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Abstract: This paper presents a wavelet-based signal processing method developed for an ambulatory ECG 
monitoring system. The monitoring system comprises modern trends in ambulatory ECG monitoring like 
integration of hardware in clothing, the use of low-power components and wireless data transmission via 
Bluetooth. The signal processing is located close to the sensor, thus allowing increased variability for the 
subsequent data handling (i.e. data transmission in case of detected abnormalities). Due to the very limited 
computational resources (an ultra-low power microncontroller (µC)) and the relatively high demands upon 
signal processing, the need arises for a method which meets the special demands of the ambulatory 
application. Therefore, we developed a wavelet-based method for detecting QRS complexes, especially 
adapted to the real-time requirements. The novel idea of our approach was to incorporate information 
gained from a lower scale directly into the threshold applied for QRS detection in a higher scale. To date, all 
tests proved a very low computational load while simultaneously preserving the reliability of the analysis 
(Se=99,74%, +P=99,85% using the entire MIT-BIH Arrhythmia Database), thus pointing out the 
possibilities of real-time signal processing under ultra-low power conditions.   

1 INTRODUCTION 

Analysis of the electrocardiogram (ECG) is used for 
diagnosis in a wide range of cardiac diseases. 
Anomalous changes may indicate arising coronary 
diseases in an early stage. Further on, acute life-
threatening situations can be observed in the ECG 
immediately after their incidence. Increasingly 
powerful hardware today allows ambulatory long-
time monitoring of the ECG. Such recordings are 
especially useful to detect sporadically occurring 
events, which are not perceptible in short-time 
readings. Also, the online observation of patients 
with increased risk of cardiac breakdowns, due to 
preliminarily diseases or due to special physiological 
stress, is feasible. The available possibilities make 
the long-time ECG a very powerful tool for 
improved medical care. The Fraunhofer Institute for 
Photonic Microsystems (IPMS) focuses on the 
development of a complete system for ambulatory 

ECG monitoring. The signal processing is done in 
close proximity to the sensor to allow a high 
flexibility in further data handling. In particular, 
wireless data transmission can be reduced to 
situations of imminent risks, increasing the 
efficiency of the system to allow the long-time 
application (up to 7 days) of the system.  

Due to the very limited resources of the 
employed ultra-low power µC and the often low 
signal quality, the demands on the signal processing 
are very high. The literature delivers a huge number 
of essays concerned with ECG processing: 
derivative based methods, digital filters, different 
transforms including the wavelet transform and 
neural networks, to name a few (Köhler, 2002). We 
designed a wavelet-based processing method 
especially suited for its real-time application. This 
paper describes the method and gives detailed 
information on the performance concerning 
detection rates as well as computational load. 
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The paper is organized as follows: Section 2 
gives an introduction into the monitoring system and 
describes our algorithm based on considerations on 
the wavelet transform and its implementation in 
detail. Experimental results are reported in Section 3 
and discussed in Section 4. Finally, Section 5 
contains conclusions and some considerations 
concerning the future development of the system. 

2 MATERIALS AND METHOD 

2.1 Hardware 

As carrier of the monitoring system we used a smart 
shirt. We integrated four electrodes to record a three-
channel ECG based on Einthoven. Further on, a 
partially flexible printed circuit board was included. 
The board contains the hardware for analog 
preprocessing and further data handling. Sampling 
of the ECG is done at 1000 Hz and 12-Bit 
resolution. Data handling may include storage of 
data on a memory card and, optionally, the wireless 
data transmission via Bluetooth to a PDA. The PDA 
serves as gateway to communicate with medical 
personnel via internet. Signal processing done close 
to the sensor offers the possibility of wireless data 
transmission limited to situations of imminent risks. 
In this way, the actual data handling (storage and/or 
transmission) depends upon the outcome of the just-
performed signal processing, thus rendering the 
overall system more flexible and improving its 
efficiency. All electronics as well as the signal 
processing is controlled by the ultra-low power µC 
MSP430F1611. Due to its low power consumption, 
such a controller is very suited for ambulatory 
applications. Of course, the low consumption 
accounts for a likewise low maximum clock 
frequency of 8 MHz. To handle this major 
drawback, an adequate signal processing method 
was developed. The underlying ideas, the 
implementation and performance results of the 
developed algorithm will be described next. 

2.2 Signal Processing Method 

2.2.1 Wavelet Basics 

The wavelet transform (WT) decomposes a signal in 
scaled and translated versions ψa,t(τ) of a basis 
function called mother wavelet ψ(τ). The derivates 
of the mother wavelet are given by 
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where a is a scale factor which is a measure of the 
current width of the applied wavelet and t is the 
translation parameter which describes the position of 
the wavelet in the time domain. The wavelet 
transform X(a,t) results from the inner product of the 
signal and the scaled and translated wavelet 
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The resulting coefficients can be seen as a measure 
for the similarity of the examined signal segment 
specified by t, and a wavelet of varying width 
specified by a. The transformation of (2) to the 
frequency domain yields 
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where X(ω) and Ψ(ω) are the Fourier transforms of 
the signal and the wavelet, respectively. From (3) it 
can be seen that decomposing a signal by the WT is 
equivalent to the application of a filter bank. The 
bandwidth of each pass-band filter increases with 
higher center frequencies. 

2.2.2 Calculated Transform 

There are three usual ways to compute the wavelet 
transform: the so-called continuous WT (CWT), the 
dyadic WT (DYWT) and the discrete WT (DWT). 
The schemes differ in the required computational 
resources, the resulting degree of redundancy and in 
some properties of the results like shift-invariance. 
In the DYWT the scale a is sampled along a dyadic 
sampled grid while the translation remains scale 
independent. Thus, applying the DYWT, the property 
of shift-invariance can be maintained while the 
degree of redundancy, and therefore the 
computational load, is reduced in comparison to the 
CWT. For the DYWT the definition of ψa,t(τ) 
becomes  
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When using expressions like “scale 4”, we will refer 
to the scale a=2m =24. 

Fast computations of the DWT are done through 
the Mallat algorithm. In analogy to the “algorithme a 
trous” (Holschneider, 1989), it constitutes a 
recursive algorithm allowing the fast calculation of 
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the DYWT. The highly advantageous property of 
shift invariance justifies an increased computational 
effort, rendering the use of the DYWT optimal for 
our intended realization. 

A wide range of different wavelets have been 
employed in the past for ECG processing. Referring 
to the choice of an adequate wavelet, the statements 
found in the literature disagree. For instance, Dinh et 
al. conclude that the cubic spline wavelet is best 
suited for the detection of QRS complexes (Dinh, 
2001). Differing from this, Li et al. do not perceive 
substantial differences in the performance of the 
detection by using a spline of higher order than the 
quadratic spline wavelet (Li, 1995). The possible 
usage of different wavelets allows the utilization of 
other criterions searching for an adequate one. As 
our application aims at the real-time processing 
under extremely limited resources, the compactness 
of the chosen wavelet in the time domain is a crucial 
demand. The quadratic spline wavelet originally 
introduced by Mallat et al. (Mallat, 1992) meets this 
demand and is used in our implementation. In Figure 
1, the transfer functions realized by the quadratic 
spline wavelet are shown. 

Figure 1: Transfer functions realized by the quadratic 
spline wavelet and a sampling frequency of 1000 Hz. 

2.2.3 Underlying Idea of the Implemented 
Method 

In the current stage of development we realized a 
QRS detector. The most commonly used principle of 
wavelet-based QRS detectors (employing the 
quadratic spline wavelet) is to search for modulus 
maximum pairs (MMP) (combination of local 
extreme values exceeding a threshold). To obtain a 
good performance the search typically is carried out 
across all scales, at least up to the scale assumed as 
most significant in regard to the main energy 

portions contained in QRS complexes. (Li, 1995), 
(Martinez, 2004) 

An obviously possible solution to reduce the 
computational effort is not to incorporate all scales, 
but to do the detection based on only one scale. Such 
an approach does not take advantage of the multi-
scale decomposition provided by the WT, but it 
constitutes a viable way to detect QRS complexes. 
Employing only one scale of the WT is similar to the 
usage of a single bandpass-filter. On the filtered 
signal the typical method of grouping extrema to 
MMP and assigning them to QRS complexes can be 
applied. In Section 3, some example results (testing1 
and testing2, see Table 1) using this methodology 
are given. Different rules to control the value of the 
thresholds were employed. In both cases, adaptive 
thresholds (see Appendix for details on the 
adaptation) were applied. In testing2 the threshold is 
generally endued with an offset to lower the 
resulting value compared to the threshold in 
testing1. As expected, the performance of the 
methods varies in sensitivity and positive 
predictivity. Both methods offer, depending on the 
data set as well as on the observed signal portion 
within one data set, sections of varying detection 
quality. With regard to this, a method to influence 
automatically the valid threshold becomes a very 
interesting option. Such a procedure aims to take the 
advantages of a generalized lower or higher 
threshold according to the current signal state.  

Our method detects QRS complexes in scale 5. 
Based on the number of threshold crossings within a 
sliding window in the scale 4 the threshold in scale 5 
is controlled.  

2.2.4 Structure of the Algorithm 

The algorithm can be divided in three steps:  
(1) Search for MMP and extract “relevant threshold 

crossings” in scale 4.  
(2) Search for MMP in the scale 5 incorporating 

the information gained from the corresponding 
number of threshold crossings detected in the 
scale 4. 

(3) Classification of MMP found in scale 5 as QRS 
complexes using a simplified regularity 
analysis  

Step (1): With every incoming sample the search 
for local extrema, aimed at the grouping of a MMP, 
is continued. Different combinations of extrema can 
constitute a MMP. To detect the extrema, online-
adaptive thresholds ε±

4 are used. An adaptation of 
the thresholds is caused by the successful grouping 
of a MMP (see Appendix for details on the 
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adaptation). Based on ε±
4 additional thresholds ε±

cross 
are created to excerpt all “relevant threshold 
crossings”. “Relevant threshold crossings” refer to 
local extrema crossing the corresponding threshold 
ε±

cross. This registration is not carried out in order to 
group the extrema as MMP, but to obtain a measure 
of the signal quality by counting the number of 
crossings Ncross within a window Wcross of 500 
samples. Note that there is a major difference 
between the extrema searched for MMP grouping 
and the extrema detected using ε±

cross, as the absolute 
value of ε±

cross is generally smaller or equal than ε4
± 

and found extrema are not discarded until their 
position has left the range of the sliding window. 

Step (2): MMP are searched in scale 5 using the 
same routine as in scale 4. Also online adaptive 
thresholds ε±

5 are existent. Differing from scale 4, 
for the MMP search in scale 5 not directly the online 
adaptive thresholds ε±

5 are used, but a threshold 
changed by a correction factor κ. κ varies  depending 
on the number of registered threshold crossings. The 
actual number of zero crossings Ncross can be 
interpreted as a measure for the degree of higher 
frequency noise or artifacts. According to this, κ 
converts the information contained in Ncross to a 
threshold operation in scale 5, referred as ε±

5 + κ 
(note that this is only a symbolic notation). In 
general, for noisy segments the threshold is 
increased whereas a reduction in sections of good 
signal quality is performed. Depending on the value 
of Ncross, the modification of threshold can be up to 
±37.5% of the actual ε±

5. It is important that the 
threshold be changed only for the search of local 
extrema, otherwise ε±

5 doesn’t suffer any changes. 
To allow the zero crossing window to be placed 
symmetrically around the scale 5 coefficient under 
observation, the scale 5 coefficients have to been 
delayed by 250 samples (taking into account the half 
window size), plus the delay introduced by the 
recursive online calculation of the WT.  

Step (3): If a MMP is detected in scale 5 and a 
corresponding MMP in scale 4 is existent, a 
simplified regularity analysis based only on the 
amplitudes of the detected MMP is carried out. If no 
corresponding MMP is present at scale 4, the MMP 
of scale 5 is accepted as QRS without any regularity 
analysis. 
Figure 2 shows an example containing an ECG 
segment, the corresponding scale 4 and scale 5 
coefficients and the course of. Also showed is the 
course of the threshold values ε±

4 (bright), ε±
cross 

(dark), ε±
5 (bright),  ε±

5 + κ (dark). The threshold 
adaptation after detections and the general dynamics 
of the correction factor are visible. Ncross exhibits the 

expected behaviour. An increase is visible during 
noisy segments whereas during uncorrupted 
segments only the QRS complexes have an influence 
(resulting in an oscillation between 0 and 2 detected 
crossings). ε±

5 + κ oscillates around ε±
5). 

 
Figure 2: Example for the behavior of the algorithm. 

2.2.5 Implementation 

The algorithm was implemented in C. To minimize 
the required computational effort three fundamental 
concepts were incorporated in our  implementation.  

Simplicity of employed data types: the applied 
µC is a 16-Bit controller. This renders the 
application of 16 Bit fix-point operators very useful. 
Incoming data is sampled with a 12-bit resolution. 
16-Bit fix-point numbers were used for the recorded 
ECG as well as for wavelet coefficients, scaling 
coefficients and threshold values. Considering the 
maximal values possibly appearing in the course of 
the WT, a multiplication of incoming data by 4 is 
possible. Therewith, the whole value range is 
involved and the inaccuracies introduced by 
rounding errors are reduced. 

Simplicity of all employed operations: as 
mentioned before, the usage of the quadratic spline 
wavelet provides a low number of coefficients 
(namely 4 low-pass coefficients and 2 high-pass 
coefficients) thus fulfilling the first requirement on 
an effective real-time processing. Furthermore, the 
coefficients allow the calculation of the WT with 
only bit-shifts and additions. Also the adaptation of 
all threshold values was implemented by bit-
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manipulations. All remaining steps of the algorithm 
are performed by logical instructions like 
comparisons. These operations also are 
characterized by their low computational load. 

Avoidance of inappropriate processing methods: 
to provide a uniformly low computational load, 
often used undesirable steps as back-searchs were 
excluded. The applied windowing operation, also an 
improper medium for the real-time purpose, acts on 
a window of 500 samples, introducing a delay of 
250 ms only. All values to be updated in periodic 
manner (for example the zero crossings within W0, 
for which the removal or addition of crossings is 
demanded due to the sliding window) are arranged 
in circular buffers. This allows the algorithm to work 
continuously on every incoming sample. 

3 RESULTS 

3.1 Detection Performance 

Table 1 yields the results of the performance 
evaluation accomplished under different conditions. 
Using the MIT-BIH Arrhythmia Database, all beats 
occurring beginning 5 minutes after the begin of the 
records until 30 minutes have been evaluated. This 
results in 90491 beats. As previously mentioned, the 
example trials testing1 and testing2 were carried out 
without any influence created by the usage of Ncross. 

The quantitative evaluation of the complete 
method with own data (Table 1, evalOwnData) 
yielded a sensitivity (Se) of 99.85 % and a positive 
predictivity (+P) of 99.92 %. The annotation by a 
health professional was used as reference. The 
evaluation using the MIT-BIH Arrhythmia Database 
(Table 1, evalMIT) yielded a sensitivity and positive 
predictivity of 99,74 %, respectively 99,85 %. As 
the algorithm was designed for data sampled at 1000 
Hz, the data was upsampled. Due to the contained 
frequency portions, the regularity analysis was 
skipped as a similarly easy regularity analysis (like 
accomplished for own data) no longer was possible. 

Table 1: Performance of the QRS detector using different 
test configurations. 

Identifier of 
the task 

Number 
of  beats Se +P 

testing1 90941 99.31 % 99.80 % 

testing2 90941 99,81 % 99,36 % 

evalOwnData 8525 99,85 % 99,92 % 

evalMIT 90941 99,74 % 99,85 % 

Table 2: Required resources for signal processing. 

Computational load (at 8 MHz) 
Processing Step required 

cycles required µs 

Calculation of WT 900 112.5 

Search for MMP 400 50 

Ncross  maintanance  70 7.5 

Over all <2000 <250 

Table 3: Memory coverage of the implemented method. 
Code Memory Data memory 

<7900 byte <4000 byte 

3.2 Computational Load 

Table 2 contains an outline of the required resources. 
Besides the overall amount of cycles, the equivalent 
processing time and the number of cycles 
concerning specific steps within the implemented 
method are given. The algorithm acts without any 
prefiltering of the signal and thus avoids additional 
computations other than the calculation of the WT 
and the subsequent feature extraction procedure. The 
step “Search for MMP” refers to the search for 
extremas and the grouping of detected combinations 
of extrema to a MMP. According to the structure of 
the algorithm, this step is called twice per input 
sample, once for scale 4 and once for scale 5. The 
whole detection procedure requires less than 250 µs 
(2000 cycles), leaving computing power to manage 
other functions.  

Also of high interest considering the limited 
resources of the ultra-low power µC is the memory 
coverage. Table 3 shows the most important 
characteristics, proving the adequacy of the 
implemented method. 

4 DISCUSSION 

The evaluation of our method showed promising 
results in terms of the required computational load 
and the performance of the method. Note, that the 
only difference between the methods used in 
testing1 and evalMIT is the correction of the 
threshold in scale 5, thus pointing out the 
effectiveness of the algorithm. Compared to the 
high-quality approaches of Li et al. (Li, 1995) and 
Martinez et al. (Martinez, 2004) the reached 
detection rates are slightly lower. However, a deeper 
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insight to the methods reveals in both cases 
strategies which are very impractical for a real-time 
calculation. For instance, Li et al. work on 600 
samples of the ECG each time instead of on every 
incoming sample. Furthermore, two “real-time 
unfriendly” techniques (in the original paper referred 
to as “tactic 1” and “tactic 2”) to exclude or accept 
detections based on foregoing and subsequent 
detections with the benefit of hindsight were 
incorporated. In turn, Martinez et al. incorporated in 
the computation of their scale-dependent thresholds 
the RMS calculated from 216 values of the respective 
scale. The storage of that amount of data for one 
scale would exceed the data memory of the 
controller by a factor of 10. Taking this into account, 
our realization seems to be very appropriate for the 
application area. By incorporating the information 
on the latest detected QRS complexes, the 
performance of the method still can be slightly 
increased. Nevertheless, to reach the detection 
performance reported by Li et al. while maintaining 
a similarly low computational load like provided by 
our method seems to be very difficult. 

In addition to the good results obtained by our 
method, the implemented method exhibits a high 
potential for future work. For instance, concerning 
the QRS delineation as well as P and T waves 
delineation, the already computed wavelet 
coefficients can be used as basis. 

5 CONCLUSIONS 

We developed a method especially suited to perform 
signal processing in close proximity to the sensor. 
The proposed algorithm is adapted to best meet the 
most important demands of the ambulatory 
application, which are low computational load and 
high reliability. Even for a sampling frequency of 
1000 Hz the described method can be used on an 
ultra-low power µC, leaving computing power for 
other purposes. The physical proximity of the signal-
processing hardware to the sensor provides 
increased flexibility for subsequent information 
handling and, combined with an ultra-low power 
architecture, is capable of significantly increasing 
the runtime of an ambulatory monitoring system. 

Future work will focus on further signal 
processing steps. These steps may include detection 
of P and T-waves as well as the evaluation of the 
ST-segment. As it was shown by the literature this 
can be done based on the wavelet transform as well. 
The use of the wavelet coefficients for further signal 
processing purposes renders the wavelet-based 
method even more attractive for low-power 
microsystems with reduced hardware complexity. 
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APPENDIX 

Rules for threshold adaptation after a detected MMP 
(for lower thresholds εm

- “max” is replaced with the 
specific “min” values and εm

+ is replaced by εm
-): 

if max( (2 , )) 3*

0.375*max( (2 , )) 0.625*

else if max( (2 , )) 3*

0.5*max( (2 , )) 0.5*

else if max( (2 , )) 2*

0.75*max( (2 , )) 0.25*

else
1.125*max( (2 , ))
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400 ms after an adaptation (to avoid mistakes 
introduced by T waves with higher frequency 
portions) the threshold is lowered by 50%. 
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