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Abstract. Assume two parties, Alice and Bob, want to compute a joint function,
but they want to keep their inputs private. This problem setting and its solutions
are known as secure computation. General solutions to secure computation re-
quire the construction of a binary circuit for the function to be computed. This pa-
per proposes the concept of language-based secure computation. Instead of con-
structing a binary circuit program code is directly translated into a secure compu-
tation protocol. This concept is compared to the approaches for language-based
information-flow security and many connections between the two approaches are
identified. The major challenge in this translation is the secure translation of the
program’s control-flow without leaking private information via a timing chan-
nel. The paper presents a method for translating anif statement with a secret
branching condition that may not be known to any party. Furthermore, that proto-
col can be optimized using trusted computing, such that the overall performance
of a program executed as a secure computation protocol can be greatly improved.

1 Introduction

Assume two companies each have a sales database and they are interested in identifying
common patterns using data mining techniques, but are afraid to reveal their database,
since it contains information that provides them with a competitive advantage. In an-
other scenario assume, that a multitude of companies is gathering at a provider and they
would like to benchmark their performance, but they are afraid to reveal their perfor-
mance indicators, since it could reveal their processes’ weaknesses and open points of
attack to the competitor. Both of these scenarios are of high interest in the business
world and both of them can be solved with the same technique. Secure computation al-
lows two or more parties to compute a common function such that both parties receive
the result, but keep their inputs private (except what can be inferred from the result).
In the first scenario the inputs are the databases and the common function is the data
mining technique, and in the second scenario the inputs are the performance indicators
and the function is some statistical function, e.g. average, computed over them.

The basis for secure computation is to express the common function to be com-
puted as a binary circuit. Then each gate of the binary circuit can be executed securely
and privately with a secure gate protocol. One can proof by induction that a binary cir-
cuit, even consisting only of exclusive-or and logical-and gates, exists for any binary
input-/output-behavior. This generality leads to the generality of the solution, since any
function can now be computed with a binary circuit.
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This paper suggests a new method of constructing secure computation protocols:
language-based secure computation. The basic idea is to compile a secure computation
protocol directly from the programming language and in doing so exploit the techniques
used in the manual construction of specialized protocols byautomating them. This ap-
proach carries the potential for greater speed of the securecomputation protocols, as
well as increased flexibility in specifying (programming) them. E.g. one could allow
loops with a public loop condition, use a variable number of inputs from the parties (as
long as this number is known to both parties) and use specialized protocols improving
the performance, e.g. for strings.

The contribution of this paper is besides the introduction of the concept of language-
based secure computation, the analysis of the main challenges that need to be overcome
in realizing the approach and the investigation of one majorproblem identified. This
paper will present a protocol for securely and privately computing anif statement,
where the result of the condition expression may not be knownto either party, and then
present an improvement in running time using trusted computing.

The structure of the paper is as follows: The next section will review related work in
more detail giving the necessary references. Section 3 describes the concept of language-
based secure computation. Section 4 elaborates on the problem of translating the control-
flow of a program and section 5 introduces the problem of anif statement with secret
condition, as well as its solutions, the regular one and the optimized one using trusted
computing. The conclusions are presented in section 6.

2 Related Work

2.1 Secure Computation

Secure Computation was introduced in [23]. It introduced the problem of computing
a joint, public functionf(a, b) between two parties Alice and Bob where Alice pri-
vately holdsa and Bob privately holdsb. The problem was solved for general functions
for two parties, but exemplified with the famous Yao’s millionaires’ problem. In Yao’s
millionaires’ problem two millionaires want to compare their wealth, but do not want
to reveal the exact amount to the other party. It therefore computes the “greater-than”
function on private inputs. This paper also introduced the general mechanism of circuit
construction for the functionf(a, b).

Since then the functions to evaluate each gate in the circuithave been generalized
and optimized. Clever generalizations to the multi-party setting with malicious attacker
have been found in the information theoretic setting [4] andthe cryptographic setting
[10]. Many more clever result have been found in subsequent research on optimizing the
protocols with different settings (cryptographic or information theoretic) and different
attackers (semi-honest and malicious) which are not listedhere.

The need for more efficient protocols has been identified a long time ago [9] and
several such protocols have been developed and published inthe literature. Problems
considered range over a wide variety, but the data mining community has been partic-
ularly active. A landmark paper here was [14] introducing the ID3 algorithm. It uses
circuit construction protocols only as sub-protocols and optimizes the overall perfor-
mance and communication.
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2.2 Secure Computation Compilation

The problem of translating a program specifying the function f(a, b) into a secure com-
putation protocol has been addressed in [15]. The paper introduces the FairPlay com-
piler and programming system that compiles a programming language into a register
free, feed-forward only binary circuit that is guaranteed to be oblivious. Next to arith-
metic expressions, it provides programming language constructs:if statements,for
loops, functions, arrays and variable assignments. There are some restrictions on these:
Any expression can be used in theif condition, but both branches are always eval-
uated. The limit offor loops can only be static, not even public data. Functions are
completely inlined and therefore no recursion is allowed. Basic data types are boolean
and integer (ignoring enumerated).

2.3 Language-Based Security

From the vast research on language-based security, including safe programming lan-
guages [7, 12], proof-carrying code [17] etc., this paper ismost interested in research
related to confidentiality policies, especially preventing information flows [20]. An in-
formation flow occurs when the contents of one variable is influenced by the contents of
another variable [6]. Usually variables are arranged into multiple security levels (which
form a lattice) and the objective is to prevent information flow from higher levels to
lower levels. Information flows can be direct (e.g. by assignment), implicit (i.e. follow-
ing from the control structure) or via covert channels (e.g.timing channels). In [21]
a type system to prevent direct and implicit flows is introduced which, of course, can
be statically enforced. I.e. in such a typed language no one can write a program that
violates the security policy by direct or implicit flows. JFlow is an extension to the Java
language that enforces exactly such a language [16]. It alsoprovides features such as
type variables, run-time type checking and type inference to make writing programs
easier. Type systems have been extended to also prevent information flows from covert
channels. Especially timing channels and network messageswhich are interesting to se-
cure computation have been addressed in [19]. [1] introduced the idea of cross-copying
the branches of anif statement with secret condition.

Secure program partitioning addressed the problem of trusting a host to do the com-
putation [24]. Every party defines a set of other parties which it trusts to compute with
its data. Then the program is divided, such that only hosts trusted with the data do the
computation. This ensures that data may only be compromisedby these hosts and that
untrusted hosts do not get access to the data. Nevertheless,differently from secure com-
putation, it requires a trusted (third) party to exist to do the computation, otherwise the
program cannot be compiled in accordance to the policy. Secure computation actually
intends to replace that third party and do computation between mutually distrusting
parties.

35



3 Concept

3.1 Data Classification

Similarly to the classification in information flow, we assign each variable in the com-
mon program source a label. This label is the set of parties that know or may know
the contents of the variable. E.g. in two-party protocols (i.e. Alice and Bob) the labels
are:〈Alice,Bob〉, 〈Alice〉, 〈Bob〉, 〈〉. This naturally extends to multi-party computa-
tion and forms a lattice (as required for many analysis methods). In the remainder of
the paper we will refer to variables and data with three adjectives:

1. public: known to all parties, e.g. with label〈Alice,Bob〉 in the two-party case.
2. private: known to one party, e.g. with label〈Alice〉 or 〈Bob〉.
3. secret: known to no party, i.e. with label〈〉.

3.2 Compilation Process

The compilation process takes a common program source and translates it into two (or
more for multi-party settings) protocol programs. The protocol programs then execute a
secure computation protocol. As described in previous sections such a tool exists [15],
but due to its complicated translation process, it is inflexible and the result often lacks
performance. The proposed approach to translation adopts ideas from compiler writing
and programming language research. Its model of computation is based on common
programming languages which leads to higher flexibility andperformance.

Each party in the computation has a set of variables in which it stores intermediate
computation results. These can be additional variables introduced by the compilation
process or correspond to variables in the common program source. Compared to regular
compilation we can ignore register allocation and spillingif we compile the protocol
programs in another high-level source language.

Then the common program source is translated into building block protocols. These
building block protocols correspond to the machine instructions of regular compilation.
The translation can be done via an intermediate language, ifthat eases translation. There
should be building block protocols for all operations and statements, such as+, −, etc.,
and for each possible assignment of data classifications. I.e. an operationx〈Alice〉 +
y〈Alice〉 is translated into another building block protocol thanx〈Alice〉 + y〈Bob〉 and
x〈〉+y〈〉. This paper will present the building block protocol forif on a secret condition
in Section 5.1.

4 Control-flow

This section will highlight a major challenge in translating programs into secure com-
putation protocols. A program as written in a programming language has a control-flow.
The instantiation of the control-flow, the flow of a particular program run, may depend
on the input data of the program. The problem is that if the control-flow supports ex-
ecuting a particular basic block a variable number of times (depending on input data),
then the number of executions of that basic block “leaks” information about the input.
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In order to obtain that information, the attacker needs to observe the control-flow of the
program. He can do that in two ways:

– Locally, by inspecting the program counter (debugging or emulating the program).
– Remotely (and locally), by timing the program.

A key insight is that the control-flow of the resulting securecomputation proto-
col programs is a transform of the common program. This transform is public and
reversible, i.e. if an attacker is able to inspect the program counter of the protocol
program, he can infer a virtual program counter in the commonprogram. One could
imagine that the control-flow could be split between the two parties, such that only one
party has this equivalence, but this approach only works fora limited set of programs
where that one party may indeed know the control-flow. And forinteractive protocol
programs, the control-flow of both protocol programs has to correspond, since each
message sent must be received by the appropriate, corresponding receptor. This enables
both parties in an interactive protocol to track the control-flow of the common program.

Control-flow obfuscation [22] intends to make the transformhard to analyze. Ex-
cellent results can be obtained against a static adversary,but a dynamic adversary that
is able to execute the program in a debugger or emulator is much more powerful and no
theoretically founded security results exist.

5 if on Secret Data

An important control-flow problem is a simpleif statement, but on secret data, i.e.
neither Alice nor Bob may know the result of the branching condition, because they
could infer information about the inputs not inferable by the result. It is anticipated
that in a reasonably complex program, suchif statements are the rule, and not the
exception.

5.1 if Protocol

The ideas from above can be composed into a language-based protocol for if. We
consider the problem of executing theif statement on secret data, i.e. neither Alice
nor Bob may infer anything about the result. We assume that the problem of computing
operators using language-based protocols has been solved,i.e. such protocols exist.

The first observation is that since the condition is secret, due to the control-flow
dependency all assigned variables in the branches are secret as well. Therefore we
will outline how secret variables are to be stored. We use any2-out-of-2 secret shar-
ing scheme, i.e. both parties need to cooperate to reveal thesecret. Operator protocols
are then defined on the shares and will likely need to result inshares again. The actual
choice of secret sharing scheme may depend on the operators used and be optimized to
increase performance, but some candidates are:

– Exclusive-Or
– Modular addition
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E.g. Alice may have the value6 and Bob may have the value3. The combined 3-bit
secret would be1 = 6+3 mod 8. LetxA be Alice’s andxB be Bob’s share of a variable
x. Then, note that the conditional probabilityPr[x = c|xA] thatx has a certain value
c ∈ Dx given sharexA is equal to the a priori probabilityPr[x = c], i.e. no party gains
any additional information from its share.

Pr[x = c|xA] = Pr[x = c|xB ] = Pr[x = c] =
1

|Dx|

We then assume that the condition for theif statement can be evaluated, such
that the result is shared between Alice and Bob. E.g. letc be a boolean condition (i.e.
0 = false, −1 = true), then from the evaluation ofc Alice obtainscA and Bob
obtainscB , such thatc = cA ⊕ cB . The protocol for theif statement, then reduces
to an Oblivious Transfer where one party may switch the inputs and the other retrieves
according to his share. This is the same protocol used for theevaluation of a logical and
gate in [8], but the difference is in the message being retrieved.

if (c)
b1

else
b2

Fig. 1.if statement.

The translation of theif statement in figure 1 proceeds as follows:

1. Gather all variables being assigned in the “then” branchb1. Let V1 be this set.
2. Gather all variables being assigned in the “else” branchb2. Let V2 be this set.
3. Compute the unionV = V1 ∪ V2 of the two sets.
4. Append to the “then” branchb1 assignments of the formv = v for all v ∈ V\V1.
5. Append to the “else” branchb2 assignments of the formv = v for all v ∈ V\V2.
6. In the “then” branch rename any assigned variablev∈ V tov1. I.e. the assigment of

the formv = exp becomesv1 = exp and every subsequent use of that variable
v in the branch is renamed tov1 as well. Denote the set of renamed variablesv1

by R1.
7. In the “else” branch rename any assigned variablev ∈ V to v2. Similarly rename

subsequent uses of that variable and denote the resulting set by R2.
8. To the current translated protocol programs append code for evaluating the branch-

ing condition, such that the result is shared. Let Alice obtain cA and Bob obtaincB ,
such that the branching conditionc = cA ⊕ cB . Ensure thatcA andcB are fresh
variables, i.e. not used anywhere else in the program.

9. Recursively apply the translation to the two branches: First b1, thenb2. Append
the result of the translation to the end of the current translations. The branches are
non-interfering, since they assign to differently renamedvariables, i.e. they can be
safely executed sequentially. This also implies that both branches will be executed
in the final translated protocol.
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10. Append code to Alice’s protocol program that generates two messagesm0 andm1.
Let m1 be the concatenation of all assigned variables fromb1: m1 = v11, . . . , vn1

∀vi1 ∈ R1. Similarly let m0 be the concatenation of all assigned variables from
b2: m0 = v12, . . . , vn2 ∀vi2 ∈ R2. Such a concatenation is called a variable store,
since it allows later decomposition.

11. Append code to Alice’s protocol program that generates arandom numberrA of
length|m0| = |m1| (the same length as the two messages). Compute two messages
m′

0
= m0 ⊕ rA andm′

1
= m1 ⊕ rA.

12. Append code to Alice’s protocol program that generates two messages:o0 = m′
0⊕cA

,
o1 = m′

1⊕cA
.

13. Append code in Alice’s and Bob’s programs that does an Oblivious Transfer of one
out of (o0, o1). Bob will obtain the messageocB

= m′
cA⊕cB

= mc ⊕ rA.
14. Repeat steps 10 to 13, but with the roles of Alice and Bob interchanged. Let Alice

obtaino′cA
and Bob chooserB . The variable store for Alice’s protocol program is

theno′cA
⊕ rA and for Bob’s protocol program it isocB

⊕ rB .
15. The translation continues with the next statement.

5.2 Trusted Computing Solution

The problem with the previous solution is running time. For every if statement both
branches are always executed. LetO(b1) andO(b2) be the running times of branches
b1 andb2, respectively. Then the running time of theif statement is the sumO(b1) +
O(b2) + δ (δ is the time to execute the common code).

The motivation for executing both branches in secure computation derives from the
attacker’s ability to inspect the program at run-time, i.e.debugging or emulating. This
enables him to trace through the program and determine the branch taken and, since
the compilation process is public, he can determine the branch in the source program
and the result of the condition. This contradicts the secrecy requirement of the condi-
tion. Now, if we remove the ability to inspect the program from the attacker, can we do
better? If the program is executed in a trusted computing processor, it can no longer be
inspected by anyone. A trusted computing processor is capable of receiving encrypted
code and executing it privately, such that no one can inspectit. For this purpose it pub-
lishes a public key, such that software providers can createencrypted versions of their
programs and securely deliver them to the clients. Nevertheless the trusted computing
processor does not remove all side-channels an attacker canobserve. Most notably, the
program’s timing is still observable and may reveal information about the input. In the
only proposed solution for secure computation using trusted computing [3] this has been
recognized, but not solved. The authors assume that the computation is “oblivious” for
which the current solution is to use binary circuits which also execute both branches. In
this section we will outline an algorithm that can achieve better performance.

First, recall the observations that can be made about a program to infer private in-
puts:

– messages
– timing
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Two trusted computing processors can communicate confidentially, if they know the
public key of the other processor or share a common trusted certificate authority. In this
case, they can use any session key establishment protocol togenerate a private session
key they can use to hide the content of the messages. The content is then not observable
to an attacker. The length of the message can be padded to a common maximum length,
such that it does not reveal any information either. The onlyinformation that an attacker
can gain from a message is that the fact that is sent and when, i.e. its timing. We assume
that all building block protocols employ these techniques (padding and encryption).

The approach to secure the timing of the computation can be similar to padding
the length. In the simplest case, one computes the maximum time a computation can
take, then measures the time it actually takes and idles the rest before returning the re-
sult. This can be a very difficult approach, since even elementary operations, such as
multiplication, may not take a uniform time to execute [13],and cache timing can de-
pend on the access pattern of private data [2]. Our algorithmassumes that each building
block protocol used in compiling the source program is oblivious, i.e. it is secure and
of constant time.

For each building block protocolP construct a corresponding dummy protocolP
that has the same observable behaviour (i.e. timing and messages), but no effect on the
computation result. This can e.g. be achieved by the above variable renaming (as in
theif protocol), but then not using the result values. Assign eachbuilding protocol an
unique elementPA, . . . ,PZ . Several building block protocols may have the same ele-
ment as long as they have the same observable behaviour, e.g.a protocols for computing
the product or integer division of two secret inputs. The keyis that for any protocol in
PA neither Alice nor Bob can differentiate which it is and cannot differentiate it from
P. We writeP ≡ P to denote thatP andP are indistinguishable (which includes
encryption and padding as mentioned above).

The translation procedure for theif statement on secret condition is then:

1. Translate each branchbi ∈ {b1, b2}.
2. For each branchbi ∈ {b1, b2} of the secureif statement, compute a sequence

Si = si,0, . . . , si,ni
of the building block protocolsP ∈ {PA, . . . ,PZ} used. Then

compute the supersequenceS = s0, . . . , sδ of S1 andS2. This can be done in time
O(nm), the product of the length of the two sequences.

3. Fill each branch with dummy protocolsP ∈ {PA, . . . ,PZ}, such that they match
the supersequence. I.e. for each symbolsj of the supersequence have a matching
symboltj with tj ≡ sj . Note, that the result of the computation remains unaffected,
but both branches have an observable behaviour identical toS.

4. Create code for a protocolC that is a regularif statement with the two branchesbi

padded toS. Obviously the condition needs to be evaluated securely. Let CA be the
code Alice’s side of the protocol andCB for Bob’s.

5. EncryptCA with the public key of Alice’s trusted computing processor (EA(CA))
andCB with Bob’s (EB(CB)).

6. Insert code in Alice’s protocol program to executeEA(CA) in Alice’s trusted com-
puting processor and similarly in Bob’s protocol program for EB(CB).

The computation complexity of this protocol is linear in thelength |S| of the su-
persequence, which is bounded betweenmax(|S1|, |S2|) ≤ |S| ≤ |S1| + |S2|. We
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can therefore expect some speed-up by this protocol and onlyin the worst case it will
deteriorate to the performance of the protocol without trusted computing.

6 Conclusion

The concept of language-based secure computation was introduced. The major chal-
lenge of securely translating the control-flow was exemplified with the secureif state-
ment protocol and the advantages of language-based secure computation have been
shown by an optimization on that protocol that requires theif statement to be trans-
lated directly. Many of the outlined challenges, e.g. comprehensive proofs and other
control-flow problems, such asfor loops with secret bounds, remain to be solved and
are subject of future research.
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