New Primitivesto AOP Weaving Capabilities for
Security Hardening Concerns

Azzam Mourad, Marc-Andr Laverdere and Mourad Debbabi

Computer Security Laboratory
Concordia Institute for Information Systems Engineering
Concordia University, Montreal (QC), Canada

Abstract. In this paper, we present two new primitives to Aspect-Oriented Pro-
gramming (AOP) languages that are needed for systematic hardening of security
concerns. These primitives are calleghortParameter andimportParameter and

are used to pass parameters between two pointcuts. They allow to analyze a pro-
gram’s call graph in order to determine how to change function signatures for
the passing of parameters associated with a given security hardening. We find
this feature necessary in order to implement security hardening solutions that are
infeasible or impractical using the current AOP proposals. Moreover, we show
the viability and correctness of our proposed primitives by elaborating their algo-
rithms and presenting experimental results.

1 Motivations & Background

In today’s computing world, security takes an increasingly predominant role. The in-
dustry is facing challenges in public confidence at the discovery of vulnerabilities, and
customers are expecting security to be delivered out of the box, even for programs that
were not designed with security in mind. The challenge is even greater when legacy
systems must be adapted to networked/web environments, while they are not originally
designed to fit into such high-risk environments. Tools and guidelines have been avail-
able for developers for a few years already, but their practical adoption is limited so far.
Software maintainers must face the challenge to improve programs security and are of-
ten under-equipped to do so. In some cases, little can be done to improve the situation,
especially for Commercial-Off-The-Shelf (COTS) software products that are no longer
supported, or their source code is lost. However, whenever the source code is available,
as it is the case for Free and Open-Source Software (FOSS), a wide range of security
improvements could be applied once a focus on security is decided.

Very few concepts and approaches emerged in the literature to help and guide devel-
opers to harden security into software. In this context, AOP appears to be a promising
paradigm for software security hardening. It is based on the idea that computer systems
are better programmed by separately specifying the various concerns, and then relying

* This research is the result of a fruitful collaboration between CSL (Computer Security Labora-
tory) of Concordia University, DRDC (Defense Research and Development Canada) Valcartier
and Bell Canada under the NSERC DND Research Partnership Program.

Mourad A., Laverdiere M. and Debbabi M. (2007).

New Primitives to AOP Weaving Capabilities for Security Hardening Concerns.

In Proceedings of the 5th International Workshop on Security in Information Systems, pages 123-130
DOI: 10.5220/0002422001230130

Copyright © SciTePress

124

on underlying infrastructure to compose them togethere8tpallow to precisely and
selectively define and integrate security objects, methodsvents within application,
which make them interesting solutions for many securityess[{1-5]. However, AOP
was not initially designed to address security issues, Wwhésulted in many short-
comings in the current technologies [6, 7]. We were not ablagply some security
hardening activities due to missing features. Such linoitet forced us, when applying
security hardening practices, to perform programming gstins, resulting in addi-
tional modules that must be integrated within the applirgtat a definitive runtime,
memory and development cost.

As a result, the specification of new security related AOPnjtives is becoming
a very challenging and interesting domain of research. ilmdbntext, we propose in
this paper AOP primitives that are needed for security h@rgdeconcerns, namesk-
portParameter andimportParameter. They allow to pass parameters from one pointcut
to the other through the programs’ context-insensitivé gralph. We find this feature
necessary because it is needed to perform many securitgriingdpractices and none
of the existing AOP features can provide this functionality

This paper is organized as follows: We first cast a quick gaatcsecurity harden-
ing and the problem that we address in Section 2. AfterwandSection 3, we define
parameter passing and show how parameter passing can lifeesig@can extension of
the existing AOP syntax for advices. Then, in Section 4, wesent the methodology
of implementing the proposed primitives, as well as expental results. We move on
to the related work in Section 5, and then conclude in Se@&ion

2 Security Hardening

Software security hardeningasy process, methodol ogy, product or combination thereof
that is used to add security functionalities and/or remove vulnerabilities or prevent their
exploitation in existing software. Security hardening practices are usually applied man-
ually by injecting security code into the software. Thisktasquires from the security
architects to have a deep knowledge of the code inner wokitige software, which
is not available all the time. In this context, we elabordte8] an approach based on
aspect orientation to perform security hardening in a syatee way. The primary ob-
jective of this approach is to allow the security architéotperform security hardening
of software by applying proven solutions so far and withdwet meed to have expertise
in the security solution domain. At the same time, the séctidrdening is applied in
an organized and systematic way in order not to alter thenaligqunctionalities of the
software. This is done by providing an abstraction over t®as required to improve
the security of the program and adopting AOP to build ourtsmhs. The result of our
experimental results explored the usefulness of AOP tohréae objective of having
systematic security hardening. During our work, we haveeltged security harden-
ing solutions to secure connections in client-server apfibns, added access control
features to a program, encrypted memory contents for gfoteand corrected some
low-level security vulnerabilities in C programs. On théathand, we have also con-
cluded the shortcomings of the available AOP technologiesdcurity and the need to

125

elaborate new pointcuts. In this context, we proposed im§} pointcuts needed for
security hardening concerns.

2.1 Security Hardening Example: Securing a Connection

Securing channels between two communicating parties isnie security solution
applied to avoid eavesdropping, tampering with the traesioin or session hijacking.
The Transport Layer Security (TLS) protocol is a widely ugedtocols for this task.
We thus present in this Section a part of a case study, in widcimplemented an As-
pectC++ aspect that secures a connection using TLS and dvéavéh client/Server
applications to secure their connections. To generalizesolution and make it appli-
cable on wide range of applications, we assume that noteatidhnections are secured,
since many programs have different local interprocess camications via sockets. In
this case, all the functions responsible of sending recgidata on the secure channels
are replaced by the ones provided by TLS. On the other haadttter functions that
operate on the non-secure channels are kept untouchedooreve addressed also
the case where the connection processes and the functiansethd and receive the
data are implemented in different components (i.e diffecdasses, functions, etc.). In
Listing 1.1, we see an excerpt of AspectC++ code allowingai@én a connection.

2.2 Need to Pass Parameters

Our study of the literature and our previous work [8, 9] shdwret it is often necessary
to pass state information from one part to another of thenaragn order to perform
security hardening. For instance, in the example provideldisting 1.1, we need to
pass thegnutls _session _t data structure from the advice aroundnnect to
the advice aroundend, receive and/orclose in order to properly harden the
connection. The current AOP models do not allow to perforohsaperations.

2.3 Solution with the Current AOP Technology

In Listing 1.1, the reader will notice the appearancéafdening _sockinfo _t as
well as some other related functions, which are underlioethie sake of convenience.
These are the data structure and functions that we developdidtinguish between
secure and insecure channels and export the parameterelpetineeapplication’s com-
ponents at runtime. We found that one major problem was tksipg of parameters
between functions that initialize the connection and thbaeuse it for sending and re-
ceiving data. In order to avoid using shared memory direaté/opted for a hash table
that uses the Berkeley socket number as a key to store areVecditl the needed infor-
mation (in our own defined data structure). One additiorfarmation that we store is
whether the socket is secured or not. In this manner, al talhsend() orrecv()

are modified for a runtime check that uses the proper sendirejing function. This
effort of sharing the parameter has both development anihraroverhead that could
be avoided by the use of a primitive automating the transf@oacern-specific data
within advices without increasing software complexityrtfer, other experiments with
another security feature (encrypting sensitive memorgyva that the use of hash table
could not be easily generalized.

126

Listing 1.1. Excerpt of an AspectC++ Aspect Hardening Connections USIngTLS.

aspect SecureConnection {
advice call("% _connect(...)") : around () {
//variabl es decl ared

hardening_sockinfo t socketinfo ;

const int cert_type_priority[3] = { GNUTLS_CRT_X509, GNUTLS_CRT_O PENPGP, 0};

/linitialize TLS session info

gnutls_init (&socketinfo .session, GNUTLS_CLIENT);

gnutls_set_default_priority (socketinfo .session);

gnutls_certificate_type_set_priority (socketinfo .session, cert_type_priority);

gnutls_certificate_allocate_credentials (&socketinfo .xcred);

gnutls_credentials_set (socketinfo .session, GNUTLS_CRD_CERTIFICATE,
socketinfo .xcred);

/1 Connect

tip->proceed();

i f (*tjp->result()<0) {perror("cannot _connect _"); exit(1);}

/1 Save the needed paraneters and the information that distinguishes between
secure and non-secure channel s
socketinfo .isSecure = true;

socketinfo .socketDescriptor= * (i nt *)tjp->arg(0);

hardening_storeSocketInfo (*(int =)tjp->arg(0), socketinfo);

/1 TLS handshake

gnutls_transport_set_ptr(socketinfo .session, (gnutls_transport_ptr)(*(int *)
tip->arg(0)));

*tjp->result() = gnutls_handshake (socketlnfo .session);

/lreplacing send() by gnutls_record_send() on a secured socket
advice call("% _send(...)") : around () {

//Retrieve the needed paranmeters and the information that distinguishes
bet ween secure and non-secure channel s

hardening_sockinfo t socketinfo ;

socketinfo = hardening_getSocketlnfo (*(int =*)tjp->arg(0));

/1 Check if the channel, on which the send function operates, is secured or not
if (socketinfo .isSecure)
/1if the channel is secured, replace the send by gnutls_send
* (tjp->result()) = gnutls_record_send(socketinfo _~ .session, *(char) tjp->
arg(1), *(int *)tp->arg(2));
el se
tip->proceed(); }}

3 Parameter Passing for Security Hardening

In this section, we define the syntax and realization of tleppsed primitives. Their
syntax is derived from AspectC++, as an optional programsficrmation section in an
advice declaration as follows:

par anet er < type> <identifier>
par anLi st parameter [,paramList]

e = exportParaneter(<paranii st>)
i 2= inportParaneter(<paranLi st>)

advi ce <target-pointcut> : (before|after|around)
(<argunments>) [e | i | e,] {<advice-body> }

127

wheree andi are respectively the neexportParameter andimportparameter. The
arguments o&xportParameter are the parameters to pass, while the argumenisrof
portParameter are the parameters to receive. The two primitives shouldydve com-
bined and used together in order to provide the informatmeded for parameter pass-
ing from one joint point to another.

Our proposed approach for parameter passing operates monbext-insensitive
call graph of a program [10], with each node representingnatfan and each arrow
representing call site. It exports the parameter over alptissible paths going from the
origin to the destination nodes. This is achieved by periiogthe following three steps:
(1) Calculating the closest guaranteed ance&@Hlow) of the origin and destination
join points, (2) passing the parameter from the origin todf@ementionedsAFLow
and then (3) from thisGAFlow to the destination. The AOP primitives that are re-
sponsible of passing the parameters arestpertParameter andimportparameter. The
exportParameter is used in the advice of the origin pointcut to make the patarse
available, while thémportparameter is used in the advice of the destination pointcut to
import the needed parameters.

The GAFlow, as presented in [9], constitutes (1) the closet commonmpa@de
of all the selected nodes (2) and through which passes afidksible paths that reach
them. In the worst case, tH@AFlow will be the starting point in the program. By
passing the parameter from the origirdéFlow and then to the destination, we ensure
that the parameter will be effectively passed through allgbssible execution paths
between the two join points. Otherwise, the parameter coatdbe passed or passed
without initialization, which would create software es@nd affect the correctness of
the solution. Figure 1 illustrates our approach. For instato pass the parameter from
h to g, their GAFlow, which isb in the this case, is first identified. Afterwards, the
parameter is passed over all the paths fioto b, then fromb to g again over all the
paths.

destination

origin

1: Identify GAFlow 2: Origin— GAFlow 3: GAFlow— destination

Fig. 1. Parameter Passing in a Call Graph.

The parameter passing capability that we propose changdsrtbtion signatures
and the relevant call sites in order to propagate usefulrggdardening variables via
inout function parameters. It changes the signatures of all thetilons involved in
the call graph between the exporting and importing join fsoiAll calls to these func-

128

tions are modified to pass the parameter as is, in the case dditistions involved in
this transmission path (e.g. nodes,d,e f).

3.1 Securing a Connection using Parameter Passing

We modified the example of Listing 1.1 by using our proposegr@gch for param-
eter passing. Listing 1.2 present excerpt of the new codethaldata structure and
algorithms (underlined in Listing 1.1) are removed andaeptl by the primitives for
exporting and importing. AmxportParameter for the parametersession andxcred is
added on the declaration of the advice of the pointcut thattifles the functiorcon-
nect. Moreover, arimportParameter for the parametesession is added on the declara-
tion of the advice of the pointcut that identifies the funetsend.

Listing 1.2. Hardening of Connections using Parameter Passing GnuTLS.

aspect SecureConnection {
advice call("% _connect(...)") : around () : exportParameter (gnutls_session
session, gnutls_certificate_credentials xcred){
//variabl es decl ared
static const int cert_type priority[3] = { GNUTLS_CRT_X509, GNUTLS_CRT_O PENPGP
. Ok

/linitialize TLS session info
gnutls_init (&session, GNUTLS_CLIENT);
gnutls_set_default_priority (session);

gnutls_certificate_type_set_priority (session, cert_t ype_priority);
gnutls_certificate_allocate_credentials (&xcred);

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICA TE, xcred);
/1 Connect

tjp->proceed();

i f (*tjp->result()<0) {perror("cannot _connect _"); exit(1);}

/1 TLS handshake
gnutls_transport_set_ptr (session, (gnutls_transport_ ptr) (*(int =*)tjp->arg(0)

*tjp->re§u|t() = gnutls_handshake (session);

//replacing send() by gnutls_record_send() on a secured socket
advice call("% _send(...)") : around () : importParameter (gnutls_session session)

{

// Check if the channel, on which the send function operates, is secured or not
if (session != NULL)
/1if the channel is secured, replace the send by gnutls_send
* (tjp->result()) = gnutls_record_send(xsession, *(char=) tjp->arg(1), *(
int *)tjp->arg(2));
el se
tip->proceed(); }}

4 Implementation and Experimental Results

In this Section, we present the implementation methodotifglye proposed primitives
together with experimental results exploring their coimess.

The elaborated algorithms for the implementation of patamgassing operate on
a program’s call graph. The origin node is the poincut whesekportParameter is
called, while the destination node is the pointcut whengortParameter is called. After

129

calculating the closest guaranteed ancestor of the twaqdgspecified by the two
primitives, the elaborated algorithm is performed first ider to pass the parameter
from the origin to the closest guaranteed ancestor, thezuéx@ another time to pass the
parameter from the closest guaranteed ancestor to thealssti. This algorithm, which
is not presented in this paper due to space limitation, isildibg block that allows
to modify the function signatures and calls in a way that widkgep the program’s
syntactical correctness and intent (i.e. would still cdmpind behave the same). It
finds all the paths between an origin node and a destinatida moa call graph. For
each path, it propagates the parameter from the calledifumtd the callee, starting
from the end of the path. In order to be optimal, it modifiedtad callers only one time
and keeps track of the modified nodes.

We implemented a program that represents the scenario oathgraph illustrated
in Figure 1. This program is essentially a client applicatizat establishes a connection,
sends a request and receive a response from the server. \iggldpp aspects presented
in Listings 1.1 and 1.2 on this application in order to seétsreommunication channels.
We successfully tested the hardened applications with Sibled web server and
verified the correctness of the solution.

5 Redated Work

The shortcomings of AOP for security concerns have beenrdented and some im-
provements have been suggested so far. In the sequel, vempties most noteworthy.

Masuhara and Kawauchi [6] defined a dataflow pointdéio(v) for security pur-
poses that can be used to identify join points based on theaf values.

In [7], Harbulot and Gurd proposed a model of a loop pointtait explores the
need to a loop joint point that predicts whether a code wilréhalt or run for ever (i.e.
infinite loops).

Another approach, that discusses local variables set ambgecut, has been pro-
posed by Myers [11]. He introduced a pointcut allowing tackréhe values of local
variables inside a method, which could be used to protectonéidentiality of local
variables.

In [12], Bonr discussed a poincut that is needed to detecbéginning of a syn-
chronized block and add some security code that limits the Ggage or the number
of instructions executed. He also explored in his paper slefulness of capturing syn-
chronized block in calculating the time acquired by a locHl titead management.

A pcflow pointcut was introduced by Kiczales in a keynote addresk L8 was
neither defined nor integrated in any AOP language. Suchtqdimay allow to select
points within the control flow of a join point starting frometoot of the execution to
the parameter join point.

6 Conclusion

AOP appears to be a very promising paradigm for softwarerggdwardening. How-
ever, this technology was not initially designed to addessurity issues and many

130

research work showed its limitations in such domain. Sirlyilave explored in this pa-
per the shortcomings of the AOP in applying many securitgléaing practices and the
need to extend this technology with new pointcuts and prmest In this context, we
proposed two new primitives to AOP weaving capabilitiesdecurity hardening con-
cerns:exportParameter andimportParameter. They pass parameters from one advice
to the other through the programs’ context-insensitivé graph. We first showed the
limitations of the current AOP languages for many secuggues. Then, we presented
a motivating example that explores the need for parametsipg Afterwards, we de-
fined the new primitives and presented their implementatiethodology together with
the experimental results.

References

1. Bodkin, R.: Enterprise security aspects (208#p://citeseer.ist.psu.edu/
702193.html (accessed 2007/04/19).

2. DeWin, B.: Engineering application level security through aspectntmie soft-
ware development (2004)ttp://www.cs.kuleuven.ac.be/cwis/research/
distrinet/resources/publications/41140.pdf .

3. Huang, M., Wang, C., Zhang, L.: Toward a reusable and gesecigrity aspect library. In:
AOSD:AOSDSEC 04: AOSD Technology for Application level Security, Marn2004)

4. Cigital Labs: An aspect-oriented security assurance solution. itediReport AFRL-IF-
RS-TR-2003-254 (2003)

5. Slowikowski, P., Zielinski, K.: Comparison study of aspect-orientetti @ntainer managed
security (2003)

6. Masuhara, H., Kawauchi, K.: Dataflow pointcut in aspect-orientedyramming. In:
APLAS. (2003) 105-121

7. harbulot, B., Gurd, J.: Ajoin point for loops in Aspect]. In: Pratiegs of the 4th workshop
on Foundations of Aspect-Oriented Languages (FOAL 2005), M#2€105)

8. Mourad, A., Laverdire, M.A., Debbabi, M.: Towards an aspect oriented approacthéor
security hardening of code. (To appear in the Proceedings of thd PREt International
Conference AINA, AINA-SSNDS 2007, IEEE)

9. Laverdére, M.A., Mourad, A., Soeanu, A., Debbabi, M.: Control flow édgointcuts for
security hardening concerns. (To appear in the Proceedings of[PiENF2007 Conference,
Springer)

10. Grove, D., Chambers, C.: A framework for call graph cortston algorithms. ACM Trans.
Program. Lang. Sys23 (2001) 685746

11. Myers, A.: Jflow: Practical mostly-static information flow control: Symposium on Prin-
ciples of Programming Languages. (1999) 228-241

12. Bonr, J.: Semantics for a synchronized block join
point (2005) http://jonasboner.com/2005/07/18/
semantics-for-a-synchronized-block-joint-point/ (accessed
2007/04/19.

13. Kiczales, G.: The fun has just begun, keynote talk at AOSD 2003032
http://www.cs.ubc.ca/ ~ gregor/papers/kiczales-aosd-2003.ppt (ac-

cessed 2007/04/19).

