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Abstract. Assume two parties, Alice and Bob, want to compute a joint function,
but they want to keep their inputs private. This problem setting and its solutions
are known as secure computation. General solutions to secure computation re-
quire the construction of a binary circuit for the function to be computed. This pa-
per proposes the concept of language-based secure computation. Instead of con-
structing a binary circuit program code is directly translated into a secure compu-
tation protocol. This concept is compared to the approaches for language-based
information-flow security and many connections between the two approaches are
identified. The major challenge in this translation is the secure translation of the
program’s control-flow without leaking private information via a timing chan-
nel. The paper presents a method for translating farstatement with a secret
branching condition that may not be known to any party. Furthermore, that proto-
col can be optimized using trusted computing, such that the overall performance
of a program executed as a secure computation protocol can be greatly improved.

1 Introduction

Assume two companies each have a sales database and they are interested in identifying
common patterns using data mining techniques, but are afraid to reveal their database,
since it contains information that provides them with a competitive advantage. In an-
other scenario assume, that a multitude of companies is gathering at a provider and they
would like to benchmark their performance, but they are afraid to reveal their perfor-
mance indicators, since it could reveal their processes’ weaknesses and open points of
attack to the competitor. Both of these scenarios are of high interest in the business
world and both of them can be solved with the same technique. Secure computation al-
lows two or more parties to compute a common function such that both parties receive
the result, but keep their inputs private (except what can be inferred from the result).
In the first scenario the inputs are the databases and the common function is the data
mining technique, and in the second scenario the inputs are the performance indicators
and the function is some statistical function, e.g. average, computed over them.

The basis for secure computation is to express the common function to be com-
puted as a binary circuit. Then each gate of the binary circuit can be executed securely
and privately with a secure gate protocol. One can proof by induction that a binary cir-
cuit, even consisting only of exclusive-or and logical-and gates, exists for any binary
input-/output-behavior. This generality leads to the generality of the solution, since any
function can now be computed with a binary circuit.
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This paper suggests a new method of constructing secureutatigm protocols:
language-based secure computation. The basic idea is foilecarsecure computation
protocol directly from the programming language and in daia exploit the techniques
used in the manual construction of specialized protocolautgmating them. This ap-
proach carries the potential for greater speed of the semmgputation protocols, as
well as increased flexibility in specifying (programmingetn. E.g. one could allow
loops with a public loop condition, use a variable numbemngtiits from the parties (as
long as this number is known to both parties) and use speethfpirotocols improving
the performance, e.g. for strings.

The contribution of this paper is besides the introductitthe concept of language-
based secure computation, the analysis of the main chaliehgt need to be overcome
in realizing the approach and the investigation of one mpjoblem identified. This
paper will present a protocol for securely and privately pating ani f statement,
where the result of the condition expression may not be krntovaither party, and then
present an improvement in running time using trusted comgut

The structure of the paper is as follows: The next sectiohrexwiew related work in
more detail giving the necessary references. Section 3idesthe concept of language-
based secure computation. Section 4 elaborates on thepralbtranslating the control-
flow of a program and section 5 introduces the problem dffastatement with secret
condition, as well as its solutions, the regular one and giermzed one using trusted
computing. The conclusions are presented in section 6.

2 Related Work

2.1 Secure Computation

Secure Computation was introduced in [23]. It introducesl phoblem of computing
a joint, public functionf(a, b) between two parties Alice and Bob where Alice pri-
vately holdsa and Bob privately holds. The problem was solved for general functions
for two parties, but exemplified with the famous Yao's mifiares’ problem. In Yao's
millionaires’ problem two millionaires want to compare itheealth, but do not want
to reveal the exact amount to the other party. It thereforapzdes the “greater-than”
function on private inputs. This paper also introduced thieegal mechanism of circuit
construction for the functiof(a, b).

Since then the functions to evaluate each gate in the cinewi¢é been generalized
and optimized. Clever generalizations to the multi-paetyisg with malicious attacker
have been found in the information theoretic setting [4] #relcryptographic setting
[10]. Many more clever result have been found in subseqgesetarch on optimizing the
protocols with different settings (cryptographic or infaation theoretic) and different
attackers (semi-honest and malicious) which are not lisezd.

The need for more efficient protocols has been identified g tone ago [9] and
several such protocols have been developed and publishéé iiterature. Problems
considered range over a wide variety, but the data mininghwanity has been partic-
ularly active. A landmark paper here was [14] introducing tB3 algorithm. It uses
circuit construction protocols only as sub-protocols aptmizes the overall perfor-
mance and communication.
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2.2 Secure Computation Compilation

The problem of translating a program specifying the funcfiu, b) into a secure com-
putation protocol has been addressed in [15]. The paperdntes the FairPlay com-
piler and programming system that compiles a programminguage into a register
free, feed-forward only binary circuit that is guaranteedé oblivious. Next to arith-
metic expressions, it provides programming language oactsti f statementsf or
loops, functions, arrays and variable assignments. Thersame restrictions on these:
Any expression can be used in thé condition, but both branches are always eval-
uated. The limit off or loops can only be static, not even public data. Functions are
completely inlined and therefore no recursion is allowedsiB data types are boolean
and integer (ignoring enumerated).

2.3 Language-Based Security

From the vast research on language-based security, ingludife programming lan-
guages [7, 12], proof-carrying code [17] etc., this papendst interested in research
related to confidentiality policies, especially prevegtinformation flows [20]. An in-
formation flow occurs when the contents of one variable isierfted by the contents of
another variable [6]. Usually variables are arranged indtipie security levels (which
form a lattice) and the objective is to prevent informaticowflfrom higher levels to
lower levels. Information flows can be direct (e.g. by assignt), implicit (i.e. follow-
ing from the control structure) or via covert channels (é#ming channels). In [21]
a type system to prevent direct and implicit flows is introglievhich, of course, can
be statically enforced. l.e. in such a typed language no anewgite a program that
violates the security policy by direct or implicit flows. &kl is an extension to the Java
language that enforces exactly such a language [16]. It@i®ddes features such as
type variables, run-time type checking and type infereacenake writing programs
easier. Type systems have been extended to also prevemhatfon flows from covert
channels. Especially timing channels and network messalgies are interesting to se-
cure computation have been addressed in [19]. [1] intraditioe idea of cross-copying
the branches of anf statement with secret condition.

Secure program partitioning addressed the problem ofriguathost to do the com-
putation [24]. Every party defines a set of other parties Wititrusts to compute with
its data. Then the program is divided, such that only hoatsdd with the data do the
computation. This ensures that data may only be compronhigéldese hosts and that
untrusted hosts do not get access to the data. Neverthdiésiently from secure com-
putation, it requires a trusted (third) party to exist to de tcomputation, otherwise the
program cannot be compiled in accordance to the policy. i@emmputation actually
intends to replace that third party and do computation betwautually distrusting
parties.
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3 Concept

3.1 Data Classification

Similarly to the classification in information flow, we assigach variable in the com-
mon program source a label. This label is the set of partiaskhow or may know
the contents of the variable. E.g. in two-party protocals. (Alice and Bob) the labels
are: (Alice, Bob), {Alice), (Bob), (). This naturally extends to multi-party computa-
tion and forms a lattice (as required for many analysis maghdn the remainder of
the paper we will refer to variables and data with three dijjes:

1. public: known to all parties, e.g. with labéHlice, Bob) in the two-party case.
2. private known to one party, e.g. with labéHlice) or (Bob).
3. secret known to no party, i.e. with labég).

3.2 Compilation Process

The compilation process takes a common program source amgldtes it into two (or
more for multi-party settings) protocol programs. The pool programs then execute a
secure computation protocol. As described in previousaessuch a tool exists [15],
but due to its complicated translation process, it is inflexand the result often lacks
performance. The proposed approach to translation adiges from compiler writing
and programming language research. Its model of compuotédibased on common
programming languages which leads to higher flexibility padformance.

Each party in the computation has a set of variables in whistoies intermediate
computation results. These can be additional variablesdated by the compilation
process or correspond to variables in the common programecdompared to regular
compilation we can ignore register allocation and spillihgge compile the protocol
programs in another high-level source language.

Then the common program source is translated into buildiogkiprotocols. These
building block protocols correspond to the machine ingtoms of regular compilation.
The translation can be done via an intermediate languatigti€ases translation. There
should be building block protocols for all operations aratesnents, such as, —, etc.,
and for each possible assignment of data classificatiogisah operation: 4s;ce) +
Y(Alice) 1S translated into another building block protocol thany;..y + y(sosy and
x(y+yy- This paper will present the building block protocol fdr on a secret condition
in Section 5.1.

4  Control-flow

This section will highlight a major challenge in translatiprograms into secure com-
putation protocols. A program as written in a programmimggylaage has a control-flow.
The instantiation of the control-flow, the flow of a partiautsgogram run, may depend
on the input data of the program. The problem is that if thetrobflow supports ex-

ecuting a particular basic block a variable number of tinteepénding on input data),
then the number of executions of that basic block “leaksdiimfation about the input.
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In order to obtain that information, the attacker needs seole the control-flow of the
program. He can do that in two ways:

— Locally, by inspecting the program counter (debugging oukatmg the program).
— Remotely (and locally), by timing the program.

A key insight is that the control-flow of the resulting secemmputation proto-
col programs is a transform of the common program. This feansis public and
reversible, i.e. if an attacker is able to inspect the pnogmunter of the protocol
program, he can infer a virtual program counter in the commpragram. One could
imagine that the control-flow could be split between the tadips, such that only one
party has this equivalence, but this approach only worksafiimited set of programs
where that one party may indeed know the control-flow. Andifiberactive protocol
programs, the control-flow of both protocol programs hasdoespond, since each
message sent must be received by the appropriate, cordisgaaceptor. This enables
both parties in an interactive protocol to track the contimv of the common program.

Control-flow obfuscation [22] intends to make the transfdrand to analyze. Ex-
cellent results can be obtained against a static advetsairg, dynamic adversary that
is able to execute the program in a debugger or emulator isimace powerful and no
theoretically founded security results exist.

5 i f on Secret Data

An important control-flow problem is a simplef statement, but on secret data, i.e.
neither Alice nor Bob may know the result of the branchingditon, because they
could infer information about the inputs not inferable by tresult. It is anticipated
that in a reasonably complex program, sudh statements are the rule, and not the
exception.

5.1 if Protocol

The ideas from above can be composed into a language-basedgrfori f . We
consider the problem of executing thé statement on secret data, i.e. neither Alice
nor Bob may infer anything about the result. We assume tlegbtbblem of computing
operators using language-based protocols has been sbéesiich protocols exist.

The first observation is that since the condition is secna¢, @ the control-flow
dependency all assigned variables in the branches aret secieell. Therefore we
will outline how secret variables are to be stored. We useZaoyt-of-2 secret shar-
ing scheme, i.e. both parties need to cooperate to reveaktiret. Operator protocols
are then defined on the shares and will likely need to resughares again. The actual
choice of secret sharing scheme may depend on the operatmsand be optimized to
increase performance, but some candidates are:

— Exclusive-Or
— Modular addition
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E.g. Alice may have the valug and Bob may have the valie The combined 3-bit

secretwould bé = 643 mod 8. Letxz 4 be Alice’s andc 5 be Bob's share of a variable
x. Then, note that the conditional probabiliBr[z = c|z 4] thata has a certain value
¢ € D, given share: 4 is equal to the a priori probabilityr [z = ¢], i.e. no party gains

any additional information from its share.

1
D |

We then assume that the condition for the statement can be evaluated, such
that the result is shared between Alice and Bob. E.g: ¢ a boolean condition (i.e.
0 = false, —1 = true), then from the evaluation of Alice obtainsc, and Bob
obtainscg, such thatt = c4 @ ¢p. The protocol for thé f statement, then reduces
to an Oblivious Transfer where one party may switch the isund the other retrieves
according to his share. This is the same protocol used fa@uhakeiation of a logical and
gate in [8], but the difference is in the message being ratde

Prix = c|lza] = Priz = clzp] = Prjz = (]

if (c)
b:

el se
b2

Fig.1.i f statement.

The translation of thef statement in figure 1 proceeds as follows:

. Gather all variables being assigned in the “then” bramch et V; be this set.

. Gather all variables being assigned in the “else” brdanch.et V, be this set.

. Compute the uniok = V; U V, of the two sets.

. Append to the “then” brandly, assignments of the form = v forallv € V\V;.

. Append to the “else” brandhy, assignments of the form = v forallv € V\ Vs.

. Inthe “then” branch rename any assigned varigtdeV tov,. |.e. the assigment of
the formv = exp becomew; = exp and every subsequent use of that variable
v in the branch is renamed to as well. Denote the set of renamed variables
by R;.

7. In the “else” branch rename any assigned variabte V to v,. Similarly rename

subsequent uses of that variable and denote the resultiby Be.

8. To the current translated protocol programs append aodevéluating the branch-
ing condition, such that the result is shared. Let Alice mbta and Bob obtair g,
such that the branching conditien= c4 @ cp. Ensure that, andcg are fresh
variables, i.e. not used anywhere else in the program.

9. Recursively apply the translation to the two branchesstbi;, thenbs. Append

the result of the translation to the end of the current tetimis. The branches are

non-interfering, since they assign to differently renamadables, i.e. they can be
safely executed sequentially. This also implies that bom&hes will be executed
in the final translated protocol.

U WNPEF
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Append code to Alice’s protocol program that generatesthessages:, andm;.

Let m; be the concatenation of all assigned variables fbamm; = v11,..., v,

Vu;1 € Ry. Similarly let mg be the concatenation of all assigned variables from
bs: mg = v19, ..., vp2 Vv € Ry, Such a concatenation is called a variable store,
since it allows later decomposition.

Append code to Alice’s protocol program that generateendom number 4 of
length|mg| = |m4| (the same length as the two messages). Compute two messages
my =mo D raandmi =m; ®ra.

Append code to Alice’s protocol program that generavesnessages, = mgg,.. , »

01 = Mg,

Append code in Alice’s and Bob’s programs that does aiividobk Transfer of one
out of (0g, 01). Bob will obtain the message , = m/, .., = mc ® 74.

Repeat steps 10 to 13, but with the roles of Alice and Btdréhanged. Let Alice
obtaino,, and Bob chooseg. The variable store for Alice’s protocol program is
theno,,, @ r4 and for Bob's protocol program it is., @ rp.

The translation continues with the next statement.

5.2 Trusted Computing Solution

The problem with the previous solution is running time. Feerg i f statement both
branches are always executed. [CHb;) andO(b2) be the running times of branches
b, andb,, respectively. Then the running time of thé statement is the sud(b,) +
O(b2) + ¢ (0 is the time to execute the common code).

The motivation for executing both branches in secure coatjmut derives from the

attacker’s ability to inspect the program at run-time, debugging or emulating. This
enables him to trace through the program and determine toechrtaken and, since
the compilation process is public, he can determine thedbrémthe source program
and the result of the condition. This contradicts the sgcrequirement of the condi-
tion. Now, if we remove the ability to inspect the programmfrthe attacker, can we do
better? If the program is executed in a trusted computinggssor, it can no longer be
inspected by anyone. A trusted computing processor is taypdlbeceiving encrypted
code and executing it privately, such that no one can inspeedr this purpose it pub-
lishes a public key, such that software providers can createypted versions of their
programs and securely deliver them to the clients. Nevieskahe trusted computing
processor does not remove all side-channels an attackabsanve. Most notably, the
program’s timing is still observable and may reveal infotim@about the input. In the
only proposed solution for secure computation using toistenputing [3] this has been
recognized, but not solved. The authors assume that thewtatign is “oblivious” for
which the current solution is to use binary circuits whicéoegxecute both branches. In
this section we will outline an algorithm that can achievidrgperformance.

First, recall the observations that can be made about agotp infer private in-

puts:

— messages
— timing
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Two trusted computing processors can communicate coniidigntf they know the
public key of the other processor or share a common trusttificate authority. In this
case, they can use any session key establishment protogehé&vate a private session
key they can use to hide the content of the messages. Thent@itleen not observable
to an attacker. The length of the message can be padded toraaromaximum length,
such that it does not reveal any information either. The arftyrmation that an attacker
can gain from a message is that the fact that is sent and wheits timing. We assume
that all building block protocols employ these techniquesdfling and encryption).

The approach to secure the timing of the computation canrb#asito padding
the length. In the simplest case, one computes the maximuamadi computation can
take, then measures the time it actually takes and idlesgtédefore returning the re-
sult. This can be a very difficult approach, since even el¢amgroperations, such as
multiplication, may not take a uniform time to execute [1&)d cache timing can de-
pend on the access pattern of private data [2]. Our algorssumes that each building
block protocol used in compiling the source program is ablig, i.e. it is secure and
of constant time.

For each building block protocd? construct a corresponding dummy proto@ol
that has the same observable behaviour (i.e. timing andages} but no effect on the
computation result. This can e.g. be achieved by the abosrabla renaming (as in
thei f protocol), but then not using the result values. Assign daidlding protocol an
unique elemenP,4, ..., Pz. Several building block protocols may have the same ele-
ment as long as they have the same observable behaviourpeajocols for computing
the product or integer division of two secret inputs. The isethat for any protocol in
‘P 4 neither Alice nor Bob can differentiate which it is and candifferentiate it from
P. We write ? = P to denote that? and P are indistinguishable (which includes
encryption and padding as mentioned above).

The translation procedure for thé statement on secret condition is then:

1. Translate each branéhe {b;,b-}.

2. For each branch; € {b;,b,} of the securé f statement, compute a sequence
S; = 8i.0,-- -, 8in, Of the building block protocol® € {Py4, ..., Pz} used. Then
compute the supersequenge- s, ..., ss of S; andSs. This can be done in time
O(nm), the product of the length of the two sequences.

3. Fill each branch with dummy protocd € {Pa, ..., Pz}, such that they match
the supersequence. |.e. for each symbobf the supersequence have a matching
symbolt; with t; = s;. Note, that the result of the computation remains unaftgcte
but both branches have an observable behaviour identi¢al to

4. Create code for a protoc@lthat is a regular f statement with the two branchis
padded taS. Obviously the condition needs to be evaluated securety L ée the
code Alice’s side of the protocol arit}; for Bob's.

5. EncryptC4 with the public key of Alice’s trusted computing processis(C4))
andCp with Bob's (E5(Cg)).

6. Insert code in Alice’s protocol program to execiitg(C 4 ) in Alice’s trusted com-
puting processor and similarly in Bob’s protocol program &y (C).

The computation complexity of this protocol is linear in tleagth |S| of the su-
persequence, which is bounded betweenx(|S1],]S52]) < |S| < |S1] + |S2|. We
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can therefore expect some speed-up by this protocol andimotiie worst case it will
deteriorate to the performance of the protocol withoutttd€omputing.

6 Conclusion

The concept of language-based secure computation waslilced. The major chal-
lenge of securely translating the control-flow was exeneglifvith the securef state-
ment protocol and the advantages of language-based semmgutation have been
shown by an optimization on that protocol that requiresithestatement to be trans-
lated directly. Many of the outlined challenges, e.g. cazhpnsive proofs and other
control-flow problems, such dr loops with secret bounds, remain to be solved and
are subject of future research.
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