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Abstract. The naive Bayes and maximum entropy approaches to text classifi-
cation are typically discussed as completely unrelated techniques. In this paper,
however, we show that both approaches are simply two different ways of doing
parameter estimation for a common log-linear model of class posteriors. In par-
ticular, we show how to map the solution given by maximum entropy into an
optimal solution for naive Bayes according to the conditional maximum likeli-
hood criterion.

1 Introduction

The naive Bayes and maximum entropy text classifiers are well-known techniques for

text classification [1, 2]. Both techniques work with text documents represented as word
counts. Also, both are log-linear decision rules in which an independent parameter is
assigned to each class-word pair so as to measure their relative degree of association.
Apparently, the only significant difference between them is the training criterion used
for parameter estimation: conventional (joint) maximum likelihood for naive Bayes and
conditional maximum likelihood for (the dual problem of) maximum entropy [2, 3].
This notable similarity, however, seems to have passed unnoticed for most researchers
in text classification and, in fact, naive Bayes and maximum entropy are still discussed
as unrelated methods.

In this paper, we provide a direct, bidirectional link between the naive Bayes and
maximum entropy models for class posteriors. Using this link, maximum entropy can
be interpreted as a way to train the naive Bayes model with conditional maximum likeli-
hood. This is shown in Section 3, after a brief review of naive Bayes in the next section.
Empirical results are reported in Section 4, and some concluding remarks are given in
Section 5.

2 Naive Bayes Model

We denote the class variable by= 1,...,C, the word variable byl = 1,..., D, and
a document of lengtth by d¥ = dd, - - - dr.. The joint probability of occurrence of
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L andd! may be written as:

ple, L,dy) = p(e) p(L) p(df | ¢, L) @)

where we have assumed that document length does not dep¢inel dass.

Given the clasg and the document length, the probability of occurrence of any
particular document’ can be greatly simplified by making the so-calteive Bayes
or independence assumption: the probability of occurrence of a worli in d does not
depend on its positiohor other wordsiy, " # 1,

pld} | e.2) = 1T p(ds |0 @

Using the above assumptions, we may write plsterior probability of a document
belonging to a classas:

ple. L, dp)
plc| LydY) = <=2 3)
A =5 e Lab)

9(c) T, 9(d | c)™

= 4
Yo 9(¢) TIiey 9(d | &) @
JAN
=py(c|x) (5)
wherez, is the count of wordl in d¥, x = (z1,...,2p)?, andd is the set of unknown

parameters, which includeXc) for the class: prior andd¥(d | ¢) for the probability
of occurrence of word in a document from class Clearly, these parameters must be
non-negative and satisfy the normalisation constraints:

2.0 =1 (6)
S 9dle)=1  (c=1,...,C) @)
The Bayes’ decision rule associated with model (5) is a logdr classifier:

@ — o) = argmax po(c | x) (8)

= arg max {log ¥e) + Z xqlog¥(d | c)} 9)

d

3 Naive Bayes Training and Maximum Entropy

Naive Bayes training refers to the problem of deciding (¢edon and) a method to
compute an appropriate estimate fofrom a given collection ofV labelled training
samplesxi,c1),. .., (zN,cn). A standard training criterion is theint log-likelihood
function:

L(G) = Zn log po (wna Cn) (10)
= .Nclogd(c) + >, Nealogd(d | c) (11)
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whereN.. is the number of documents in clasand V., is the number of occurrences
of wordd in training data from clasa It is well-known that the global maximum of (10)
under constraints (6)-(7) can be computed in closed-form:

d(c) = % (12)

and

9(d|c) = Zi\fﬁd (13)

This computation is usually preceded by a preprocessimistehich documents are
normalised in length so as to avoid parameter estimateg legtessively influenced by
long documents [4]. After training, this preprocessingssano longer needed since the
decision rule (8) is invariant to length normalisation. Ihat/follows, we will assume
that documents are normalised to unit length,}.&, 24 = 1.

In this paper, we are interested in ttanditional log-likelihood criterion:
OL(G) u ZIngQ(Cn | mn) (14)

which is to be maximised under constraints (6)-(7). To timd,eonsider the conven-
tional maximum entropy text classification model, as defind@]:

oo [S o]

palc|x) = (15)

S ST

where the setl = {)\;} includes, for each class-word paie (¢, d’), a (free) parame-
ter \; € IR for its associated feature:

zg fcd=c

16
0 otherwise (16)

fi(mac) = fc'd’(:c7c) = {
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Given an arbitrary value of the lambdab= {);}, we have:

exp[ZXcd xd}
pA{c|w):d—~ a7
zexp[zxc/dxd]
c’ d
ez o
= = ith: ceeq=exp(Ae
Zl;[df/dd with: &cq= exp(Aed) (18)
1;[19@, ) .
= ST (e, d):zdz i (19)
c d ¢ d
IOI [%s]”
= =Y (ed) (20)
9 (¢/.d)
WO e z
~ pylc| ) i(a] 222 1)

where, by definitiond is non-negative and satisfy constraints (6)-(7).

Note that the definition given in (18) is a one-to-one mapghom A to {Gca}.
In contrast, that in (19) is a many-to-one mapping fré.,} to {d(c,d)}, though
all possible{a.q} mapping to the saméj(c,d)} can be considered equivalent since
they lead to the same class posterior distributions. Alde tiat{)(c, d)} can be inter-
preted as the joint probability of occurrence of classd wordd. Thus, the mapping
from {@(c, d)} to 6 defined in (20) and (21) is another one-to-one corresporedeiit
in all, the chain of equalities (17)-(21) and its associatefinitions provide a direct,
bidirectional link between the naive Bayes and maximumagytimodels. In particu-
lar, to maximise (14) under constraints (6)-(7), it suffice$ind a global optimum for
the maximum entropy model and then map it to class priors Esg-conditional word
probabilities using the previous definitions.

4 Experiments

The experiments reported in this paper can be considerexdamséon of those reported
in [2] and [5]. Our aim is to empirically compare conventibfjaint) and conditional
maximum likelihood training of the naive Bayes model. As5h ve used the following
datasetsJob Category, 20 Newsgroups, Industry Sector, 7 Sectors and 4 Universities.
Table 1 contains some basic information on these datasatsnére details on them,
please see [6], [7] and [5].

Preprocessing of the datasets was carried out maitibow [8]. We used html skip
for web pages, elimination of UU-encoded segments for nesvggmessages, and a
special digit tagger for thé Universities dataset [6]. We did not use stoplist removal,
stemming or vocabulary pruning by occurrence count.
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Fig. 1. Naive Bayes classification error rate as a function of the vocabulaeyfeizthe five
datasets considered. Each plotted point is an error rate averagetenv@0%-20% train-test
splits. Each panel contains three curves: one corresponds to tiomarparameter estimates
(relative frequencies) and the other two refer to maximum entropyd{@onal maximum likeli-
hood) training using the GIS algorithm.
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Table 1. Basic information on the datasets used in the experimeg@itglétons are words that
occur onceClass n-tons refers to words that occur in classes exactly).

Job 20 Industry 4 7
Category Newsgroups Sector Universities Sectors
job tittes & newsgroup  web web web

Type of documents descriptions messages pages pages  pages
Number of documents 131643 19974 9629 4199 4573

Running words 11221K 2549K 1834K 1090K 864K
Average document length 85 128 191 260 189
Vocabulary size 84212 102752 64551 41763 39375
Singletons (Vocab.%) 34.9 36.0 41.4 43.0 41.6
Classes 65 20 105 4 48
Classl-tons (Vocab.%) 49.2 61.1 58.7 61.0 58.8
Class2-tons (Vocab.%) 14.0 12.9 11.6 17.1 1257

After preprocessing, ten random train-test splits weratei from each dataset,
with 20% of the documents held out for testing. Both, conieeral and conditional
maximum likelihood training of the naive Bayes model werenpared in each split,
using a training vocabulary comprising the tépmost informative words in accor-
dance to thenformation gain criterion [9] (D was varied from100, 200, 500, 1000,
... up to full training vocabulary size). We used Laplace smmgfiwith ¢ = 10~°
for conventional training [5], and the GIS algorithm with@moothing for conditional
maximum likelihood training through maximum entropy [1The results are shown in
Figure 1. Each plotted point in this Figure is an error ratraged over its correspond-
ing ten data splits. Note that each plot contains one cunvéhéoconventional training
method and two curves for GIS training: one correspondsédqtrameters obtained
after the best iteration and the other to the parametersesdiafter GIS convergence.
This “best iteration” curve may be interpreted as a (tight)dr bound to the error rate
curve we could obtain by early stopping of the GIS to avoidrfitng.

From the results in Figure 1, we may say that conditional maxn likelihood
training of the naive Bayes model provides similar to or déretesults than those of
conventional training. In particular, they are signifidgtuetter in the Job Category and
4 Universities tasks, where it is also worth noting that maxin entropy does not suffer
from overfitting (the best GIS iteration curve is almost ities to that after GIS conver-
gence). However, in the 20 Newsgroups, Industry Sector é&etfors tasks, the results
are similar. Note that, in these tasks, the error curve fative frequencies tends to lie
in between the two curves for GIS, which are parallel andisgpd by a non-negligible
offset (2% in 20 Newsgroups, and 4% in Industry Sector andctfdgg). Of course, this
is a clear indication of overfitting that may be alleviateddayly stopping of GIS and,
as done for relative frequencies, by parameter smoothingthfr interesting conclu-
sion we may draw from Figure 1 is that, with the sole exceptibthe 4 Universities
task, the best results are obtained at full vocabulary 3ilzis. was previously observed
in [5] for relative frequencies.

Summarising, the best test-set error rates obtained inxperienents are given
in Table 2. These results match previous results usign time sechniques on the five
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Table 2. Best test-set error rates for the five datasets considered.

Parameter estimation

Smoothed GIS GIS
relative after best after
Dataset frequencies  iteration  convergence
Job category 32.6 26.3 26.4
20 Newsgroups 13.2 12.4 145
Industry-Sector 22.4 19.9 24.1
4 Universities 13.4 7.7 7.8
7 Sectors 17.7 17.6 21.3

datasets considered, though there are some minor difiesehe to different data pre-
processing, experiment design or parameter smoothing.[2, 5

5

Conclusions

We have shown that thesive Bayes and maximum entropy text classifiers are closely
related. More specifically, we have provided a direct, leicional link between the
naive Bayes and maximum entropy models for class postetiisg this link, max-
imum entropy can be interpreted as a way to train the naive8ayodel with condi-
tional maximum likelihood. We have extended previous erogitests comparing these
two training criteria. In summary, it may be said that coiagial maximum likelihood
training of the naive Bayes model provides similar to or déretesults than those of
conventional training.
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