
New Primitives to AOP Weaving Capabilities for
Security Hardening Concerns

Azzam Mourad, Marc-Andŕe Laverdìere and Mourad Debbabi

Computer Security Laboratory
Concordia Institute for Information Systems Engineering

Concordia University, Montreal (QC), Canada

Abstract. In this paper, we present two new primitives to Aspect-Oriented Pro-
gramming (AOP) languages that are needed for systematic hardening of security
concerns. These primitives are calledexportParameter andimportParameter and
are used to pass parameters between two pointcuts. They allow to analyze a pro-
gram’s call graph in order to determine how to change function signatures for
the passing of parameters associated with a given security hardening. We find
this feature necessary in order to implement security hardening solutions that are
infeasible or impractical using the current AOP proposals. Moreover, we show
the viability and correctness of our proposed primitives by elaborating their algo-
rithms and presenting experimental results.

1 Motivations & Background

In today’s computing world, security takes an increasingly predominant role. The in-
dustry is facing challenges in public confidence at the discovery of vulnerabilities, and
customers are expecting security to be delivered out of the box, even for programs that
were not designed with security in mind. The challenge is even greater when legacy
systems must be adapted to networked/web environments, while they are not originally
designed to fit into such high-risk environments. Tools and guidelines have been avail-
able for developers for a few years already, but their practical adoption is limited so far.
Software maintainers must face the challenge to improve programs security and are of-
ten under-equipped to do so. In some cases, little can be done to improve the situation,
especially for Commercial-Off-The-Shelf (COTS) software products that are no longer
supported, or their source code is lost. However, whenever the source code is available,
as it is the case for Free and Open-Source Software (FOSS), a wide range of security
improvements could be applied once a focus on security is decided.

Very few concepts and approaches emerged in the literature to help and guide devel-
opers to harden security into software. In this context, AOP appears to be a promising
paradigm for software security hardening. It is based on the idea that computer systems
are better programmed by separately specifying the various concerns, and then relying

⋆ This research is the result of a fruitful collaboration between CSL (Computer Security Labora-
tory) of Concordia University, DRDC (Defense Research and Development Canada) Valcartier
and Bell Canada under the NSERC DND Research Partnership Program.

Mourad A., Laverdière M. and Debbabi M. (2007).
New Primitives to AOP Weaving Capabilities for Security Hardening Concerns.
In Proceedings of the 5th International Workshop on Security in Information Systems, pages 123-130
DOI: 10.5220/0002422001230130
Copyright c© SciTePress

on underlying infrastructure to compose them together. Aspects allow to precisely and
selectively define and integrate security objects, methodsand events within application,
which make them interesting solutions for many security issues [1–5]. However, AOP
was not initially designed to address security issues, which resulted in many short-
comings in the current technologies [6, 7]. We were not able to apply some security
hardening activities due to missing features. Such limitations forced us, when applying
security hardening practices, to perform programming gymnastics, resulting in addi-
tional modules that must be integrated within the application, at a definitive runtime,
memory and development cost.

As a result, the specification of new security related AOP primitives is becoming
a very challenging and interesting domain of research. In this context, we propose in
this paper AOP primitives that are needed for security hardening concerns, namedex-
portParameter andimportParameter. They allow to pass parameters from one pointcut
to the other through the programs’ context-insensitive call graph. We find this feature
necessary because it is needed to perform many security hardening practices and none
of the existing AOP features can provide this functionality.

This paper is organized as follows: We first cast a quick glance at security harden-
ing and the problem that we address in Section 2. Afterwards,in Section 3, we define
parameter passing and show how parameter passing can be specified by an extension of
the existing AOP syntax for advices. Then, in Section 4, we present the methodology
of implementing the proposed primitives, as well as experimental results. We move on
to the related work in Section 5, and then conclude in Section6.

2 Security Hardening

Software security hardening isany process, methodology, product or combination thereof
that is used to add security functionalities and/or remove vulnerabilities or prevent their
exploitation in existing software. Security hardening practices are usually applied man-
ually by injecting security code into the software. This task requires from the security
architects to have a deep knowledge of the code inner workingof the software, which
is not available all the time. In this context, we elaboratedin [8] an approach based on
aspect orientation to perform security hardening in a systematic way. The primary ob-
jective of this approach is to allow the security architectsto perform security hardening
of software by applying proven solutions so far and without the need to have expertise
in the security solution domain. At the same time, the security hardening is applied in
an organized and systematic way in order not to alter the original functionalities of the
software. This is done by providing an abstraction over the actions required to improve
the security of the program and adopting AOP to build our solutions. The result of our
experimental results explored the usefulness of AOP to reach the objective of having
systematic security hardening. During our work, we have developed security harden-
ing solutions to secure connections in client-server applications, added access control
features to a program, encrypted memory contents for protection and corrected some
low-level security vulnerabilities in C programs. On the other hand, we have also con-
cluded the shortcomings of the available AOP technologies for security and the need to

124

elaborate new pointcuts. In this context, we proposed in [9]new pointcuts needed for
security hardening concerns.

2.1 Security Hardening Example: Securing a Connection

Securing channels between two communicating parties is themain security solution
applied to avoid eavesdropping, tampering with the transmission or session hijacking.
The Transport Layer Security (TLS) protocol is a widely usedprotocols for this task.
We thus present in this Section a part of a case study, in whichwe implemented an As-
pectC++ aspect that secures a connection using TLS and weaved it with client/Server
applications to secure their connections. To generalize our solution and make it appli-
cable on wide range of applications, we assume that not all the connections are secured,
since many programs have different local interprocess communications via sockets. In
this case, all the functions responsible of sending receiving data on the secure channels
are replaced by the ones provided by TLS. On the other hand, the other functions that
operate on the non-secure channels are kept untouched. Moreover, we addressed also
the case where the connection processes and the functions that send and receive the
data are implemented in different components (i.e different classes, functions, etc.). In
Listing 1.1, we see an excerpt of AspectC++ code allowing to harden a connection.

2.2 Need to Pass Parameters

Our study of the literature and our previous work [8, 9] showed that it is often necessary
to pass state information from one part to another of the program in order to perform
security hardening. For instance, in the example provided in Listing 1.1, we need to
pass thegnutls session t data structure from the advice aroundconnect to
the advice aroundsend , receive and/orclose in order to properly harden the
connection. The current AOP models do not allow to perform such operations.

2.3 Solution with the Current AOP Technology

In Listing 1.1, the reader will notice the appearance ofhardening sockinfo t as
well as some other related functions, which are underlined for the sake of convenience.
These are the data structure and functions that we developedto distinguish between
secure and insecure channels and export the parameter between the application’s com-
ponents at runtime. We found that one major problem was the passing of parameters
between functions that initialize the connection and thosethat use it for sending and re-
ceiving data. In order to avoid using shared memory directly, we opted for a hash table
that uses the Berkeley socket number as a key to store and retrieve all the needed infor-
mation (in our own defined data structure). One additional information that we store is
whether the socket is secured or not. In this manner, all calls to asend() or recv()
are modified for a runtime check that uses the proper sending/receiving function. This
effort of sharing the parameter has both development and runtime overhead that could
be avoided by the use of a primitive automating the transfer of concern-specific data
within advices without increasing software complexity. Further, other experiments with
another security feature (encrypting sensitive memory) showed that the use of hash table
could not be easily generalized.

125

Listing 1.1. Excerpt of an AspectC++ Aspect Hardening Connections UsingGnuTLS.
aspect SecureConnection {

advice call("% connect(...)") : around () {
//variables declared
hardening_sockinfo_t socketInfo ;
const int cert_type_priority[3] = { GNUTLS_CRT_X509, GNUTLS_CRT_O PENPGP, 0};

//initialize TLS session info
gnutls_init (&socketInfo .session, GNUTLS_CLIENT);
gnutls_set_default_priority (socketInfo .session);
gnutls_certificate_type_set_priority (socketInfo .session, cert_type_priority);
gnutls_certificate_allocate_credentials (&socketInfo .xcred);
gnutls_credentials_set (socketInfo .session, GNUTLS_CRD_CERTIFICATE,

socketInfo .xcred);

//Connect
tjp->proceed();
if(* tjp->result()<0) {perror("cannot connect "); exit(1);}

//Save the needed parameters and the information that distinguishes between
secure and non-secure channels

socketInfo .isSecure = true;
socketInfo .socketDescriptor= * (int *)tjp->arg(0);
hardening_storeSocketInfo (* (int *)tjp->arg(0), socketInfo);
//TLS handshake
gnutls_transport_set_ptr(socketInfo .session, (gnutls_transport_ptr)(* (int *)

tjp->arg(0)));
* tjp->result() = gnutls_handshake (socketInfo .session);

}
//replacing send() by gnutls_record_send() on a secured socket
advice call("% send(...)") : around () {

//Retrieve the needed parameters and the information that distinguishes
between secure and non-secure channels

hardening_sockinfo_t socketInfo ;
socketInfo = hardening_getSocketInfo (* (int *)tjp->arg(0));

//Check if the channel, on which the send function operates, is secured or not
if (socketInfo .isSecure)

//if the channel is secured, replace the send by gnutls_send

* (tjp->result()) = gnutls_record_send(socketInfo .session, * (char**) tjp->
arg(1), * (int *)tjp->arg(2));

else
tjp->proceed(); }}

3 Parameter Passing for Security Hardening

In this section, we define the syntax and realization of the proposed primitives. Their
syntax is derived from AspectC++, as an optional program transformation section in an
advice declaration as follows:

parameter ::= < type> <identifier>
paramList ::= parameter [,paramList]
e ::= exportParameter(< paramList>)
i::= importParameter(< paramList>)

advice <target-pointcut> : (before|after|around)
(< arguments>) [: e | i | e,i] {<advice-body> }

126

wheree andi are respectively the newexportParameter andimportparameter. The
arguments ofexportParameter are the parameters to pass, while the arguments ofim-
portParameter are the parameters to receive. The two primitives should always be com-
bined and used together in order to provide the information needed for parameter pass-
ing from one joint point to another.

Our proposed approach for parameter passing operates on thecontext-insensitive
call graph of a program [10], with each node representing a function and each arrow
representing call site. It exports the parameter over all the possible paths going from the
origin to the destination nodes. This is achieved by performing the following three steps:
(1) Calculating the closest guaranteed ancestor (GAFlow) of the origin and destination
join points, (2) passing the parameter from the origin to theaforementionedGAFLow
and then (3) from thisGAFlow to the destination. The AOP primitives that are re-
sponsible of passing the parameters are theexportParameter andimportparameter. The
exportParameter is used in the advice of the origin pointcut to make the parameters
available, while theimportparameter is used in the advice of the destination pointcut to
import the needed parameters.

The GAFlow, as presented in [9], constitutes (1) the closet common parent node
of all the selected nodes (2) and through which passes all thepossible paths that reach
them. In the worst case, theGAFlow will be the starting point in the program. By
passing the parameter from the origin toGAFlow and then to the destination, we ensure
that the parameter will be effectively passed through all the possible execution paths
between the two join points. Otherwise, the parameter couldnot be passed or passed
without initialization, which would create software errors and affect the correctness of
the solution. Figure 1 illustrates our approach. For instance, to pass the parameter from
h to g, their GAFlow, which is b in the this case, is first identified. Afterwards, the
parameter is passed over all the paths fromh to b, then fromb to g again over all the
paths.

a

c

b

d e f

g h

origindestination

gaflow

13 2

1: Identify GAFlow 2: Origin→ GAFlow 3: GAFlow→ destination

Fig. 1. Parameter Passing in a Call Graph.

The parameter passing capability that we propose changes the function signatures
and the relevant call sites in order to propagate useful security hardening variables via
inout function parameters. It changes the signatures of all the functions involved in
the call graph between the exporting and importing join points. All calls to these func-

127

tions are modified to pass the parameter as is, in the case of the functions involved in
this transmission path (e.g. nodesb, c,d,e,f).

3.1 Securing a Connection using Parameter Passing

We modified the example of Listing 1.1 by using our proposed approach for param-
eter passing. Listing 1.2 present excerpt of the new code. All the data structure and
algorithms (underlined in Listing 1.1) are removed and replaced by the primitives for
exporting and importing. AnexportParameter for the parameterssession andxcred is
added on the declaration of the advice of the pointcut that identifies the functioncon-
nect. Moreover, animportParameter for the parametersession is added on the declara-
tion of the advice of the pointcut that identifies the function send.

Listing 1.2. Hardening of Connections using Parameter Passing GnuTLS.
aspect SecureConnection {

advice call("% connect(...)") : around () : exportParameter (gnutls_session
session, gnutls_certificate_credentials xcred){

//variables declared
static const int cert_type_priority[3] = { GNUTLS_CRT_X509, GNUTLS_CRT_O PENPGP

, 0};

//initialize TLS session info
gnutls_init (&session, GNUTLS_CLIENT);
gnutls_set_default_priority (session);
gnutls_certificate_type_set_priority (session, cert_t ype_priority);
gnutls_certificate_allocate_credentials (&xcred);
gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICA TE, xcred);

//Connect
tjp->proceed();
if(* tjp->result()<0) {perror("cannot connect "); exit(1);}

//TLS handshake
gnutls_transport_set_ptr (session, (gnutls_transport_ ptr) (* (int *)tjp->arg(0)

));

* tjp->result() = gnutls_handshake (session);
}
//replacing send() by gnutls_record_send() on a secured socket
advice call("% send(...)") : around () : importParameter (gnutls_session session)

{

//Check if the channel, on which the send function operates, is secured or not
if (session != NULL)

//if the channel is secured, replace the send by gnutls_send

* (tjp->result()) = gnutls_record_send(* session, * (char**) tjp->arg(1), * (
int *)tjp->arg(2));

else
tjp->proceed(); }}

4 Implementation and Experimental Results

In this Section, we present the implementation methodologyof the proposed primitives
together with experimental results exploring their correctness.

The elaborated algorithms for the implementation of parameter passing operate on
a program’s call graph. The origin node is the poincut where the exportParameter is
called, while the destination node is the pointcut whereimportParameter is called. After

128

calculating the closest guaranteed ancestor of the two pointcuts specified by the two
primitives, the elaborated algorithm is performed first in order to pass the parameter
from the origin to the closest guaranteed ancestor, then executed another time to pass the
parameter from the closest guaranteed ancestor to the destination. This algorithm, which
is not presented in this paper due to space limitation, is a building block that allows
to modify the function signatures and calls in a way that would keep the program’s
syntactical correctness and intent (i.e. would still compile and behave the same). It
finds all the paths between an origin node and a destination node in a call graph. For
each path, it propagates the parameter from the called function to the callee, starting
from the end of the path. In order to be optimal, it modifies allthe callers only one time
and keeps track of the modified nodes.

We implemented a program that represents the scenario of thecall graph illustrated
in Figure 1. This program is essentially a client application that establishes a connection,
sends a request and receive a response from the server. We applied the aspects presented
in Listings 1.1 and 1.2 on this application in order to secureits communication channels.
We successfully tested the hardened applications with SSL enabled web server and
verified the correctness of the solution.

5 Related Work

The shortcomings of AOP for security concerns have been documented and some im-
provements have been suggested so far. In the sequel, we present the most noteworthy.

Masuhara and Kawauchi [6] defined a dataflow pointcut (dflow) for security pur-
poses that can be used to identify join points based on the origin of values.

In [7], Harbulot and Gurd proposed a model of a loop pointcut that explores the
need to a loop joint point that predicts whether a code will ever halt or run for ever (i.e.
infinite loops).

Another approach, that discusses local variables set and get poincut, has been pro-
posed by Myers [11]. He introduced a pointcut allowing to track the values of local
variables inside a method, which could be used to protect theconfidentiality of local
variables.

In [12], Bonr discussed a poincut that is needed to detect thebeginning of a syn-
chronized block and add some security code that limits the CPU usage or the number
of instructions executed. He also explored in his paper the usefulness of capturing syn-
chronized block in calculating the time acquired by a lock and thread management.

A pcflow pointcut was introduced by Kiczales in a keynote address [13], but was
neither defined nor integrated in any AOP language. Such pointcut may allow to select
points within the control flow of a join point starting from the root of the execution to
the parameter join point.

6 Conclusion

AOP appears to be a very promising paradigm for software security hardening. How-
ever, this technology was not initially designed to addresssecurity issues and many

129

research work showed its limitations in such domain. Similarly, we explored in this pa-
per the shortcomings of the AOP in applying many security hardening practices and the
need to extend this technology with new pointcuts and primitives. In this context, we
proposed two new primitives to AOP weaving capabilities forsecurity hardening con-
cerns:exportParameter and importParameter. They pass parameters from one advice
to the other through the programs’ context-insensitive call graph. We first showed the
limitations of the current AOP languages for many security issues. Then, we presented
a motivating example that explores the need for parameter passing. Afterwards, we de-
fined the new primitives and presented their implementationmethodology together with
the experimental results.

References

1. Bodkin, R.: Enterprise security aspects (2004)http://citeseer.ist.psu.edu/
702193.html (accessed 2007/04/19).

2. DeWin, B.: Engineering application level security through aspect oriented soft-
ware development (2004)http://www.cs.kuleuven.ac.be/cwis/research/
distrinet/resources/publications/41140.pdf .

3. Huang, M., Wang, C., Zhang, L.: Toward a reusable and genericsecurity aspect library. In:
AOSD:AOSDSEC 04: AOSD Technology for Application level Security, March. (2004)

4. Cigital Labs: An aspect-oriented security assurance solution. Technical Report AFRL-IF-
RS-TR-2003-254 (2003)

5. Slowikowski, P., Zielinski, K.: Comparison study of aspect-oriented and container managed
security (2003)

6. Masuhara, H., Kawauchi, K.: Dataflow pointcut in aspect-oriented programming. In:
APLAS. (2003) 105–121

7. harbulot, B., Gurd, J.: A join point for loops in AspectJ. In: Proceedings of the 4th workshop
on Foundations of Aspect-Oriented Languages (FOAL 2005), March.(2005)

8. Mourad, A., Laverdìere, M.A., Debbabi, M.: Towards an aspect oriented approach forthe
security hardening of code. (To appear in the Proceedings of the 21stIEEE International
Conference AINA, AINA-SSNDS 2007, IEEE)

9. Laverdìere, M.A., Mourad, A., Soeanu, A., Debbabi, M.: Control flow based pointcuts for
security hardening concerns. (To appear in the Proceedings of the IFIPTM 2007 Conference,
Springer)

10. Grove, D., Chambers, C.: A framework for call graph construction algorithms. ACM Trans.
Program. Lang. Syst.23 (2001) 685–746

11. Myers, A.: Jflow: Practical mostly-static information flow control. In: Symposium on Prin-
ciples of Programming Languages. (1999) 228–241

12. Bonr, J.: Semantics for a synchronized block join
point (2005) http://jonasboner.com/2005/07/18/
semantics-for-a-synchronized-block-joint-point/ (accessed
2007/04/19.

13. Kiczales, G.: The fun has just begun, keynote talk at AOSD 2003 (2003)
http://www.cs.ubc.ca/ ˜ gregor/papers/kiczales-aosd-2003.ppt (ac-
cessed 2007/04/19).

130

