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Abstract. One of the cornerstones of MDA is the specification and execution of

model transformations. This paper proposes a practical application of MDA to
the development of model transformations. This approach involves transforming
instances of different transformation languages with differing levels of abstrac-
tion in a PIM-PSM style. By means of two case studies, we discuss technical
details and assess what possible gains it can offer in terms of productivity and
maintainability.

1 Introduction

MDA (Model-Driven Architecture) [13] proposes a scheme of successive transforma-
tions between formal models describing software. These models represent the software
at different levels of abstraction and degrees of platform independence, as in the clas-
sic Platform Independent vs Platform Specific Model (PIM-PSM) separation. A set
of standards such as MOF (Meta-Object Facility) [14] for metamodeling and QVT
(Query/Views/Transformations) [15] for model transformation specification, exists in
MDA to sustain the application development cycle centered on these models as first-
class artifacts. Thus, creation and execution of model transformations play a central
role in MDA. This implies the need to designing model transformation languages (such
as QVT) and facilities to create, manipulate and execute their instances.

This paper presents a practical MDA approach to model transformation develop-
ment, which is the application of the MDA paradigm to the development of model
transformations (Sect. 2). We discuss two case studies (Sect. 4) to reflect its advantages,
after introducing a platform specific transformation language in Sect. 3. The first one
shows one solution approach to execute instances of QVT, as a general purpose model
transformation language; the second one shows the execution of instances of MTTL
(Model Template Transformation Language) [2], a domain specific transformation lan-
guage. Related work and other approaches are presented in Sect. 5 and conclusions in
Sect. 6.
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2 MDA Approach to Model Transformation Development

By applying a MDA approach to model transformation develeptrwe mean splitting
up the process of specifying executable transformatiod#fierent levels of abstraction
(as explained in [4]). This implies considering model imst&s of model transformation
languages as PITs (Platform Independent Transformatiamish are then transformed
onto lower level transformation languages; which in ourecasATC (Atomic Trans-

formation Code) [9]. Transformation models expressed ilCAfre tied to a specific
runtime platform (which executes them) named VTE (Virtugdrisformation Engine),
hence they can be considered PSTs (Platform Specific Tranafions). This approach
allows us to bring support to the execution of other modeidfarmation languages’
instances in VTE indirectly through ATC.

3 ATC as Platform Specific Transformation Language

ATC (see above and [9]) is a general purpose low-level AT @sfiarmation language.
Its instances take the shape of models conforming to the AE@model, the most
recent version of which can be found at [7].

ATC models are executed by the VTE model transformationreng virtual ma-
chine created with this sole purpose. VTE is implementedthmasoftware layer built
on top of EMF [5], which is considered to be a MOF implemewtatiVTE abstracts
from its API those EMF fundamental components that thorbugbmbined represent
each of a set of low-level model transformation primitivaied atom types in the ATC
jargon. These primitives form up the ATC instruction setthdgh ATC models are
easily manipulated by hand with the default EMF tree editay are usually obtained
as the result of an (automated) transformation developprecess.

It is expected that ATC contains all the necessary modestommation mechanics
so it is feasible to map (translate) complete model transébion languages’ semantics
to equivalent ATC constructs. This includes general pugdaaguages such as QVT,
and any languages that may cover a wide range of specific ticydar domains of
application, like the MTTL explained in Sect. 4.2. This ts&ation will be discussed in
Sect. 4.

3.1 How Much PST is ATC

We claim that ATC models are platform-specific. Indeed ATQGiésl to VTE, as its
target runtime platform. This PST condition will remain onditionally true for the
purpose of this work (and according to [4]) even with the ubty of unfolding the
virtual engine into native java code specific to each ATCanse (see [9]), or if other
engine implementations are constructed that support tl&lamguage, over the same
EMF or (porting VTE to) other metamodeling facilities suchMetBeans MDR [12],
for which the ATC language should not suffer almost any modifons to its design.
The ATC’s PST nature helps us emphasize its low-level caigort and put it in
contrast alongside other model transformation languagksh in their majority can
be considered of a higher abstraction level, and which iregdmpreserve a complete
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neutrality from any known technology or platform. As altatimes to ATC as low-level
model transformation languages we will mention ATL-VM [1@jhich has implemen-
tations based on at least two different metamodeling itrinatures (the both aforemen-
tioned EMF and MDR).

4 Platform Independent Transformation Languages

For transformation languages whose instances can haveel rapdesentation, nothing
prevents us from formalizing a (collection of related) sfnmmation(s) that translate
them to semantically equivalent ATC models, much in the s@fshe MDAs PIM
to PSM transformation paradigm. Thus, regardless of whialfd®m-Specific model
transformation language is finally chosen for our execuifamy, PITs fulfill their goal
of being static artifacts reusable through different utydieg transformation engines or
tools.

MTTL avt avt
PIT model model ] source code — text

|
N

PST e E=> VTE

Fig. 1. Instances of MTTL, a domain specific transformation language, aatetteas PITs. Tex-

tual instances of QVT, a standard and general purpose transfomtetiguage, are converted to
models (conforming to the QVT metamodel or abstract syntax) which imrhay be considered

PITs.

In this section we show the benefits coming from taking a MDArapch to model
transformation development by means of two case studiesHigerre 1). The first case
shows a solution to indirectly execute instances of QVT, Begal purpose and stan-
dard model transformation language (Sect. 4.1), in the Viid@ire; likewise, the sec-
ond one shows the execution of instances of MTTL (Model TetepTransformation
Language), a domain specific transformation language (8t

4.1 The General-purpose QVT

As already mentioned, notation to express model transfitomaemantics in MDA is
specified in the QVT standard. This specification detailsrahitecture composed by
three languages. Relations is a declarative language wihegppings can be expressed
between related domains. Also declarative, Core is a |d@wetlanguage that offers
the same semantic capabilities as Relations.

Finally, Operational Mappings (OM) is the only imperative€ Qlanguage. It serves
two purposes. Firstly it assists Relations to complemertaiterules by providing pro-
cedural implementations that guide QVT engines on how thdse must be resolved.
This is particularly useful whenever it is difficult, if nanpossible, to properly express
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those declarative rules in Relations. Secondly it can bd ase standalone imperative
model transformation language

This case study addresses ways to support QVT in VTE in tefr@dvh although
the discussion is applicable to any other textual modekfaamation language, as long

as it has a well defined metamodel for which conforming exaaat models can be
formalized.
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Fig. 2. A model conforming to the OM’s metamodel as PIT to the left and its tranmsfd ATC
semantically equivalent PST model to the right.

Model transformation languages can be supported in VTE iisy, fiarsing the tex-
tual instances into an ASTalstract syntax tréeand, second, traversing the tree to
generate the equivalent atoms that composed one or more rAn€férmations, basi-
cally using an automatically generated parser [9]. An a#tdve translates the AST to
a model conforming to the metamodel of the transformatiogulege (an example of
such model is shown in Fig. 2). This model (which representamsformation!) can
then be checked and optimized before it is finally transfatioro ATC. It can also be
stored within model repositories and even shared among,taslif it were an ordinary
model.

In this scenario we are rightfully applying the MDA prinagsl in terms of PIT to
PST transformations. Moreover, if the AST created by th&ugsyntax parser comes
also to be a model conforming to certain metamodel (for m#aGASTM [16]), then
we have another model in the transformation chain to obtdi@ Astances. This is a
clear example of a practical PIM to PSM MDA transformatiorelepment process in
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the context of MDA. Here the model paradigm is applied in twagss. First, to the

process of obtaining the model of the source language fren\&iT model, once it is

automatically produced from the source text. Second, ter#tmslation from this trans-
formed model to the ATC model that is the output target astifar the whole process,
and which represents an executable transformation seifabthe VTE environment.

Both transformation steps supersede the traditional sétnparsing execution stage
that analyses the inferred AST to generate output.

By specifically taking advantage of model transformatiosig@and languages and
exploiting their model-orientation characteristics, ves get abstracted from a signifi-
cant amount of functionality and increase the overall pobigtity. Also, efforts invested
towards this goal are expected to be paid off by succeedisgrimehow reusing these
transformatons to support other languages.

Operational Mappings vs. ATC. ATC is (at least almost) as low level as it can be, so
it may be considered a reference point in an absolute scalentbasures a transforma-
tion language’s level of abstraction. Making an estimatibout how distant from ATC
is OM in this scale, or starting a study to obtain metrics ahtsulevel compared to
other high-level languages, could be interesting to caldbOM'’s absolute abstraction
level. While such a study is beyond the scope of this work,e&isy to infer that subtle
mechanisms involved in an OM’s transformation executiachsas trace instance man-
agement, and instantiation sections in mapping operatprighe language on a rather
high level starting point. As per a sentence by sentence adsgm, there is much com-
plexity involved to give an approximate rate of sentenceswemumber of combined
ATC atoms representing the same semantics, but they oftaprige two or three of
them (worst cases can raise this figure above twenty). Haweviee fair we should not
be counting sentences in OM against ATC atoms, since eatieof tisually comprises
several model elements. To present some figures regardidglmiement count, a typ-
ical Encapsulation transformation example gives abouteléfents in OM vs. about
220 in ATC, which increases over 260 if we include the OM’s licipexecution trace
information tracking.

4.2 The Domain-specific MTTL

As explained before, QVT [15] is a standard transformatamglage that is expected
to be used across companies and projects. Its generalgaunadure allows us to spec-
ify different types of transformations. Although the betefioming from using such a
language are clear, many studies exist showing the adwestdgising the level of ab-
straction by introducing Domain-Specific Transformatianguages (DSTL), as when
using any other domain specific language (DSL) [2]. In thisecstudy we show MTTL
(Model Template Transformation Language), a domain-$ijgdanguage to create soft-
ware product lines of models [2], and a MDA approach to exeitsatinstances.
Software product lines of models are an effective solutimaintain model fami-
lies in Model Driven Engineering. An approach to implemédnis kind of product lines
is based on the use of model templates containing all modlnta of the family in
a superimposed form [6]. In order to obtain a concrete famigmber, a model trans-
formation automatically specializes the model templatgbrging relations between
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model elements. The specialization is carried out follgwénset of selected features
that are specified aside, in a feature model which charaetethe model family.

‘ Request Management System ‘

.1] [0..1] [0..1]

‘ Request Realization

‘ Request Validation ‘ Request Evaluation

<1-1>

Supervised Direct
Realization Realization

Fig. 3. Feature Model in Cardinality-Based Feature Model notation [8] for dljanf Request
Management Systems (RM$equest Validatiomnd Request Evaluatioare optional features
in this family; featureRequest Realizatios mandatory, whil&Supervised RealizaticamdDirect
Realizatiorare alternative features. By selecting optional and alternative fedtareshe feature
model we are able to identify up to eight different variants of RMS.

Model Template Transformation Language (MTTL) is a DSTLtthas been de-
veloped to ease the engineering of product lines of modétg wstemplate approach.
MTTL is an imperative language with four basic operationgianipulate object rela-
tions within model templates: REMOVE, SELECT, CLEAR and EFS.

In this case study, we are to create a software product linesefcase models in
the domain of request management systems (RMS). In our ierger those systems
share many commonalities while vary along well defined attarastics. Therefore, the
development of such systems may greatly benefit from the tiaesoftware product
line approach. In this example we are to create a softwardugtdine that automates
the analysis phase in the development of a family of RMS syst& his product line
will maintain a family of UML Use Case models that represdm analysis solution
to those systems. Fig. 3 shows a feature model describingaimenon and variable
features of the family.

Following [6], we use a template approach to implement tbfsasare product line.
First, we create a model template containing all variantasef case models in a su-
perimposed form (see Fig. 4). Each use case model, solwtitiretanalysis of a sin-
gle RMS, is obtained by deleting object relations from thedeldemplate. Secondly,
we define the transformation that shall specialize this mtataplate when optional
and alternative features from the feature model are seletites here where we take
advantage of using a DSTL in combination with a MDA approazhransformation
development: we specify such a transformation in MTTL (sige B) and transform it
onto ATC in order to execute it.

Figure 5 shows the MTTL model we have created to solve the@mohnd its corre-
sponding ATC model. While the former is made of six objects,|#iter contains more
than three hundred. Moreover, the use of MTTL, a DSTL, isgiitzand easy, abstract-
ing us from implementation details such as the metamodéiamgework. This is a clear
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Recover Request
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~ Technician

Staff Member

/
<<inglude>> <<include>>
<
/ N
/

Validate Request

N

Evaluate Request

Fig. 4. Template for a family of use case models. It is a use case model itsethiomg all the
family members in a superimposed form, so it contains all objects antioredebelonging to
any of the model variants. By purging a subset of these objects anbnsldt is transformed
(specialized) to generate those family members.

example of time savings when using domain specific langugssecify transforma-
tions, which in this case builds on top of benefiting from gsiransformation models,
as discussed in Sect. 4.1. Another important point is thatrdinsformation between
MTTL and ATC was developed once, when MTTL itself was creatad took much
less effort than building up a compiler or a transformatingiee exclusively for it (see

[2]).

5 Related Work and Other Approaches

There have been some other examples of applying a MDA approamodel trans-
formation development. For example, [3] proposes an eiiEng/eaving metamodel
and its transformation onto general purpose transformadioguages. This metamodel
may be extended to become a domain-specific language thtlmepecify mappings or
relations between model objects in different domé&irsor example, [11] proposes an
extension to specify model transformations at a highei levabstraction as mappings
between metamodel elements. In that particular study,rtsamces of the extension
where transformed onto ATL [10]. That mapping languageedifffrom our MTTL in
two respects: first, the former links objects at the metariogléevel (M2) while the
latter does it at the modeling level (M1); and secondly, MTi§ kuitable for the domain
of transformations of model templates following featuredsis, a domain much more
specific that the former’s.

There exist other approaches to solve the problem of modekformation pro-
duction in QVT or in DSTLs such as MTTL. For example, textuatances of QVT
might be compiled into Java to be executed. Likewise, QVT 8D models might be
transformed onto Java code by model-to-text transformati@he problem with these

3 See [1] for an extension implementing MTTL.
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Fig. 5. A MTTL mapping model on the left. It describes the specialization of theehtaanplate
of Fig. 4 after the selection of features from the feature model of Filj.c®ntains six elements,
all specifying REMOVE operations, that is, the purge of model templajiecth On the right,
corresponding ATC model. The transformation of MTTL instances offtG & carried out by
filling up an ATC template containing a function per MTTL operation. Eachpirapobject from
the MTTL model is then translated into a call operatiam/gke object) to the corresponding
function with the proper parameters.

approaches is the inability of reuse: none of the effortdiegpn the development of
a compiler or model-to-text transformation may help in tegedlopment of the others.
An alternative approach implies to build specific enginegliose transformation lan-
guages. One of the shortcomings mentioned for the previppsach is completely
valid here: the inability of reuse in developing these alidive transformation engines
may make their development a too costly enterprise.

6 Conclusions

In this paper we have proposed a MDA approach to model tremsftiion development.
By exploring two case studies that reflect the benefits ofapgoach, we have shown
ways to transform PITs to PSTs. The first of them showed aisalt allow instances
of QVT, a standard and general purpose transformation kgguo be indirectly exe-
cuted in the VTE runtime platform. The second example shawedpplication of the
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same approach to execute instances of MTTL, a domain spéeifisformation lan-
guage. Similar transformations applied upon ATC modelstcamsitively extend the
compatibility (and support) of the source language to otbels. Conversely, middle-
ware languages and tools can also be used to bring comjigtdfidistant languages
in VTE.

We think that we have shown evidence enough so as to argualtliae benefits
expected from MDA concerning model-driven evolution caredily be expanded to the
use of this very same approach to model transformation dpuent. Among them we
highlight the reuse of transformation facilities, whicHgseus save costs and increase
productivity when creating MDA solutions in our softwarevdepment projects.
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