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Abstract. In this paper, an incremental algorithm which is derived from Non-
ϒnegative Matrix Factorization (NMF) is proposed for background modeling in 
surveillance type of video sequences.  The adopted algorithm, which is called as 
Incremental NMF (INMF), is capable of modeling dynamic content of the 
surveillance video and controlling contribution of the subsequent observations 
to the existing representation properly. INMF preserves additive, parts-based 
representation, and dimension reduction capability of NMF without increasing 
the computational load. Test results are reported to compare background 
modeling performances of batch-mode and incremental NMF in surveillance 
type of video. Moreover, test results obtained by the incremental PCA are also 
given for comparison purposes. It is shown that INMF outperforms the 
conventional batch-mode NMF in all aspects of dynamic background modeling. 
Although object tracking performance of INMF and the incremental PCA are 
comparable, INMF is much more robust to illumination changes. 

1 Introduction 

Automatic visual tracking in surveillance video sequences has been an important 
research area. The fundamental step of this problem is modeling the statistical 
properties of background successfully and adapting the background representation to 
content changes experienced in the latter stages of the video scene [1].  

Background modeling of samples obtained from outdoor surveillance video 
sequences may be more challenging as the illumination is very likely to change 
throughout the scene. Moreover, the variety among the semantic features of scene 
objects, such as their size, relative motion, occlusion, etc. make the problem even 
harder. Therefore, the background modeling algorithm should be robust against 
distortions caused by illumination, as well as having the ability of adapting to 
dynamic background changes and modifying the former background representation 
according to content changes. What is meant by a dynamic change is entrance/leaving 
of an object into/from the scene or changes in object’s motions. For instance, when a 
mobile object in the scene stops, the algorithm should integrate that object into the 
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background model as soon as possible. In contrast, a formerly stable object should be 
treated as a foreground object immediately after it moves. 

Nonnegative Matrix Factorization (NMF), with its ability to reduce dimension and 
extract intuitive features in an efficient and simple way, is a powerful decomposition 
technique. Furthermore, its constraint of non-negativity makes NMF an intuitive, 
parts-based representation by allowing only additive combinations of the basis vectors 
[2], [3]. This is why NMF attracted interest of researchers in several applications 
including face recognition [4], and biomedical applications [3].  

NMF’s prior success in revealing latent features in data and its dimension 
reduction capability makes it a hot prospect for video applications. Thus, we propose 
usage of NMF for the statistical modeling of background in surveillance video. 
However, the conventional NMF with its batch nature is not suitable for video content 
representation. Therefore, in [5] an incremental NMF algorithm (INMF) which is 
suitable to video analysis is introduced. In this paper INMF is adopted to the 
statistical background modeling problem and an on-line algorithm which allows 
dynamic updating of the background model in surveillance video is derived. 

In the literature, there is a number of work on statistical modeling of the 
background. In [6], incremental principal component analysis (IPCA) is proposed for 
dynamic background modeling. In addition, there are also other algorithms which use 
the batch-mode PCA [7], or robust PCA [6] for the background modeling.  As of our 
knowledge, there is no reported work that uses NMF with the same objective. 

The paper is organized as follows: Necessary mathematical definitions and 
difficulties with the conventional NMF are given in section 2. In Section 3, the 
incremental NMF is described. After summarizing usage of the incremental PCA 
algorithm for background modeling in Section 4, test results are reported in Section 5. 
The final remarks are given in Section 6. 

2 The Conventional Non-negative Matrix Factorization 

2.1 Mathematical Definitions  

The aim of non-negative matrix factorization (NMF), with rank r, is to decompose the 
data matrix mn×∈RV  into two matrices; which are rn×∈RW , also called as the 
mixing matrix, and mr×∈RH , named as the encoding matrix [2],[3]. 

WHV ≈  (1) 

As it is formulated in Eq. (1), NMF aims to find an approximate factorization that 
minimizes the reconstruction error. Different cost functions based on the 
reconstruction error have been defined in the literature, but because of its simplicity 
and effectiveness, the squared error given in Eq. (2) is used in this work.  
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where subscription ij stands for the ijth matrix entity. 
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In order to minimize the mean squared error F, which is a convex function of W 
and H separately, Lee and Seung offered the multiplicative update rules given in    
Eq. (3), where t refers to the iteration number, T denotes the transpose, a = 1,2,…,r ;   
i = 1,2,….,n, and j = 1,2,…,m.   
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2.2 Difficulties with the Conventional NMF 

By offering dimension reduction as well as giving intuitive, additive and parts-based 
representations of the data, NMF can be considered as an efficient method for video 
processing. However, the conventional NMF requires re-execution of the algorithm 
repeatedly as each new frame arrives, if the background representation is to be 
updated. The effect of this on computational complexity has two aspects. Firstly, as 
new frames are gathered, the rank of the data matrix V and correspondingly the rank 
of the encoding matrix H increase, causing an increase in the number of update 
operations per iteration. Secondly, bigger ranks for matrices V and H will obviously 
increase the computational load, as there are matrix multiplications in the update 
formulas. Besides, as it is shown in Eq.(3), storing the matrix V is a necessity for 
batch-mode NMF, since V is used in update operations of both W and H. This 
requirement is another reason that makes batch NMF impractical for video 
processing. Therefore, a proper incremental NMF algorithm which is able to update 
the previous representations of video according to the last arrived frame without 
causing a heavy workload is introduced in [5].   

    Regarding the background modeling problem in surveillance video, in the batch-
mode NMF, the effect of each sample (frame) on the representation is the same, 
which may cause a difficulty in tracking the dynamic content changes throughout the 
scene. This is because an efficient background modeling scheme should be capable of 
assigning higher weights to the recent frames while it reduces the effect of old frames 
in the representation properly. Therefore, in this paper we propose a scheme that 
adopts INMF algorithm [5] to the dynamic background modeling problem. It is 
achieved by deriving an exponential weighting scheme which allows timely tracking 
the dynamic background changes. The proposed algorithm is presented in the next 
section. 

3 Dynamic Background Modeling by Incremental NMF 

The background modeling scheme should be able to make the representation adaptive 
for content changes, without increasing the computation load. Thus, an incremental-
mode algorithm that updates the current representation as each new frame is received 
would answer the requirements. In the following paragraphs, we describe the 
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proposed algorithm which adopts incremental NMF [5] to the background modeling 
problem.  

Since the data matrix is constructed by cascading the frames, a new frame will add 
a new column to both the matrices V and H shown in Eq. (1). Moreover, in each step, 
the mixing matrix W  should be updated with the contribution of the new frame.  To 
achieve this, first of all, effect of the new frame (sample) on the cost function should 
be examined.  

Let F defined in Eq.(2) be the cost function of m frames; thus is denoted as mF . 
Similarly, the matrices V, W and H shown in Eq.(2) which are calculated for the first 
m frames are denoted by mV , mW and mH , respectively. As a new sample ((m+1)th 
frame) v arrives, a new component that formulizes reconstruction error of v is added 
to the cost function as it is shown in Eq.(4). In Eq.(4) iv  refers the ith element of v and 

ah  denotes the ath component of h, which is the new column of the encoding matrix. 
In Eq.(4) we introduce a parameter, α, which is crucial in controlling the algorithm’s 
ability to adapt to dynamic content changes. α can take any value in the interval (0,1).  
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In order to obtain a NMF representation for the new data matrix ( )1
1 R +×
+ ∈ mn

mV , 

we need to minimize 1mF +  with respect to 1m+W and 1m+H . Since the cost function 

1mF +  defined in Eq.(4) is a convex function of 1m+W  and 1m+H  separately, as it is 
used for the conventional NMF [3], we can use the gradient descent algorithm in the 
optimization. Note that each frame in 1m+V  is reconstructed by the help of the 
corresponding column of the encoding matrix 1m+H ,  thus we just need to take the 

derivatives with respect to ah , and iaW which refers to the iath entity  of the mixing 
matrix 1m+W . Taking the partial derivatives and choosing a proper step size yields the 
update rules given in Eq.(5) [5]. 
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Note that, unlike the conventional NMF that requires updating all the elements of 
1m+W and 1m+H , whenever the (m+1)th frame arrives, INMF does not need to update 

all elements of the encoding matrix 1m+H  for the previous frames, but only the 
components corresponding to the new frame are updated. As a result, the number of 
updating per iteration is fixed, that significantly reduces the computational 
complexity. Furthermore, since the matrices mV  and mH remain the same throughout 

the iterations, the algorithm computes the multiplications T
m mV H  and T

m mH H  once, 
which also reduces the complexity. Update iterations are repeated till convergence 
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and the basis matrix mW  is used as the initial state for running the algorithm when the 
(m+1)th frame is received. 

In order to adopt the presented incremental NMF algorithm to the background 
modeling problem, role of α should be examined in detail. Let m be the number of 
surveillance frames that used for constructing the initial background representation. 
Consequently mF  becomes the cost function corresponding to the m background 

frames and m kf + denotes the reconstruction error of the (m+k)th frame. Following this 
notation, generalization of Eq.(4) for m+k frames is straightforward and yields Eq.(6): 
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Note that α controls algorithm’s adaptability to content changes. Because α is 
selected in the interval (0,1) , it is straightforward to rank the weights of each frame on 
the background representation by Eq.(7) 

( ) ( ) ,...11 21 ααααα <<−<− −− kk  (7) 

where ( ) kiik ,...,2,1,1 =− −αα  denotes the weighting factor of (m+i)th frame. 
It should be emphasized that when the number of observed frames, k, increases, 

effect of the initial background model on the new representation decreases. 
Furthermore, effect of the earlier frames on the representation is smaller than the 
latest frames, resulting in an adaptive background modeling. We can control 
adaptation rate of the model to dynamic changes by α. For bigger α, the influence of 
the last observation on the factorization will be higher. 

4 Statistical Background Modeling by Incremental PCA 

Principal Component Analysis (PCA) is a method often used to build a low-
dimensional representation space spanned by a set of orthogonal vectors. The 
conventional methods of PCA operate in batch mode. The incremental PCA (IPCA) 
algorithm extends the static version of PCA modeling to a dynamic and adaptive 
method by introducing an incremental updating scheme.  In this work, the IPCA 
algorithm proposed in [6] is implemented for dynamic background modeling. Test 
results obtained by the IPCA and by the proposed INMF are evaluated for comparison 
purposes. 
    Let C be the nn × covariance matrix of the data where n is the number of frames 
used for background modeling.  It is shown that equality described in Eq.(8) is hold 
when a matrix W contains the eigenvectors of C as its columns, and Λ  is a diagonal 
matrix of eigenvalues.  

WΛCW = . (8) 

    Conventionally, the eigenvectors corresponding to the highest eigenvalues, thus 
r columns of W where r<n are used in the PCA representation of a dynamic 
background.  
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      After construction of the background model, a new data vector v′  can be 
projected as ( )μvWh −′= T , where μ  is the mean vector. The foreground objects 
are represented by the reconstruction error, μ+−′= WhvF . 

For dynamic background modeling by IPCA, the impact of the new image must be 
added to the current model by using an appropriate updating rule. When a new 
observation vector v′ is received, the mean PCA vector can be updated as in Eq.(9).  

( ) ( )vμvμμnew ααα −+=′−+= 11 . (9) 

whereα and α−1 are the updating weights that determines contribution of the 
previous and new observations to the background representation, respectively. As it is 
shown in Eq.(9), where v denotes the new mean-normalized observation data vector, 
the effects of the old frames on the representation decay exponentially over time. 
Selection of the parameter α  is application-dependent and has to be decided 
experimentally. 
    Consequently, the new covariance matrix Tnew AAC = can be formed by 1+r  
observation vectors where the matrix A and its entities are described by Eq.(10). Note 
that all of the entities except 1ry +  are approximated from the eigenvectors of the 
current model. 

[ ]11,..., += ryyA ,       iii wy αλ= ,       vα−=+ 11ry   ri K1= . (10) 

      Eigenvectors and eigenvalues of the background model are updated by eigen-
decomposition of the new covariance matrix. Instead of nn ×  matrix newC , using 
( ) ( )11 +×+ rr  matrix AAB T= for eigen-decomposition problem and then 
multiplying both sides by A leads to Eq. (11). 

    ii
T eAAeAA new

iλ= . (11) 

By defining i
new
i Aew = , eigen-decomposition of newC , which requires calculation of 

new eigenvectors new
iw  and new eigenvalues new

iλ  of the model, can be completed. 

5 Test Results 

In order to compare the performances of batch-mode NMF, INMF and incremental 
PCA on dynamic background modeling in surveillance type of video, several tests are 
carried out on the surveillance video sequences taken from PET2001 database [8]. 

First test is performed to evaluate the effect of α  on the INMF’s background 
representation. Figure 1(a) illustrates distribution of the reconstruction error of each 
frame, fm, versus frame number for two different α  values. The incremental nature of 
the algorithm, which makes the effects of the previous frames decay exponentially, 
allows the choice of a small rank to represent the background adequately. Thus, rank 
of the representation is set to r=2. The sequence used in this test contains the frames 
from 800 to 1500 of dataset1 training camera1 sequence of PETS2001 database. First 
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10 frames are used for the background representation. Small fm values until frame no 
900 shown in Figure 1(a) illustrate that the initial background representation is 
successful. Moreover, when a motion is detected in the scene, the plot starts to 
fluctuate.  The significant increases in the plot correspond to appearance of a new 
foreground object whereas the sharp drops refer to the stopping objects that integrated 
into the background representation. As it is expected, when the contribution of the last 
observation is small means for smaller values ofα , the reconstruction error reaches to 
higher levels without a major change in the characteristics of the distribution (Figure 
1(a)). It should also be noted that, since consecutive frames are very similar in 
surveillance video, convergence is quickly achieved in a small iteration number. 

We have tested the dynamic background modeling performances of the batch NMF 
and the proposed incremental NMF representations on the same video frames.  Rank 
is set to r=2 for both models and α  is set to 0.2 for INMF. Figure 1(b) illustrates 
distribution of the reconstruction error versus frame number. It is observable that the 
reconstruction error of INMF remains much smaller than that of batch NMF. 
Furthermore, although the error is small for both decompositions at the beginning, it 
never drops to the initial value for the batch NMF. This is because the batch process 
cannot adapt the background representation according to content changes properly. 
This makes it unsuitable to an on-line video content analysis. However, the proposed 
incremental NMF is capable of updating the initial background model according to 
the dynamic changes. For this reason, the reconstruction error drops to the initial 
value whenever all of the moving objects become part of the background.  

Figure 2 visually demonstrates performance in tracking the foreground objects and 
updating the background model for the NMF, INMF and IPCA. Figure 2(a) illustrates 
frame 971 taken from the dataset1 training camera 1 video sequence of PETS2001 
dataset. In this frame, a new car (car 1) enters to the scene as the green car (car 2) in 
the corner starts to leave from the parking lot. In Figure 2b, which corresponds to 
frame number 1436, car 1 parked to a slot next to the red car and stopped. Car 2 left 
out its parking slot and moved to the left, thus it is about leaving the scene. In 
addition, two new walking men exist in this frame. Therefore, it is expected that a 
powerful method should detect the moving objects which are the two men and car 2 in 
this scene. In fact, as it is shown in Figure 2(c), (d) and (e), three of the methods are 
capable of detecting these foreground objects. However, as it is observable in Figure 
2(c), the batch NMF also detects the parked car 1 as a foreground object. 
Furthermore, the old location of car 2 is also not cleared. The reason for their 
existence is that the batch NMF is not capable of updating the background model and 
fails to include car 2 into the background model and to remove car 2’s old location 
from the background. However, adaptive updating of the background model is 
achieved by the INMF successfully (Figure 2(d)). Hence, the proposed INMF is 
capable of controlling the algorithm’s adaptability to dynamic content changes. As it 
can be seen in Figure 2(e), the IPCA shows a similar performance. 
      Superiority of the INMF on IPCA becomes much clearer under the illumination 
changes that may frequently occur in an outdoor surveillance video scene. The 
distribution of fm for the frames 2600 to 2990 of dataset2 training camera 2 of 
PETS2001 database is plotted in Figure 3. Plots are obtained by the INMF with r=2, 
α =0.05 and IPCA with r=2, α =0.95. As it is shown, the minimum reconstruction 
error obtained by the IPCA remains much higher than the error of INMF. Furthermore 
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it makes peaks when the illumination changes significantly. However the minimum 
reconstruction error achieved by the INMF remains stable within the same video clip. 
Weakness of the IPCA and robustness of the INMF are visually observable from the 
Figure 4. Figure 4(a) and (b) illustrate the original video frames 2635 and 2874, 
respectively. Illumination difference between these frames is recognizable. Figures 
4(c) and (d) show the reconstructed difference image obtained by the IPCA with r=2, 
α =0.95 and obtained by the INMF with r=2, α =0.05, respectively. INMF’s ability 
to remodel the background by adapting it to the illumination changes avoids the 
appearance of the noise components (Figure 4(d)) that are clearly visible in the scaled 
difference image for IPCA representation (Figure 4(c)).  The main reason behind why 
IPCA fails in adopting the background to the illumination changes is theoretically 
IPCA modeling assumes the transformed frames constitute a Gaussian cluster and as 
it is given by Eq.(10), mean vector of the Gaussian  is updated at each iteration. 
However, illumination changes significantly move the mean vector that can not be 
incrementally compensated by the IPCA. 

6 Conclusions 

In this paper, a new approach for dynamic background modeling problem which is 
based on non-negative matrix factorization is proposed. The proposed representation 
allows modeling the background successfully and adapting the dynamic scene 
changes into the background model properly.  

Comparison between the conventional batch NMF, the proposed incremental NMF 
and the incremental PCA representation has been made in order to demonstrate the 
INMF’s success in video surveillance applications. It is concluded that the INMF is 
much more robust to illumination changes than the IPCA. Test results demonstrate 
that the INMF is capable of adapting to dynamic background changes within around 
0.5 seconds.  Currently we are working on deriving new functions in order to decrease 
the adaptation delay to the order of milliseconds. 
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(a)                                                                       (b) 

Fig. 1. (a) Distribution of fm for different α  values in INMF representation versus frame 
number (r=2, frames from 800 to 1500). (b) Distribution of fm versus frame number for INMF 
with r=2, α =0.2 and for batch-NMF with r = 2 (frames from 800 to 1500). 

 

 
Fig. 3. Distribution of fm with respect to frame number (frames from 2600 to 2900). The INMF 
with r=2, α =0.05 and IPCA with r=2, α =0.95 are used for comparison of robustness to 
illumination changes. 
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    (a)      (b) 

   
   (c)   (d)   (e)  

Fig. 2 (a) Original video frame 971. (b) Original video frame 1436. Reconstructed difference 
image obtained for the frame 1436 (c) by batch NMF with r=2, (d) by INMF with r=2, α =0.2 
and (e) by IPCA with space size r=2, α =0.8. 

 

  
(a)         (b) 

  
    (c)         (d) 

Fig. 4. Robustness to illumination changes: (a) Original video frame 2635. (b) Original video 
frame 2874. (c) Reconstructed difference image obtained by IPCA with r=2, α =0.95 for the 
video frame shown in (b). (d) Reconstructed difference image obtained by INMF with r=2, 
α =0.05 for the video frame shown in (b). 
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