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Abstract. We address the problem of clustering of string patterns, in an Ensem-
ble Methods perspective. In this approach different partitionings of the data are
combined attempting to find a better and more robust partition. In this study we
cover the different phases of this approach: from the generation of the partitions,
the clustering ensemble, to the combination and validation of the combined re-
sult. For the generation we address, both different clustering algorithms (using
both thehierarchical agglomerativeoncept angbartitional approaches) and dif-
ferent similarity measures (string matchirggructural resemblance). The focus

of the paper is the concept of validation/selection of the final data partition. For
that, an information-theoretic measure in conjunction with a variance analysis
using bootstrapping is used to quantitatively measure the consistency between
partitions and combined results and choose the best obtained result without the
use of additional information. Experimental results on a real data set (contour
images), show that this approach can be used to unsupervisedly choose the best
partition amongst alternative solutions, as validated by measuring the consistency
with the ground truth information.

1 Introduction

Let D = {s1,52,...,5n} be a setofV objects, and; = {s,..., s} } be a sequence

of length LL; symbols, defined over an alphaliet Sequences clustering or string clus-
tering is a particular form of clustering where objects are sequences of symbols, also
known as strings.

Clustering algorithms for strings patterns are typically extensions of conventional
clustering methods (assuming vector representations) to handle string descriptions, most
of them by adopting a convenient measure of similarity between patterns [1, 2]. Clus-
tering of string patterns has a broad range of applicability, such as: document image
analysis (handwriting, maps, technical drawings strings); speech and one-dimensional
signal analysis; DNA/genome sequencing and analysis; shape analysis; pattern-based
speech recognition.

Choosing a particular clustering criteria, or induced similarity between given data
points, is a difficult task, either in vector representations, either in string representa-
tions. Inspired on the work of sensor fusion and classifier combination, the most recent
trend and best performing approach in cluster analysis is the so called "cluster com-
bination” [3-5]. These methods attempt to find better and more robust partitioning of
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the data by combining the information of a set/éfdifferent partitions, thesluster-
ing ensemble P; formally, P = {P', P2,..., P! ..., PN}, where each partition,
Pt ={C{,Ci,...,Cj }, hask; clusters.

We build on a previous paper [6], where the clustering coipdm was evaluated
in the context of string patterns. For the ensemble gemeratiifferent combinations
of algorithms and proximity measures for string patterresevaluated. The combina-
tion algorithms in this context can be used to combine difieparadigms, as a multi-
objective approach, attempting to find better and more topagitioning of the data
set, for example a distinct set of algorithms (K-Means @risy, Spectral Clustering,
classical hierarchical methods) and/or different progymieasures.

The focus of this paper is the concept of validation/setectf the "optimal” data
partition. For that, and following [7], an information-theetic measure, the concept
of normalized mutual information, is used in conjunctiorthnéa variance analysis us-
ing bootstrapping, to quantitatively measure the conscstbetween partitions and the
combined results and unsupervisely choose what is the b&eshed result. The ground
truth information, will be used to confirm the results and peeformance of the differ-
ent algorithms and ensembles.

Section 2 describes the ensemble methods approach in ttextohString patterns;
section 3 introduces the problem and possible solutiomwalidation of the solution;
section 4 presents results and its discussion; finally@e&tidraws conclusions.

2 Ensemble Methodsfor String Patterns

The approach of clustering combination, also known as EbkeiMethods, involves
three different steps: the generation of the clusteringmde, the combination of the
clustering ensemble that results in the extraction of thelined data partitionP*,
and the validation of the result. Section 2.1 presents tbdumtion of the clustering
ensemble for string patterns, involving different proxymineasures and algorithms,
and Section 2.2 presents the clustering combination method

2.1 Generation of the Clustering Ensemble

The clustering ensemble can be produced in many differeps wacluding: different
algorithms; single algorithm with different parametetiadizations or distinct parame-
ter values; clustering different views/features of theagdatanipulation of the data set,
using techniques such as bootstrap or boosting.

Following previous work [6] the clustering ensemble foirgirpatterns can be gen-
erated based on conventional clustering methods extemdextring patterns by intro-
ducing proximity measures between strings [2].

Proximity Measures. The most common similarity measures belongs todtrimg
matchingparadigm and are based on String Editing Operations (SE®M}tigution,
maintenance, insertion or deletion of symbols. The Levaistand the weighed Lev-
ensthein distances quantify the minimum number of operatiequired to transform
a strings; into another strings;. Herein, we will adopt 0 cost to maintenance of a
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symbol and unitary cost for the remaining string editingragiens. Moreover, differ-
ent types of normalization are used, namely: the classimahalization by the string
length (NSED); and the normalization by the length of thdiedipath — normalized
string edit distance (NSEDL).

In a different paradigm, thetructural resemblanceuse grammars to model the
cluster’s structure, and rules of composition of clusteesassumed to reflect the simi-
larity between patterns. Several approaches are desdérnilted literature: Fu proposed
a distance between strings based on the concept of errectiog parsing (ECP); Fred
explored the notion of compressibility of sequences andratgmnic complexity using
Solomonoff’s code (SOLO); another approach by Fred, the cdtlecrease in grammar
complexity (RDGC), is based on the idea that if two senteacesstructurally similar,
then their joint description is more similar than their eteld description due to sharing
rules of symbol of composition. For details on how to compbese measures consult,
for instance, [2] and the references therein.

Clustering Algorithms. Several clustering algorithms are addressed using both the
partitional and hierarchical agglomerative approaches.

On the first approach, one of best well known and mostly usgarigthm for clus-
tering is the K-means algorithm. In order to apply it to gridescriptions, we have
adapted it, in order to be based on proximity measures destpreviously for string
pairs. Moreover, the clustering prototypes are selecteieamedian string. A nearest
neighbor approach, that we will refer &si-NN, was also explored, adopting as dis-
tance measure the string edit distance (SED). The neag@gtbor rule is the basis for
another algorithm, where clusters are modeled by gramrbatsyhere sequences are
compared, not directly with patterns previously includedliusters, but with the best
matching elements in languages generated by the gramnfarseih from clustered
data. For grammatical inference we used the Crespi-reighimethod [2], without as-
suminga priori information. We will refer to this method &J-ECP. In a different per-
spective the Spectral clustering algorithms [8] map thginal data set into a different
feature space based on the eigenvectors of an affinity matdstering method being
applied to the new feature space. In order to extend thecgiyplity of the method to
string patterns, the definition of the affinity matrix is dexd from the normalized string
edit distance (NSEDL).

In the hierarchical perspective [9], we will explore thesdeal Single Link (SL),
Complete Link (CL), Average Link (AL), Ward'’s Link(WL), andéhtroid Based Link
(Centroid) [9]. To convert the similarity measures definbdwe, generically referred as
S(s1, $2), into dissimilarity measures, we ugés;, so) = max(similarity) — S(s1, s2)

2.2 Clusterings Combination

Several combination methods have been proposed to ob&ag@othbined solutionf*,
[3-5]. Fred and Jain proposed a method, the Evidence AcationlClustering (EAC),
for finding consistent data partitions, where the combaratf clustering ensemble is
performed transforming partitions into a co-associati@irir, which maps the coher-
ent associations and represents a new similarity meastwede patterns. To unsuper-
visely find the number of clusters, the lifetime method [3} t& used. Strehl and Gosh
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have formulated the clustering ensemble problem as an @atiion problem based on
the maximal average mutual information between the optooaibined clustering and
the clustering ensemble. Three heuristics are presentave it, exploring graph the-
oretical concepts (CSPA, HGPA, MCLA). Topchy, Jain and Pumeoposed to solve
the combination problem based on a probabilistic model efdbnsensus patrtition in
the space of clusterings. In this paper we will be conceadirah the first approach - the
EAC algorithm.

3 Clustering Validation

Different clustering algorithms lead in general to diffetrpartitions of the data set. The
problem of evaluation/comparison of clustering resulte/af as deciding the number
of clusters better fitting the data is fundamental in clustganalysis and it has been
subject of many research efforts [9-12].In the context abtring combination ap-
proaches the problem of clustering validation is still cehtThe selection/weighting
of the best partitions or clusters of the clustering enserdbtermines the performance
of the clustering combination algorithms. Different apgbes can be followed. The
stability analysis, measuring the reproducibility of ¢&ring solutions, either perturb-
ing the data set or the clustering ensemble, offers an stiagesolution [11, 13, 7]. We
will focus in the stability analysis proposed in [7] where ttobustness of the EAC
algorithm was accessed by variance analysis, based onttaqaisig of the clustering
ensemble.

3.1 Stability Analysis

The clustering ensemblB is perturbed using bootstrapping, produciBgbootstrap
versions of the clustering ensembl&& = {P’1, ... P%, ... P'B}, whereP is a
clustering ensemble that when combined will generate thebared data partition de-
noted byP*’:.

Using the normalized mutual information [7],definedaa/1( P, P%) =
%}%, and frequency counts as approximations for probabil{iieshis case
the percentage of shared patterns between partition) ibgsiple to define the aver-
age normalized mutual information between the k-clustenttoed partitions and the

bootstrap clustering ensembl@g)M I(P;*, Pv), as:
B
_ JES e @00 0 1
NMI(P*P) = ?:1 NMI(PF,P) 1)

and the corresponding standard deviatigd{ N M I(P;* ,P*)} as:

B
1 -
std{ NMI(P;*,P*)} = 51 > (NMI(PR,Ph) — NMI(P*,PP))2 (2)
i=1
These two measures enable the verification of the consistdrihe different com-
bined partitionPg‘ik with each perturbed bootstrap version of the clustering e
Pb,
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The consistency of the result will also be evaluated in aedifit perspective, as-
sessing if the combined resuli;*, are consistent with each other. For that we define

the normalized mutual information betwey* andP;*, NMI(P;F, P¥), as:
B—-1 B
—_—— 1 )
NMI(P* PrFy = ——— § § NMI(P;F, PiF) (3)

N\ —~ &
=1 j=i+1
2

For the measures presented in equations 1, 2, 3, similaritd@fare used for
defining C; (P%, P), var{C;(Px¥,P*)} and C;(P;*, Py*), whereC; represents the
consistency index [14] that finds the best match betweeiitipad, counting the per-
centage of agreement between the labelings.

4 Experimental Results and Discussion

To test the proposed approach we will follow previous workded apply the stability
analysis to the combination results resulting from the [mobof unsupervised catego-
rization of contour images of hardware tools, using stringatiptions.

41 DataSet

The real data set is composed by 634 contour images of 15 tfpesrdware tools
[15]: ¢1 to ¢15. As shown in Figure 1, some of the hardware tools have movartsp
different poses (open, closed and half open), leading feréifit shapes. When counting
each pose as a distinct sub-class in the object type, wenoattotal of 24 different
"objects”. We will test the algorithms with this number ofisters.

String descriptions of object’s shapes were obtained fon @aage, segmenting the
object from the background, sampling the object boundabpaqually spaced points,
and finally using 8-directional differential chain code J16 describe the boundary.

YN YA
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Fig. 1. Data set. Typical samples of the database of images of hardware toiolg;descriptions
are used to represent the contours of images.

4.2 Single Clustering Results

Each of the clustering algorithms presented as basis fatagsting the clustering en-
semble was applied to the data set. Table 1 summarizes tamethtresults, in terms
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Table 1. C;(P, P°) individual clustering results.

Algorithm |Similarity Measure/ Parameter§’; |nc|
SEONL th=0.3 25.414

NN-StoS-Fd SEO th=8 69.772
SEO th=4 25413

NN-ECP-Fy SEO th=5 2747
SEON th=0.09 27.4 7

Kmeans SEONL 48315
SEO 47.315

SEONL 21.524

. SOLOM 15.924
Hier-SL RDGC 24.324
ECP 16.624

SEONL 39.324

. SOLOM 54.924
Hier-CL RDGC 42.424
ECP 41.824

Hier-AL SOLOM 57.324
SEONE 90.7/24

. SOLOM 60.624
Hier-WL RDGC 51.724
ECP 55.224

NSEDL 0=0.08 76.524

Spectral NSEDL ¢=0.16 67.424
NSEDL 0=0.44 82.6|24

of the number of clusters (column "nc”) in the data partitiBrand the corresponding
consistency with the ground truth informatia®?, C;(P, P°) (column "C;").

These partitions, have very heterogeneous results, aigagnminimum of 7 clus-
ters using NN-ECP-Fu (with SEO and th=5), to the correct nemds cluster and a
consistency of 82.6% using spectral clustering algorithn®0.7% using the hierarchi-
cal Wards (WL) link.

4.3 Ensemble Methods Results and Validation

Using the combination techniques presented in sectionmz2yropose to combine the
clustering ensemble, assuming known the number of clyskérgwith the value 24),
and using the lifetime criteria.

Following [6], two different experiments were conductetieTirst, that we will call
Heterogenous Ensemble, uses partitions produced by fleeatif paradigms described
above (with all the algorithms and proximity measures) intaltof 23 partitions. The
second uses only the partitions obtained using the spestrsiering algorithm. For
that, the followed approach consisted in fixing the numberladters in each partition
(K = 24) and varying the parameter within the interval[0.08 : 0.02 : 0.5], where
0.02 corresponds to an increment, resulting on a total of 22tjars.

Table 2 shows the obtained results of the combination oftbeenhsembles (Hetero-
geneous and Spectral Ensembles). The rows of the tablesesytrihe algorithms (SL,
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CL, AL, WL or Centroid) used in the extraction of the combinedadpartition from the
co-association matrix. The columns represent the comsigtendexC; (P*, P°) and
C;(Py*, P°), between the combined data partition and the ground truith tfae con-
sistency index between the bootstrap versions of the clngtensemble and the ground
truth information (in terms of mean and standard deviatiMgreover the columns are
divided in k-fixed and lifetime version of the combinationtimad, representing the ob-
tained result with fixed number of clusters (equal to the tumber of clusters, K=24),
and the with the lifetime criteria, that chooses the numlbeiusters that best suits the
data. Notice that the consistency index, when the numbdusfers is equal to the true
number of clusters, is equal to the percentage of agreerheRt ).

Table 2. Results of the combination of Heterogeneous and Spectral clusteriegibles in terms
of the consistency index between the combined partition and the ground el *, P°) and
between the bootstrap versions of the clustering ensemble and the grmhndi‘i(P,j’“, ).

Heterogeneous Spectral
Comb. Al k-fixed life-time k-fixed life-time
- A9 Bootstrap Bootstrap Bootstrap Bootstrap

S i staiey| © [Tifstaiciy| © [Cifstaicay| © [T lsta{Ci
EAC-SL [61.753.9 117 (145166 3.3 |838/76.9 2.9 [67.066.7 57
EAC-CL [73.363.7 9.8 [211/10.2 145 [69.971.2 3.0 |79.570.6 2.6
EAC-AL |73.369.7 9.7 |21.1|121.8 4.3 |76.0745 4.1 |70.271.2 3.3
EAC-WL [937/84.0 7.0 [14.516.1 6.7 |80.481.1 1.4 (844|644 28.0
EAC-Cent [77.068.9 135 [211/28.1 16.5 |79.175.9 3.9 |76.373.4 6.0

The combination results have considerably higher reshite the average perfor-
mance obtained with the individual methods in the clusteensemble (43.6% av-
erage consistency index). Moreover, it is worth noticingttthe combination results
outperform the best individual clustering results: thedfegeneous clustering ensem-
ble gives the best global performance (consistency indék thie EAC-WL method
-C;(P*, P°)- of 93.7%). In the Spectral clustering ensemble the resuéisas in the
previous ensemble, better than the single clusteringteddle to reduced space, in
rest of the paper only the heterogenous ensemble will beidenesl, since it obtains
better results.

In terms of the different paradigms for the selection of thenber of clusters in
the combination method (using fixed-k or lifetime), in thedregeneous ensemble the
fixed-k outperformed the lifetime criteria, since the numbkobtained clusters using
this criteria was only 3 (or 2 in some cases).

To understand the bootstrap versions of each ensemblégl@2acolumns’; and
std{C;}, represent the average and the standard deviation of tiestemcy between
the combination of the bootstrap versions of the clustegimgemble, denoted y;*,
and the ground trutt°. As shown, the average consistency is different from the ob-
tained with all the ensemblé), since these versions of the ensemble were obtained
perturbingP via bootstrapping (i.e sampling with replacement). Moerdhe standard
deviation in some cases is very large, which manifest thiabiity of the bootstrapped
ensembles.
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The stability analysis will try to choose the best combinadigion, or in another
perspective, try to finHow to choose the extraction methodahd”If we should use
the k-fixed or lifetime criteria?”

Table 3 present consistency results between the bootstrajous of the cluster-
ing ensembleP’ and the obtained clustering combination resuffe’, in terms of
NMI(Py*, Pb) (equation 1),std{ NMI(Pxy,P*)} (equation 2), and’;(P;*, Pb),
std{C;(PxF,P*)}, based on 100 bootstrap experiment (using the same numpar-of
titions in each ensemble), for the heterogeneous and spectsembles respectively.
Moreover it presents the consistency between the obtaioedbioation results in the
different bootstrap experiences, in terms\oM I (P;*, Prk), Ci(Prk, PrF).

Table 3. Heterogeneous clustering ensemble - Colutijf®, P* represent the consistency be-
tween the bootstrap versions of the clustering enserfibland the obtained clustering com-
bination resultsP;*, in terms of NMI(P;*,Pb), std{ NMI(Px;,P")}, and C;(P;*, P?),
std{C;(Px¥,P*)}; Column: Py, P;* represent the consistency between the obtained combina-
tion results in the different bootstrap experiences, in termiS df I (P;*, Pi*), Ci(Py*, PF).

fixed-k life-time

Pb*ka Pb Pb*kv Pb*lc Pb*kv ]Pb P;ka Pl;klc

NMI C; NMI C
m std m std NMI - C I std I std NMI Cs
EAC-SL |0.5810.02170.478(0.01660.8320.691|0.2650.08720.4410.0058|0.8170.949
EAC-CL |0.5860.02310.4480.01850.8150.652(0.2400.21850.4280.00590.4170.713
EAC-AL |0.605|0.01250.4630.0106(0.8960.779|0.392|0.0492|0.474/0.00610.890|0.950
EAC-WL |0.6030.0088(0.4340.01260.915|0.809((0.3090.06240.4360.00600.5720.848
EAC-Cent |0.5990.02350.4730.01490.8590.731|0.4080.12030.4740.00590.6390.761

Comb. Alg

Comparing the best obtained results (considering the grawrth information -
table 2), for the fixed-k version was obtained with the EAC-Wbr{sidering all the
ensemble and also the bootstrap versions); and for thérifeapproach the best results
were obtained using the EAC-CL, EAC-AL and EAC-Cent (coesitg the bootstrap
version the best was the EAC-Cent but with a high standarthtien, followed by the
EAC-AL with a much lower standard deviation).

Following the average consistency between the combinedtsesnd the bootstrap
ensembles N M I(P;*, P?) - the best partition is not always correctly chosen, the same
happening with the”; (P;*,P?). The standard deviation measures of this consistency
std{ NMI(PxF P*)} and std{C;(PxF,P’)}, are the more suitable for the selection
of the best partition, choosing in the case of tHé/ the best partitions (by other
words best method). Moreover it leads to the choice of theddfiversion (instead of
the lifetime version) of the algorithm.

Following the other perspective, the consistency betwleendmbination results (in
the different bootstrap versions of the ensemblE}* - in terms of N M I(P;*, Pi¥),
Ci(Pr*, Py*), the best partitions are selected. This measure can bedeoedia mea-
sure of reproducibility of clustering solutions, sincetilifferent clustering ensembles,
obtained perturbing the original clustering ensemble different combined solutions
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Fig. 2. In both figure y-axis represent the consistency of the combined sadutiith the ground
truth - C;(P;*, P°). In the left figure the x-axis represents theM I between the combined
solutions and the ensembld&\/ I ( P;*, P®); in the right figure the x-axis represent the standard
deviation of this measuretd(N MI(P;*, P?)).

are compared. To understand the variability of the obtagodations, Figure 2 presents
the correlation betweefl; (P, P°) (y-axis) andN M I(P;*,P*) (x-axis).

It can be seen from the left figure, that the partitions withltlest results (according
with the ground truth informatior?° - y-axis) are the partition with the symbgj}
(in green), EAC-WL. The right figure, which represents thendgad deviation of the
combined results with the clustering ensembles, showsathathe chosen method.

Analyzing analogous correlations for consistency of thelsimed solutions, like,
NMI(Pz*, Prk) lead to the same conclusions.

5 Conclusion

In this paper we focus the concept of validation/selecticth® "optimal” data partition
in the Ensemble Methods perspective. The problem of clingt@f string patterns was
used as an example of application of this analysis. It ctedim a variance analysis
using bootstrap to quantitatively measure the consistbatieen the partitions of the
clustering ensemble and combined results and by the othnet the consistency be-
tween the obtained combination results in the differentt&tomp experiments. These
preliminary results show that the variance (standard dewjpof the consistency of the
combined results with the clustering ensemble and the stamgy between the com-
bination results in the different bootstrap experiencesl I the choice of the most
adequate solution. Further experiments are being condltetiirther confirm this re-
sult.
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