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Abstract: Impedance Cardiography is a cost-effective, non-invasive technique particularly useful in measuring cardiac 
functions. It evaluates systolic time intervals and stroke volume measuring thorax bioimpedance. In this 
paper, adopting the time-frequency analysis method, a new design has been developed to study the first 
derivative of impedance cardiography signal. The application of parallel wavelet filter banks has been 
investigated and a new method for ICG signal characteristic point detection has been developed. Test results 
show the improvement of the method in sensitivity and the feasibility of an easy implementation by design 
tools. Moreover, the algorithm noise immunity has been investigated. 

1 INTRODUCTION 

Impedance Cardiography (ICG) is a technique to 
study cardiac functions through measurements of the 
thorax electrical impedance. It has been widely 
adopted because it is noninvasive, easy to use and 
suitable for long-term and continuous monitoring of 
hemodynamic function (Jensen, 1995). Moreover, 
the ICG signal can be correlated with other 
significant signals (i.e. ECG) to generate alarm in 
critical situations.  

In the past difficulties associated in ICG signal 
processing have been motion artefacts, muscle noise, 
pacemakers, etc. The most recent ICG devices have 
shown improved accuracy. Therefore the ICG has 
established a role in the management of outpatients 
with hypertension, heart failure and other chronic 
diseases (Treister, 2005). The use of ICG in 
therapeutic decision making regarding patients with 
critical diseases is primarily based on its ability to 
identify presence or absence of hemodynamic 
abnormalities. For these reasons many researches 
have been developed both to study physiological 
mechanisms for understanding origin and meaning 
of ICG signals and to improve effectiveness and 
applicability of ICG diagnostic test adopting 
advanced signal processing techniques (Wang, 
1995). 

Many efforts have been done to implement 
automatic detection of reference points in biological 

signal. However, existing peak detection algorithms 
are difficult to automate for generic use because 
either they rely on a number of parameters that need 
to be customized for a particular application of the 
algorithm or they use reference informations that is 
highly specialized for a particular application.  

Most of the proposed methods make use of 
filtering technique (band pass filtering and temporal 
filtering) (Leski, 1992), (Pan, 1984), or adaptive 
thresholding technique (Sun, 1992), (Suppappola, 
1994). All the previous techniques exhibit 
limitations when real signal are adopted (Sun, 2005). 
In fact, the first drawback of filtering-based 
approach is that frequency variations in the signal 
under test (due to different causes such as, for 
instance, cardiac frequency changes) may adversely 
affect the method performance. For instance, the 
frequency band of some biological signal, such as 
ECG, differs for different subjects and can change 
for the same subject due to particular events. The 
second problem in the filter based algorithms is the 
frequency band overlapping of noise and some 
biological signals. Therefore, the choice of a suitable 
bandwidth is a trade off between noise and high 
frequency details while the duration of the sliding 
window is a trade off between false and missed 
detections.  

Whereas, the main problem of the thresholding 
techniques is their sensitivity to baseline variations 
and signal intensity. This high noise sensitivity can 
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be a problem for some types of signals having low 
signal to noise (S/N) ratio. 

An extensive overview of various algorithms for 
peak detection in ECG signals can be found in 
(Kohler, 2002) which includes approaches based on 
neural networks, adaptative filters, Hidden Markov 
models and Hilbert transform, too.  

The purpose of this paper is to introduce an 
improved signal processing technique able to 
provide an easy implementation in design tools. It 
adopts the wavelet transform for ICG waveform 
characteristic point detection. Moreover, for parallel 
computing and for implementation by design tool, 
parallel filter banks have used in the adopted 
technique. Experimental results show the method 
validity and its high sensitivity parameter. In fact, 
sensitivity reliable results with minimum 
interferences from noise and artifact have been 
obtained. 

2 ICG TECHNIQUE 

Impedance cardiography is the study of cardiac 
function by means of thorax electrical impedance 
measurements. High frequency (20-100KHz), low 
intensity current (1-5mA rms) is injected through the 
thorax by some electrodes and the impedance 
change is sensed by measuring a voltage across 
other electrodes. No risk of physiological effects 
have been found because various tissues of human 
body are not excitable at this frequency and at this 
low current level (Patterson, 1989). The impedance 
variation can be used for diagnostic information and 
for the stroke volume (SV) estimation by using 
blood flow appropriate model. The term SV 
indicates the amount of blood pumped by the heart 
left ventricle in one contraction. 

Figure 1 shows a typical impedance waveform 
obtained from electrodes in which the characteristic 
points are indicated.  

Pulsating blood flow through the thoracic aorta 
causes shifts in the thoracic impedance as a function 
of changes in blood volume. This oscillating 
component of the total thoracic impedance can be 
expressed as its derivative (dZ/dt). Measurements of 
the changes in the thoracic impedance (dZ/dt 
waveform) during the cardiac cycle are used to 
calculate SV. This can be done in several ways 
(Kubicek, 1974), (Sramek, 1982), (Bernstein, 1986). 
Generally all the equations take into account 
position and value of C-point related to B-point and 
X-point. 

 
Figure 1: Typical impedance waveforms from the thorax 
of a human subject. 

3 WAVELET TRANSFORM 

Wavelet transform provides temporal and spectral 
information simultaneously, so it is suited for 
determining characteristic points of non stationary 
and fast transient signals, such as ICG signals. This 
feature is suitable to distinguish the ICG signal from 
noise and interferences. 

The wavelet method decomposes a time variant 
signal into several components having various scales 
or resolutions. A suitable time and frequency limited 
wavelet is chosen as the “mother”. Scaling and 
shifting the mother wavelet, a family of functions 
called “daughter” wavelet is generated. For small 
value of the scale factor, the wavelet is constructed 
in the time domain and gives information about fine 
details of signals. Therefore a global view of the 
signal is obtained by the scale factor large value. 
The wavelet transform of a time signal at any scale 
is the convolution of the signal and a time-scaled 
daughter wavelet.  

There are essentially two types of wavelet 
decompositions: the redundant ones (continuous 
wavelet transform (CWT)), and the nonredundant 
ones (orthogonal, semi-orthogonal, or biorthogonal 

A NEW METHOD FOR ICG CHARACTERISTIC POINT DETECTION

245



 

wavelet bases) (Unser, 1996). The first type is 
preferable for feature extraction because it provides 
for a description that is truly shift-invariant. The 
second type is preferable for data reduction, or when 
the orthogonality of the representation is an 
important factor. However, the choice between these 
types of decompositions has to take into account 
computational considerations, too. A decomposition 
in terms of wavelet bases using Mallat fast algorithm 
is typically orders of magnitude faster than a 
redundant analysis, even if the fastest available 
algorithms are used (Rioul, 1992), (Unser, 1994).  

As the aim of this paper is the implementation of 
a fast parallelized algorithm, a nonredundant wavelet 
decompositions has been chosen. To determine the 
best wavelet function to be used, the ICG signal 
properties have been studied, such as the shape and 
the time localization of events. Temporal signal 
shape is an important parameter, so orthogonal 
wavelets are unsuitable to be used. In fact they are 
unable to provide symmetry in the time domain and 
they introduce non-linear phase shift. The signal 
shape is maintained if the phase shift is linear. Thus 
the wavelet to be adopted should be a symmetrical 
function (Dinh, 2001). Spline wavelets have 
properties satisfying the previous requirements. The 
higher order of the Spline wavelet results in the 
sharper frequency response of the equivalent FIR 
filter, that is always desirable. But the FIR 
equivalent filter of the higher order Spline wavelet 
has longer coefficient series leading to more 
computational time consumption. Therefore, the 
cubic spline wavelet is assumed to have an order 
high enough for this application. 

Traditional wavelet theory (Cohen, 1996) 
considers a decomposition algorithm with an 
iterative structure (in particular an asymmetrical tree 
structure) that does not efficiently merge with the 
novel computational techniques, such as parallel 
processing, concurrent programming and design 
tools. In this study the a’ trous and the Mallat 
algorithms for parallelized filter bank design have 
been used (Yang Li, 2005). The algorithm generates 
a set of parallelized perfect-reconstruction filter 
banks for an arbitrary number of end-nodes of a 
traditional tree structure (Koh, 2003). 

4 PEAK DETECTOR METHOD 

The method presented in this section processes the 
first derivate of the impedance signal and allows to 
determine the time domain absolute position of C 
Peak (figure 1).  

ICG signal (figure 2) is sampled at a frequency of 
250 Hz. The input hardware stores sequentially all 
the sample in a high speed frame which is then 
processed in real time by the system. 

 

 
Figure 2: ICG signal. 

In figure 3 the algorithm model is represented. 
The starting signal is indicated with ‘ICG Signal’, 
while the results with: 

- ‘C_point_Number’  that evaluates the number of 
peaks presents in the processed frame; 

- C_Indices’ whose aim is the determination of 
the position of samples which corresponds to peaks 

 

 
Figure 3: Algorithm model realized with the software tool 
MATLAB Simulink®. 

The ‘C_point Detector’ subsytem (figure 4) 
determines the ICG signal peaks. 

Figure 4: ‘C point detector’ subsystem model. 

It uses an evolution of the classical Mallat 
decomposition, called a’ trous algorithm. The a’ 
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trous algorithm for non-ortogonal wavelet uses a 
filter bank structure as the Mallat algorithm (Mallat, 
1989), but differs only for the filters design. It has 
been demonstrated that after the application of 
wavelet filters for j-times, the precision of a’ trous 
algorithm is 2j time higher then the Mallat algorithm 
(Table 1) (Shensa, 1992).  

Table 1: Precision of Mallat algorithm and a’ trous 
algorithm varying decomposition level 

 
 

For the tree structure of the algorithm, the 
previous structure is not suitable for parallel 
computing and for implementation in design tools. 
To overcome this limit equivalent parallel filter 
banks have been used. As it is known, the output 
signal realignment is necessary only to put just the 
delay introduced by each filter (figure 5). 

A cubic spline wavelet (wavelet ‘bior3.3’) has 
been chosen because it makes possible the perfect 
signal reconstruction (figure 6). 

For ICG signal processing, six dyadic scales 
have been used to decompose the signal (figure 7). 

 

 
Figure 5: Pulse response of FIR filters equivalent to levels 
4, 5, 6. 

With a soft treesholding technique applied to 
level 1, 2, 3, the noise has been reduced and then the 
signal reconstructed in the time domain. 

To localize characteristic points inside signal, 
detail levels 4, 5, 6 have been considered because 
they contain the highest number of C signal 
frequencies. 

In respect to each singularity in ICG signal, a 
point of maximum value in detail coefficient signal 
is present. The proposed method searches local 
maximum points in the positive region of scale 4, 
scale 5 and scale 6 using a thresholding technique. 
Various tests have indicated the local maximum in 
the lower scale as the best points for the real signal 
peak localization 

.  

Figure 6: Wavelet ‘bior3.3’. 

 
Figure 7: Decomposition of ICG signal over six scales. 

5 RESULTS AND DISCUSSION 

Real ICG signal (fig.8) has been tested with good 
results. Moreover the test has been repeated adding 
Gaussian noise with zero average and variable 
variance. In this situation the algorithm noise 
immunity has been evaluated. 
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Figure 8: Frame tested. 

The software detection algorithms for medical 
applications requires the evaluation of the detection 
performance according to ANSI/AAMI standard. 
Two parameters are used to evaluate algorithms: 
Sensitivity: 

FNTP
TPSe
+

=  (1) 

Positive Prediction:  

FpTP
TPP
+

=
 

(2) 

where: 
 TP is the number of true positive detections;  
 FN (the number of false negatives) is the 

number of C points present in the signal that the 
algorithm is not able to detect; 

 FP (the number of false positives) is the number 
of C points detected by the algorithm but really 
not present in the signal. 

 
Tested Frame presents C-peak value fluctuations 

in the range [1÷1.5Ω/s]. Other local maximum 
points are all in the negative region. Algorithm has 
individuated the 50% of the maximum value of the 
wavelet in each windowed segment of data as the 
optimal threshold value. 

The obtained sensitivity parameter is very 
satisfactory and appears quite independent from 
noise (figure 9). Predictivity is fairly good but 
decreases as noise increases (figure 10). 

Anyway it is to be noted that very heavy noise 
conditions have been chosen to test the algorithm 
noise immunity. An additional Gaussian noise signal 
with v=0.1(Ω/s)2 corrupts heavily the ICG signal; in 

particular the noise, besides changing the ICG signal 
shape, introduces many false peaks while cancels a 
minor number of true peaks. 

 
Figure 9: Sensitivity. 

 
Figure 10: Positive Predictivity. 

6 CONCLUSIONS 

The real-time C-point detection algorithm presented 
in this paper has demonstrated to have high 
sensitivity. 

The method computational time has been 
optimized adopting a parallel procedure to analyze 
the ICG signal. Therefore the realized procedure is 
suited to be implemented in real applications. 
Practical performance is to be improved for positive 
predictivity that appears to be sensible to noise level. 
Moreover, the absence of standard and validated 
ICG data bases, such as those used for ECG signals, 
makes the algorithm efficiency evaluation difficult 
and provides results poorly reproducible and 
comparable. 
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