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Abstract. Hand gesture identification has various human computer interaction 
(HCI) applications. There is an urgent need for establishing a simple yet robust 
system that can be used to identify subtle complex hand actions and gestures 
for control of prosthesis and other computer assisted devices. Here, an approach 
is explained to demonstrate how hand gestures can be identified from isometric 
muscular activity, where signal level is low and changes are very subtle. Obvi-
ous difficulties arise from a very poor signal to noise ratio in the recorded elec-
tromyograms (EMG). Independent component analysis (ICA) is applied to 
separate these low-level muscle activities. The order and magnitude ambiguity 
of ICA have been overcome by using a priori knowledge of the hand muscle 
anatomy and a fixed un-mixing matrix. The classification is achieved using a 
back-propagation neural network. Experimental results are shown, where the 
system was able to reliably recognize motionless gestures. The system was 
tested across users to investigate the impact of inter-subject variation. The ex-
perimental results demonstrate an overall accuracy of 96%, and the system was 
shown being insensitive against electrode positions, since these successful ex-
periments were repeated on different days. The advantage of such a system is, 
that it is easy to train by a lay user, and that it can easily be implemented as 
real-time processing after an initial training. Hence, EMG-based input devices 
can provide an effective solution for designing mobile interfaces that are subtle 
and intimate, and there exist a range of applications for communication, emo-
tive machines and human computer interface. 

1 Introduction 

Hand gesture identification has numerous human computer interface (HCI) applica-
tions related to controlling machines and computers. Some of the commonly em-
ployed techniques include mechanical sensors [1], vision-based systems [2] and the 
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use of electromyogram [3]. Electromyogram has an advantage of being easy to re-
cord, and is non-invasive. The Electromyogram is an electrical signal generated by 
muscular contraction [4]. It is a result of the spatial and temporal integration of the 
motor unit action potential (MUAP) originating from different motor units. It can be 
recorded non-invasively using surface electrodes in different pairs, each pair consti-
tuting a channel. 

In previous research, gestures are typically sensed by accelerometers [5], capaci-
tive techniques [6] or proximity sensors worn on different parts of the body [7]. 
These techniques require the users to noticeably move their limbs, which can be in-
convenient and socially unacceptable. On the contrary, electromyographic (EMG) 
signals can convey information about isometric muscular activity: activity related to 
very subtle or no movement at all. Hence it allows the definition of a class of “subtle” 
or “motionless gestures” that can be used to design discreet, intimate mobile inter-
faces. 

EMG is a biosignal related to muscle contraction. Studies on the use of EMG for 
gesture recognition have been reported, but none of them takes explicit advantage of 
its subtlety, the fact that commands can be issued without the generation of observ-
able movements. 

 Any hand movement is a result of a complex combination of many flexors and ex-
tensors present in the forearm. Since all these muscles present in the forearm are close 
to each other, myo-electric activity observed from any muscle site comprises the 
activity from the neighbouring muscles as well, referred to as cross-talk. When the 
muscle activity is small (subtle), the signal strength is small and the impact of cross 
talk and noise is very high. This is further exaggerated when considering different 
subjects, since the size of the muscles, presence of subcutaneous fat layer and also the 
training level is different for different people. Therefore this mixing of electrical 
activity from different muscles to result in the surface EMG (sEMG) signal can not be 
easily modelled or generalized. Extraction of the useful information from such kind 
of surface EMG becomes even more difficult for low level of contraction mainly due 
to the low signal – to – noise ratio. At low level of contraction, EMG activity is 
hardly discernible from the background activity. Therefore to correctly classify the 
movement and gesture of the hand more precisely, EMG needs to be decomposed to 
identify activities of individual muscles. There is little or no prior information of the 
muscle activity, and the signals have temporal and spectral overlap, making the prob-
lem suitable for blind source separation (BSS) or ICA for the separation of muscle 
activities. 

ICA is an iterative technique where the only model of the signals is the independ-
ence, and the distribution. The outcome of ICA is that the signals are separated with-
out there being any information about the order of the sources. While this difficulty is 
generally not consequential for audio signals, this would be of concern when working 
with muscle activity. The spatial location of the active muscle activity is the determin-
ing factor of the hand action and gesture. To overcome this difficulty, one approach 
that has been reported is the use of prior knowledge of the muscle anatomy. The ad-
vantage of this approach is the model based approach that provides a well defined 
muscle activity pattern.  

In the current technology any mobile device should be as natural and conceptually 
as un noticeable as possible. Hence our research extends this concept: we believe that 
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not only the devices should be unnoticeable and natural, but also the interaction with 
them needs to be subtle and discreet. Therefore, we promote the idea of subtle ges-
tures (isometric hand gesture identification). 

2 Hand Gesture Identification for HCI and Related Work 

Computers and computerised machines have become a new element of our society. 
Human-computer interaction requires the design, and implementation of interactive 
computing systems for human use. The intent is to provide seamless and natural inter-
face that allows the human user to control and interact with computers and computer 
based machines. 

The use of hand gesture provides an attractive alternative to cumbersome interface 
devices for human computer interaction applications. Human hand gestures are a 
mean of non-verbal interaction among people. They range from simple actions of 
pointing at objects to the more complex ones that express our feelings and communi-
cate with others. Numerous approaches have been applied to the problem of visual 
interpretation of gestures for HCI. Many of those approaches have been chosen and 
implemented to focus on a particular aspect of gestures: Hand tracking, pose classifi-
cation, or hand posture interpretations [2]. 

A number of approaches based on hand gesture identification have been proposed 
for human computer interaction. Wheeler et al. demonstrated that neuroelectric joy 
sticks and keyboards can be used for HCI [8]. Trejo et al [9] developed a technique 
for multi modal neuroelctric interface. The most recent work includes the investiga-
tion of eleven normally limbed subjects (eight males and four females) for six distinct 
limb motions: wrist flexion, wrist extension, supination, pronation, hand open, and 
hand close. Each subject underwent four 60-seconds sessions, producing continuous 
contractions [10]. Recent studies focus on the use of EMG for the recognition of an 
alphabet of discrete gestures. Fistre and Tanaka [11] propose a system that can recog-
nize six different hand gestures using two EMG channels on the forearm. The device 
is designed to control consumer electronics and is described as portable. 

Wheeler and Jorgensen [8] report the development and successful testing of a neu-
roelectric joystick and a neuroelectric keypad. By using EMG signals collected from 
four and eight channels on the forearm they successfully recognise the movement 
corresponding to the use of a virtual joystick and virtual numeric keypad. Gestures 
mimicking the use of physical devices are successfully recognised using hidden 
Markov models. 

To improve the reliability, a number of efficient solutions to gesture input in HCI 
exist such as: 

• Restrict the recognition situation. 
• Use of input devices (e.g. data glove). 
• Restrict the object information. 
• Restrict the set of gestures. 

In traditional HCI, most attempts have used some external mechanical device such 
as an instrumented glove. If the goal is natural interaction in everyday situations this 
might not be acceptable. Vision based approach to hand-centered HCI has been pro-
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posed in recent years. However vision based techniques require restricted back-
grounds and camera positions and are suitable for a small set of gestures performed 
with only one hand [1]. In this report we propose the identification of maintained 
hand gesture based on the muscle activity using the decomposition of surface EMG. It 
is a combination of model based approach with blind source separation 

3 Foundation of Semg Bio-signal Processing 

Surface EMG (sEMG) is a result of the superposition of a large number of transients 
(muscle action potentials) that have temporal and spatial separation that is pseudo-
random. The origin of each of the MUAP is inherently random and the electrical 
characteristics of the surrounding tissues are non-linear. Due to the nature of this 
signal the amplitude of the EMG signal is pseudo-random and the shape of the prob-
ability distribution function resembles a Gaussian function. 

sEMG is a non-invasive recording, requires relatively simple equipment, and this 
opens it for numerous applications. The close relationship of surface EMG with the 
force of contraction of the muscle is useful for number of applications such as sports 
training and for machine control. The relationship of surface EMG spectrum with 
muscle fatigue is also very useful for occupational health and sports training. 

One property of the surface EMG is that the signal originating from one muscle 
can generally be considered to be independent of other bioelectric signals such as 
electrocardiogram (ECG), electro-oculargram (EOG), and signals from neighbouring 
muscles. This opens an opportunity of the use of independent component analysis 
(ICA) for this application. 

3.1 Independent Component Analysis 

Independent component analysis one of the Blind source separation (BSS) technique, 
aims at recovering the sources from a set of observations. Applications include sepa-
rating individual voices in cocktail party. In BSS problem, it contains two processes. 
They are the mixing process and un-mixing process. First, we observe a set of multi-
variate signals x = [x1(t), x2(t),…,xn(t)]T that are assumed to be linearly mixed with a 
set of source signals s =  [s1(t), s2(t),…, sn(t)] The mixing process is hidden so we can 
only observe the mixed signals. The task is to recover the original source signals from 
the observations through a un-mixing process. Equation 1 and 2 describe the mixing 
and un-mixing processes mathematically.  

Mixing           x = As (1) 

Un-mixing          Wx = WAs (2) 

For solving the BSS it is assumed that the number of observations is equal to the 
number of source signals. Matrix s contains the original source signals driving the 
observations, whereas the separated signals are stored in matrix u. They are both 
[n×t] matrices. A and W are both [n×n] matrices, called mixing and un-mixing matrix 
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respectively. If the separated signals are the same as the original sources, the mixing 
matrix is the inverse of the un-mixing matrix, i.e. A = W -1 

ICA is an iterative method that is able to separate independent sources from the 
mixture [12]. ICA estimates the mixing matrix W using ‘independence’ based cost 
function. Various ICA algorithms have been proposed. Most of them use higher order 
statistics to obtain the independent components [12]. 

3.2 Relevance of ICA for Surface EMG Signal Evaluation 

The goal of this section is to demonstrate that there is a strong theoretical basis for 
applying ICA to sEMG. The assumptions that underpin the theory of instantaneous 
ICA, indicate that ICA is ideally suited to separating sources when 

• The sources are statistically independent 
• Independent components have non-Gaussian distribution 
• The mixing matrix is invertible. 

These assumptions are well satisfied by sEMG data as MUAPs are statistically in-
dependent, have non-Gaussian distributions and we can be (virtually) certain that the 
mixing matrix will be invertible. There are, however, two other practical issues that 
must be considered. Firstly, to ensure that the mixing matrix is constant the sources 
must be fixed in space (this is an implied assumption as only the case of a constant 
mixing matrix is considered). This is satisfied by sEMG as motor units are in fixed 
physical locations within a muscle, and in this sense applying ICA to sEMG is much 
simpler than in other biomedical signal processing applications such as EEG or fMRI 
in which the sources can move [13]. Secondly, in order to use ICA it is essential to 
assume that signal propagation time is negligible. Volume conduction in tissue is 
essentially instantaneous [14]. Hence this assumption is also well satisfied. 

Based on the above discussion of the ICA assumptions as they apply to sEMG, it is 
reasonable to be confident that ICA can be effectively applied to EMG data. The 
validity of using ICA on sEMG is examined later in the experimental and analysis 
section.   

4 Methodology 

4.1 Experimental Procedure 

University ethics committee granted approval to conduct experiments on human sub-
jects and acquire Surface EMG using surface electrodes. For the hand gesture ex-
periments four subjects whose ages ranging from 21 to 32 years (three males and one 
female) were chosen. For the data acquisition a proprietary Surface EMG acquisition 
system by Delsys (Boston, MA, USA) was used. Four electrode channels were placed 
over four different muscles as indicated in the Table 1 and Fig. 1. A reference elec-
trode was placed at Epicondylus Medialis. 
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Table 1:  Muscle Electrode Configuration. 

Channel Muscle Function 
1 Brachioradialis Flexion of forearm 
2 Flexor Carpi radialis (FCR) Abduction and flexion of wrist 
3 Flexor Carpi Ulnaris (FCU) Adduction and flexion of wrist 
4 Flexor digitorum superficialis (FDS) Finger flexion while avoiding wrist flexion 

 

 
Fig. 2. Hand gesture experimental set up with four electrodes. 

Each channel is a set of two differential electrodes with a fixed inter-electrode dis-
tance of 10mm and a gain of 1000. Before placing the electrodes subject's skin was 
prepared by lightly abrading with skin exfoliate to remove dead skin that helps in 
reducing the skin impedance to less than 60 kilo Ohm. Skin was also cleaned with 
70% v/v alcohol swab to remove any oil or dust on the skin surface. 
ICA is suitable when the numbers of recordings are same as or greater than the num-
ber of sources. This paper reports using 4 channels of EMG recorded during hand 
actions that required not greater than 4 independent muscles. This ensures that the un-
mixing matrix is a square matrix of size of 4×4. The experiments were repeated on 
two different days. Subjects were asked to keep the forearm resting on the table with 
elbow at an angle of 90 degree in a comfortable position. Four isometric hand actions 
were performed and repeated 12 to 14 times at each instance. Each time raw signal 
sampled at 1024 samples/second was recorded. Markers were used to obtain the Iso-
metric contraction signals during recording. A suitable resting time was given be-
tween each experiment. There was no external load. The actions were complex to 
determine the ability of the system when similar muscles were active simultaneously. 
The four different hand actions were performed and are listed below: 

• Middle and index finger flexion. 
• Little and ring finger flexion 
• All finger flexion  
• Finger & wrist flexion together. 

These hand actions were selected based on small variations between the muscle ac-
tivities of the different digitas muscles situated in the forearm.  

4.2 Data Analysis 

The aim of this experiment was to test the use of ICA along with known properties of 
the muscles for separation of sEMG signals for the purpose of identifying stationary 
hand gestures and finger movement actions. Each action was repeated 12 to 14 times 
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and each contraction lasted approximately 2.5 seconds. The sampling rate was 1024 
samples per second, and this gives approximately 2500 samples during the contrac-
tion. There were four channel (recordings) electrodes over the four active muscles 
associated with the different hand gestures, forming a square 4×4 mixing matrix. The 
sEMG recordings were then separated using fast ICA algorithm which is developed 
by the team at the Helsinki University of Technology [15]. The mixing matrix A was 
computed for the first set of data only and kept constant throughout the experiment. 
The independent sources of motor unit action potentials that mix to make the EMG 
recordings were computed using the following equation: 

 s = Bx (3) 

where B is the inverse of the mixing matrix A. This process was repeated for each of 
the hand gestures. Four sources were estimated for each experiment. The example of 
four channel source separation using Fast ICA matlab package is depicted in Fig. 3.  
 

 
Fig. 3. Estimated four channel source signals s(t) from a four channel recording x(t)-1024 
sampling rate using fast ICA. 

After separating the four sources sa, sb, sc and sd, each of these was segmented to 
2500 samples length. Root Mean Squares (RMS) was computed for each separated 
sources using the following relation: 

N

s
Srms

n

i
i∑

== 1

2

 

 

(4) 

where s is the source and N is the number of samples (N = 2500). This results in one 
number representing the muscle activity for each channel for each hand action.  

RMS value of muscle activity of each source represents the muscle activity of that 
muscle and is indicative of the force of contraction generated by each muscle. Taking 
a ratio of these activities gives a relative combination of the activity from each of 
these muscles and has been used to identify the hand gesture. A constant mixing ma-
trix A and set of weight matrix for neural networks were used for each subject making 
the system configured for each individual. 
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The above process was repeated for all four different hand actions 12 to 14 times 
and for each of the participants. These 12 to 14 sets of examples were used to train a 
back-propagation neural network with 4 inputs and 3 outputs. The 4 RMS (Root 
Mean Square) values of the muscles were the input and the 3 RMS (Root Mean 
Square) values were the output. In the first part of the experiment, RMS values of 
recordings for each subject were used to train the ANN classifier with back-
propagation learning algorithm. The second part of the experiment (testing) was to 
verify the training results. For that the set of data’s which were not used for the train-
ing purpose (an independent data set) was selected. During the training, ANN con-
sisted of two hidden layers with a total of 20 nodes and a sigmoid function as thresh-
old function. The gradient descent algorithm with a learning rate of 0.05 was used to 
avoid any chances of local minima. During testing, the ANN with weight matrix 
generated during training, was used to classify RMS of the muscle activity separated 
using un-mixing matrix generated during training. The ability of the network to cor-
rectly classify the inputs against known hand actions were used to determine the effi-
cacy of the technique. 

4.3 Results and Observations 

The results of the experiment demonstrate the performance of the above described 
system. The results of testing the back propagation ANN to correctly classify the test 
data based on the weight matrix generated using the training data is tabulated in Table 
2. The accuracy was computed based on the percentage of correct classified data 
points to the total number of data points. These results indicate an over all classifica-
tion accuracy of 96% for all the experiments. The results demonstrate that this tech-
nique can be used for the classification of different types of isometric muscular activ-
ity. This feature makes it possible to define a class of subtle motionless gestures to 
control an interface without being noticed and without disrupting the surrounding 
environment. 

Table 2. Experimental results for Isometric Hand Gesture Identification. 

Number of 
participants 

Middle and 
index finger 
flexion 

Little and ring 
finger flexion 

 

All finger 
flexion 

 

Finger and 
wrist flexion 
together 

Subject 1 97% 96% 97% 96% 
Subject 2 96% 96% 96% 96% 
Subject 3 97% 96% 96% 96% 
Subject 4 97% 97% 96% 97% 

5 Discussion 

The proposed technique is capable of classifying small levels of muscle activity to 
identify Isometric hand gesture. Its base is using a combination of independent com-
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ponent analysis (ICA), known muscle anatomy and neural network configured for the 
individual. The results indicate the ability of the system to perfectly recognize the 
hand gesture even though the muscle activity is very low and there are number of 
active muscles for each of the gestures.  

There exist numerous papers in literature, which have attempted to identify hand 
and body gestures from sEMG recordings, but all come with low reliability, perhaps 
due to low signal to noise ratio and large cross-talk between different simultaneously 
active muscles. In the recent past, ICA has been applied to separate the muscle activ-
ity and to reduce noise to overcome this difficulty, but the order and magnitude ambi-
guity makes the technique unreliable. 

This research overcomes these issues by using a priori knowledge of the anatomy 
of muscles in combination with blind source separation technique. Using a combina-
tion of the model, and ICA approaches with a neural network configured for the indi-
vidual overcomes the order and magnitude ambiguity. 

6 Conclusions and Future Work 

This investigation has shown that a combination of a known biological model used in 
a semi-blind ICA combined with neural networks for classification can effectively be 
employed to detect small muscle activities, and by that to identify subtle hand actions 
and gestures. The presented experimental methods are able to reliably recognize a 
motionless gesture for different muscle volumes. 

 A new approach that combines semi-blind ICA and a back-propagation neural 
network was used to separate and identify subtle hand gestures, and subsequently 
using the combination of the mixing matrix and network weights to classify the 
sEMG recordings in almost real-time. 

The results demonstrate that the technique can be effectively used to identify hand 
gestures based on surface EMG when the level of activity is very small. The gestures 
have been chosen, because each of these represents a complex combination of muscle 
activations and can be extrapolated for a larger number of gestures. Nevertheless, it is 
important to test the technique for more actions and gestures, and for a large group of 
people. In parallel, there is ongoing work to investigate recognition of gestures on a 
larger number of people and for a greater variety of hand actions to increase the per-
formance of the system. 

 We are working on expanding the EMG gesture for extended levels of control. 
While further work on the signal processing may make it possible to recognize multi-
ple subtle gestures from a single muscle, it appears more practical to define a more 
extended interface using different controllers on various muscles (e.g. on both arms). 
Future work also shall include conducting experiments on inter-day and intra-day 
variations to verify the stability of the system and also to develop a portable model 
for hand gesture recognition using semi-blind ICA technique.  

Overall, the purpose of this project is to develop new perceptual interfaces for 
human computer interaction based on hand gesture identification, and to investigate 
how such interfaces can complement or replace traditional interfaces based on key-
boards, mice, remote controls, data gloves and speech. Application fields for hand 
gestures analysis include control of consumer electronics, interaction with visualiza-
tion systems, control of mechanical systems, and computer games.  
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One important benefit of such an HCI approach is that visual information makes it 
possible to communicate with computerized equipment at a distance, without a need 
for physical contact to the controlled target. Compared to speech commands, hand 
gestures are especially advantageous in noisy environments –particularly in situations 
where speech commands would be disturbed – as well as for communicating quantita-
tive information and spatial relationships. Furthermore, the human user shall be en-
abled to control electronic systems in a quite natural manner, without requiring spe-
cialized external equipment. 
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