

From a logical point of view, this part of the model containget facts:

88

1. The model contains an event whose id is 10.

2. The event whose id is 10 has the name “order processed”

3. The model contains an arc from the element whose id is 1 t&deanent whose id
is 2.

In PROLOG, all the information that is included in the modeHg. 1 is written as
predicates (that should be self-explanatory) as follows:

event (i _1).
el ement nane(i _1, ' custoner order arrived').

event (i _5).

el ementnane(i _5, article is available’).
event (i _6).

el ement nane(i _6, ' article is not available’).
event (i _10).

el ement nane(i _10, ' order processed’).
function(i_2).

el ement nane(i _2,’ check availability’).
function(i _7).

el ement nane(i _7,’ send article’).
function(i_8).

el ement nane(i _8,'reject order’).

arc(i_1,i_2).
arc(i_2,i_4).
arc(i_4,i_5).
arc(i_4,i_6).
arc(i_5,1_7).
arc(i_6,i_8).
arc(i_7,i_9).
arc(i_8,i_9).
arc(i_9,i_10).
xor (i _4).

xor (i _9).

Due to the fact that the interchange format EPML is based o XMs very easy
to “translate” the EPML file into the PROLOG facts using a $iBLT stylesheet.

5 Terminology and Model Propertiesas L ogical Rules

In the last section we have shown how the logical facts thatantained in a business
process model can be extracted from the model. In order spreabout the model,
we have to “teach” the PROLOG system something about thanetagy used in the
domain of process modeling. This means that we have to woiteedogical rules that
specify this terminology. Here are some examples for sulgsru

connector (1) :- clause(and(l),true) ; clause(or(l),true);
clause(xor(1),true).

means that we refer to and-connectors, or-connectors artbxmectors as connectors.

89

no_outgoing_arcs(X) :- not(arc(X _)).

means that for some model element the logical predicaterfbasitgoing arcs” holds
if there is no arc that originates from this element.

endevent (X) :- event(X), no_out goi ng_arcs(X).

means that we call an event without outgoing arcs an end .event
Once we have defined such basic logical predicates, we caguasies about the
model to the PROLOG system. For example, the query

endevent (X) .

would ask for all end events in the model. For our example hdde PROLOG system
will answer with

X = "order processed’

6 Applications of the M ethod

In this section, we show some examples for queries to the RR®kystem that are
useful for finding interesting properties of the model.

6.1 Syntactical Correctness

The need for validating the syntactic requirements has bésrussed in Sect. 1. For
Event-Driven Process Chains, such syntactic requirentevs been formalized in the
literature [18, 6]. These syntactic requirements spedafyekample that there must be
at least one end event in the model and that the graph formétebyodel is antisym-
metric (i.e. if there is an arc from node X to node Y than theredt an arc from node
Y to node X). The latter property can be checked with the fithgy simple query (the
comma means “and” in the PROLOG language):

propd(X,Y) :- arc(XY),arc(Y,X).

This query prompts the PROLOG system to search for a cowaengle: a pair of
nodes X and Y for which there is an arc from X to Y as well as anfamn Y to X.
If the PROLOG system does not find a counterexample, it arsswéh “no” which
means that the model fulfills the given property.

In [19] we have shown that all syntactic requirements thatloa found in the lit-
erature can be easily verified using only a few lines of PROL&@e. This includes
syntactic requirements that could not be validated with8bkematron approach de-
scribed in [6], for example the requirement that the grapméx by the model must be
a coherent graph.

90

6.2 Separability

When model checking is used for reasoning about a model, ibearseful to separate
the model into independent submodels in order to avoid -siadee explosion. The
question arises, how to decompose a given model into submtdg can be model-
checked separately. It is easy to see that “cutting” a madeltivo separate submodels
is possible at some arcs whose deletion would separate tdeletbgraph into two
separate graphs. Such arcs are known as cut-vertices ih tirapry, and the parts of
the model that forms the separate submodels are calleésémgty-single-exit regionin
compiler theory. Once again, such arcs can be found with plsifROLOG query. The
following example assumes that we have already defined acptedrop?2 that checks
the syntactical requirement that the graph must be cohéfaatcomplete source code
for such a predicate can be found in [19].

cut_here(X Y) :- arc(XY),
(retract(arc(X Y)), prop2,assertz(arc(X,VY));
(assertz(arc(X Y),fail))).

In order to find out that the arc from X to Y is a cut-vertex, adtfive have to require that
there is actually an arc from X to V. Afterwards, we use the BRG-clause et r act
that deletes the fact that such an arc exists from the PROL@@lkedge base. Now,
we use the predicate prop2 in order to check whether the nedehfthat no longer
contains the arcX — Y) is still coherent. If it is not, prop2 should become “true”,
and we have found an arc at which we can separate the modéhiatsubmodels. The
final assert z predicate makes sure that the temporarily deleted facthieat is an
arc X — Y will be added to the knowledge base of the PROLOG system again

6.3 Modeling Styleand Modeling Errors

do something

Fig. 2. Bad Modeling Style.

In the field of software development, coding style rules[@$o known as code
conventions) are widely used. They help developers to reddiaderstand source code
more quickly, and as a consequence they help to avoid efforsgraphical models,
modeling style rules [21] have been established for the gam@oses: Such style rules

91

can improve the comprehensibility of a model. This is imaott particularly for busi-
ness process models, whose main purpose is to serve as a oaratiwn tool.

In [22], we have discussed some common style problems faurehbi-world mod-
els. Fig. 2 shows two example style problems that are relatéide usage of the OR-
connector. In the left example, the entry into the loop stidnd a XOR-join rather than
an OR-join, in the right example, the optional execution wfaativity should also be
modeled with XOR. Even if both examples in Fig. 2 are not fdtynarong, there exist
a better way (namely using a XOR-join instead of the OR-jnjnodeling the desired
behavior, and the latter can help to avoid misinterpresadicthe model.

Itis easy for the PROLOG system to find such style problemgudtdave to define
the PROLOG predicateat h(X, Y, Pat h) that becomes true if model element Y can
be reached from model element Y along a list of elements shstbred in the variable
Path. Also we define the predicgtei n(X) to become true if X is a connector without
outgoing arcs (see [19] for the code for both predicates).

Using these predicates, we can define a loop entry as a mede¢et X that is part
of a loop (i.e. there is a path from X to X) but also has an inecgrarc from some
element outside the loop:

loop_entry(X) :- join(X), path(X X Path),arc(Y,X),
not (menber (Y, Pat h)).

Now we can look for loop entry nodes that are modeled as OR-goimplain about
the style rule and suggest replacing the OR-join by the XOR jo

In the same way, we can not only find style problems but alseaaille model parts
(like a sequence of activities that can be reduced to a saxgleity in order to reduce
the state space in model checking) and “hard” errors in théalén example for such
a “hard” error would be a loop entry point modeled as an AND-jghich will cause a
deadlock. The “causal footprint” approach published if A8des the way for finding
such errors in a model. The advantage of our approach over fithmal methods like
model-checking is that with logic programming we can findipeons for models that
are still incomplete or even without an agreement about dnedl semantics of the
model[23].

6.4 Consistency between Models

Often, a business process is not modeled by a single diadrstead, different dia-
grams are used for depicting different aspects of the bssipeocess or the business
process model is de-composed into several submodels. sTemsy between those dif-
ferent models is obviously an important requirement. Lggamgramming has success-
fully be used for such cross-diagram consistency checks[h& ideas from [14] and
similar papers can easily be adapted for business procedslsno

7 Conclusions

The work presented in this paper deals with the analysis\araéproperties of busi-
ness process models using logic programming. As shown it Sethe use of logic

92

programming for finding properties of several kinds of madsla well-established re-
search area. For this reason, we do not claim that the geaggyedach presented in this
paper is a new one. However, we gave several examples farigrglthe existing ideas

for the domain of business process modeling, an area whgiedoogramming has not
widely been used in the past.

Because the use of logic programming can help to descritens¢ésmts about models
quickly and in a very condensed form (mainly because of tiengic backtracking
mechanism in languages like PROLOG), we believe that thrdesesiare helpful for the
research on validation of business process models.

References

1. van der Aalst, W.M.: Formalization and verification of event-drivemcpss chains. Infor-
mation & Software Technolog#l (1999) 639—650

2. Object Management Group: UML 2.0 Superstructure Final Adoppetification. Technical
report (2003)

3. Business Process Management Initiative: Business ProcesdiipNetation. Technical
report, BPMl.org (2004)

4. vander Aalst, W.M., Hofstede, A.: YAWL: Yet another workflow ¢arage. Technical Report
FIT-TR-2002-06, Queensland University of Technology, Brish@®92)

5. Mendling, J., Nittgens, M.: Exchanging EPC Business Process Models with EPML. In
Nuttgens, M., Mendling, J., eds.: XML4BPM 2004, Proceedings of &teGl Workshop
XML4BPM — XML Interchange Formats for Business Process Managerat 7th Gl Con-
ference Modellierung 2004, Marburg Germany, March 2004. (260480

6. Mendling, J., Nittgens, M.: EPC syntax validation with XML schema languages. In: EPK.

(2003) 19-30

. World Wide Web Consortium: XML Schema Part 1: Structures. (2001)

. World Wide Web Consortium: XML Schema Part 2: Datatypes. (2001)

. Clark, J., Makoto, M.: RELAX NG Specification. OASIS. 1 edn. (2D0

. Jelliffe, R.: The Schematron Assertion Language 1.5. AcadeimigaSComputing Centre.

(2002)

11. Jungo, D., Buchmann, D., Nitsche, U.U.: Testing of semantipgtis in xml documents.
In: Proceedings of the 4th International Workshop on Modelling, Simuiaterification
and Validation of Enterprise Information Systems, Paphos, CyprQ66{2

12. Mammar, A.: A formal approach and its tool support for the gjpation and the verification
of structural properties on UML activity diagrams. In: Software Engiiveg Research and
Practice. (2006) 988—994

13. Richters, M., Gogolla, M.: Validating UML models and OCL constrailmt&vans, A., Kent,
S., Selic, B., eds.: Proc. 3rd International Conference on the dnifiedeling Language
(UML). Volume 1939., Springer-Verlag (2000) 265-277

14. Kielland, T., Borretzen, J.A.: UML consistency checking. TecsirReport SIF8094, Insti-
tutt for datateknikk og informasjonsvitenskap, Oslo, Norway (2001)

15. Gustafsson, J., Paakki, J., Nenonen, L., Verkamo, A.lchifecture-centric software evo-
lution by software metrics and design patterns. In: CSMR '02: Procgedifi the Sixth
European Conference on Software Maintenance and Reenginé&fdsgington, DC, USA,
IEEE Computer Society (2002) 108

16. Strrle, H.: A lightweight platform for experimenting with model driven éiapment. Tech-
nical Report TR0503, University of Munich (2005)

=
o O 0~

17

18.

19.

20.

21.

22.

23.

93

. Tse, T.H.,, Chen, T.Y,, Chan, F.T., Chen, H.Y., Xie, H.LheTapplication of Prolog to struc-
tured design. Software: Practice and Experie2®¢€1994) 659-676

Nittgens, M., Rump, F.J.: Syntax und Semantik EreignisgesteuerteeRietten (EPK).
In: Promise 2002 - Prozessorientierte Methoden und Werkzdirgdié Entwicklung von
Informationssystemen. (2002) 64—77

Gruhn, V., Laue, R.: Validierung syntaktischer und anderer -ERj¢nschaften
mit PROLOG. In Nittgens, M., Rump, FJ., Mendling, J., eds.: EPK 2006,
Gesclaftsprozessmanagement mit Ereignisgesteuerten Prozesskett&orisshop der
Gesellschatftiir Informatik e.V. (Gl). (2006) 69-84

Kernighan, B.W., Plauger, P.J.: The Elements of Programmtylg. SMcGraw-Hill, Inc.,
New York, NY, USA (1982)

Ambler, S.W.: The Elements of UML Style. Cambridge UniversitysB(@003)

Gruhn, V., Laue, R.: How style checking can improve businessagrmodels. In: Proceed-
ings of the 4th International Workshop on Modelling, Simulation, Verificasinod Validation

of Enterprise Information Systems, Paphos, Cyprus. (2006)

van Dongen, B., Mendling, J., van der Aalst, W.: Structural pagter soundness of business
process models. EDOC (2006) 116-128

