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Abstract: This paper presents a historical overview of intelligent tutoring systems and describes an adaptive 
instructional architecture based upon current instructional and adaptive design theories. The goal of such an 
endeavor is to create a training system that can dynamically change training content and presentation based 
upon an individual’s real-time measure of cognitive state changes. An array of physiological sensors is used 
to estimate the cognitive state of the learner. This estimate then drives the adaptive mitigation strategy, 
which is used as a feed-back and changes how the learning information is presented. The underlying 
assumptions are that real-time monitoring of the learners cognitive state and the subsequent adaptation of 
the system will maintain the learner in an overall state of optimal learning.  The main issues concerning this 
approach are constructing cognitive state estimators from a multimodal array of physiological sensors and 
assessing initial baseline values, as well as changes in baseline. We discuss these issues in a data processing 
block wise structure, where the blocks include synchronization of different data streams, feature extraction, 
and forming a cognitive state metric by classification/clustering of the features. Initial results show our 
current capabilities of combining several data streams and determining baseline values. Given that this work 
is in its initial staged the work points to our ongoing research and future directions. 

1 INTRODUCTION 

The design of metrics to determine cognitive state 
changes in real-time of persons performing tasks in 
their work environment is an emerging field of 
research. For example, Human Factors and 
Augmented Cognition research endeavors suggest 
the use of psychophysiological measures to 
determine best practices when developing trainers 
for military (Nicholson et al., 2006) and medical 
(Scerbo, 2005) occupations in an effort to optimize 
the learning state of the user. Further, a valid and 
reliable metric of cognitive state has far reaching 
utility in the field of intelligent tutoring, which has 
further implications for cognitive rehabilitation and 
assistive brain-computer interfaces.  

This type of research is not possible without 
portable, unobtrusive psychophysiological sensing 
devices. However, utilizing physiological metrics 

such as electroencephalography (EEG) is difficult 
due to the many factors that influence cognitive 
processes intra and interpersonally. Some such 
factors include external demands (e.g., loud noises), 
trait characteristics (e.g., personality), and physical 
states (e.g., levels of fatigue). More importantly, the 
neurobiology underlying constructs defining 
cognitive states (e.g. working memory) are not fully 
elucidated (Cabeza & Nyberg, 2003), thus 
operationally defining “cognitive state” is difficult 
as is identifying a theoretical approach for studying 
it. Thus, the most straight forward approach to 
developing these metrics is by establishing a 
convergent methodology that is multimodal in 
nature (Karamouzis, 2006).  

In this paper, we discuss the historical aspects of 
developing adaptive intelligent tutoring using 
psychophysiological metrics. Additionally, we 
describe our Adaptive Instructional Architecture, 
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which features multimodal sensors. We discuss 
challenges in developing a convergent methodology 
for using multimodal sensors. Finally, we present 
initial work on data fusion techniques necessary for 
driving the adaptive tutoring system. 

2 ADAPTIVE TUTORING 
SYSTEMS 

In 1958, Skinner challenged educators to become 
more efficient and effective in their teaching 
strategies by using “teaching machines”. These 
machines would not only deliver learning content, 
but also allow the learner to interact with the system 
in a manner appropriate for learning to occur. The 
strength of this approach was the potential for 
customized instruction in an anytime anywhere 
format. However, teaching machines from this era 
neglected the knowledge base of the learner and 
focused more on “contingencies of reinforcement” 
or the presentation of learning material (Wenger, 
1987).  

 “Intelligent Tutoring Systems” (ITS) was first 
coined by Sleeman & Brown (1982); however, it 
was Wenger (1987) who advocated for cross-talk 
among education, cognitive, and artificial 
intelligence researchers to shape the future of ITS 
design. This collaborative approach shifted emphasis 
from purely computational solutions to those that 
integrated Cognitive Psychology constructs (e.g., 
working memory) and new research in Education 
Psychology (e.g., experiential learning). The 
improved flexibility of these designs supported the 
successful transition of some adaptive systems into 
classrooms and workplaces (Anderson, et. al., 1995; 
Parasuraman et. al., 1992).  

While previous ITS theories emphasized the 
knowledge state of the learner, current instructional 
design methods consider the learner’s cognitive 
state, (i.e., cognitive load state) as more predictive of 
learning outcomes (Paas et. al., 2004). Cognitive 
load theorists contend that learning complex tasks 
(e.g., performing surgery) is optimal when the 
learning environment matches the cognitive 
architecture of the learner (Sweller, 1999). Thus, the 
learning environment should account for individual 
differences in the unique ways that individuals 
cognitively process data.  

Physiological metrics of cognitive load such as 
pupil dilation and heart rate may map a learner’s 
cognitive state to the learning task (Paas et al, 2003, 
p. 66). Another suggested use of psychometric data 
is to drive the adaptive response in the ITS 

(Karamouzis, 2006; Scerbo, 2006). In previous 
work, we have proposed an Adaptive Instructional 
Architecture (AIA) that merges the constructs of 
experiential learning, cognitive load, and adaptive 
trainers into a testbed simulation capable of 
measuring multimodal psychophysical responses 
(Nicholson et al., 2007). In the next sections we 
provide an overview of the AIA and give a 
description of the sensors used within the training 
environment. In addition, we provide pilot data from 
current studies which use multiple sensors to 
determine the learner’s cognitive states. These 
studies are discussed in the context of data fusion 
strategies and point to future work in the field 

3 OVERVIEW AIA, SENSORS, 
FEATURE EXTRACTION & 
DATA FUSION 

3.1 Adaptive Instructional 
Architecture Overview 

Figure 1 provides an overview of the Adaptive 
Instructional Architecture (AIA) within a simulator 
testbed. As shown the learner interacts with context 
based stimuli that follow the continuum from real 
world to simulated real world multi-sensory content. 
The psychophysiological sensors (e.g., heart rate) 
attached to the learner collect information about the 
learner’s cognitive state. The sensor data streams are 
sent through a signal processing block (Figure 3) 
where data fusion techniques determine such 
constructs as learner engagement, arousal, and 
workload.  

 
Figure 1: Adaptive Instructional Architecture Overview. 

If the learner is experiencing higher than 
baseline values of these state references, the system 
chooses an appropriate mitigation strategy from a 
database of options. The system interface is then 

BIOSIGNALS 2008 - International Conference on Bio-inspired Systems and Signal Processing

148



 

adapted to adjust to the learner and the training 
scenario continues. This decision tree cycle is 
continued until the training session ends.   

The novel features of the AIA are the potential to 
assess the cognitive state changes of the learner in 
real-time, change the learning scenario as the learner 
transitions in knowledge states, and assess 
performance outcomes concomitantly with the 
cognitive state assessment. Two main design issues 
faced are: 1) defining metrics derived from the 
mutimodal data streams that reliably predict the 
learner’s cognitive state and 2) determining the 
relationship of the metric and that of mitigation 
selection.  Our current focus is on deriving 
meaningful metrics from the multimodal data 
stream. In the next sections, we introduce the 
psychophysical sensors and measures that we are 
currently exploring.  

3.2 Physiological Sensors and 
Cognitive State Estimation 

Various proposed cognitive states such as arousal, 
and workload are quantified in terms of 
physiological parameters. For example, heart rate 
variability (HRV) can provide a measure of arousal 
(Hoover & Muth, 2005). Eye position tracking may 
indicate visual attention and stress. The EEG can 
provide brain based measures of psychological 
constructs such as cognitive workload. Thus, a 
multi-modal data acquisition strategy may be 
necessary for accurate cognitive state estimation 
(Erdogmus et al., 2005; Cerutti et al., 2006). 
However, synchronizing and determining relevant 
meaning of the multiple data streams is an ongoing 
issue.  

Figure 2 represents examples of state-of-the-art 
psychophysiological sensing devices within our lab. 
The ASL 6000 eye tracker (www.a-s-l.com) shown 
in Figure 2 utilizes a head tracker with pan tilt 
capabilities to track the corneal reflection of the 
user. The B-Alert EEG (www.b-alert.com) provides 
classifications for engagement, mental workload, 
distraction and drowsiness (Berka et al., 2005). The 
Wearable Arousal Meter (WAM, 
www.ufiservingscience.com) also measures arousal 
however does so by utilizing inter-heartbeat interval 
(IBI) changes associated with task performance. 
Changes in IBI reflect the Respiratory Sinus 
Arrhythmia (RSA), which correlates with autonomic 
nervous system states (Hoover & Muth, 2004). Also 
shown are the respiratory, temperature, and GSR 
sensors of Thought Technologies InfinitiPro wireless 
system (www.thoughttechnologies.com). Overall, 

the sensors provide a portable solution for capturing 
real-time neural and behavioral responses training in 
a naturalistic environment. 

 
Figure 2: Sensor suite examples. 

3.3 Block-wise Multimodal Signal 
Processing/ feature Extraction 

The data generated from various sensors over time is 
enormous. To draw meaningful conclusions and to 
classify cognitive state in real-time, while also 
providing the feedback to the learner, the data may 
be effectively handled in a block processing 
procedure. Figure 3 provides a general overview of 
block processing as it applies to multimodal signal 
processing. 

 
Figure 3: Multi-modal signal processing block. 

The first block of the system synchronizes the 
data from various sensors. Multi-rate Digital Signal 
Processing (DSP) techniques such as 
decimation/interpolation are used to match the 
sampling frequency of various sensors. The data also 
needs to be time-synchronized to a unique clock-
time, so that there is no error interpreting the data in 
further blocks. 

The next block of feature extraction is a very 
important step in processing the data emanating 
from the sensor suite. The physiological measure 
will dictate what type of feature is to be extracted 
and the level to which this feature will provide 
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meaningfulness to the derived metric. In the 
following sub-section we will give an overview of 
typical features used from various sensors in the 
literature.  

3.3.1 Heart Rate Features 

The most popular feature used from the ECG data is 
the power spectral density (PSD) of the IBI. The 
PSD analysis provides a means to evaluate various 
autonomic nervous system influences on the heart 
efficiently. Most of the recent research focuses on 
quantifying the change in RSA as a measure of vagal 
tone activity influencing the heart (Hoover & Muth, 
2005; Keenan & Grossman, 2006; Aysin & Aysin, 
2006).  

3.3.2 Blood Pressure Features 

Blood pressure also affects heart rate modulation 
through the baroreceptor reflexes (Sleight & 
Casadei, 1995). The main challenge is to obtain a 
continuous measure of arterial blood pressure 
(ABP). The photoplethysmogram (PPG) signal is 
much more accessible and easily acquired in 
continuous manner as compared to direct 
measurement of the ABP signal. Recent work by 
Shaltis et al, (2005) discusses the calibration of the 
PPG signal to ABP signal. 

3.3.3 Eye Tracking Features 

The ASL 6000 eye tracker uses an IR camera to 
capture images of the eye. An image processing 
algorithm detects the dark pupil area in the eye and 
the glint of light coming off of the eye. Using these 
two measures, the learner’s point of gaze (POG) is 
calculated. After proper calibration, the learner’s 
POG can be transformed into a point on the screen 
correspond to where he or she is looking. 

Various features could be extracted from the 
horizontal and vertical co-ordinate data, such as 
fixation intervals, speed of eye movement, and 
direction of eye movement. Marshall (2007) used 
these features as inputs to a neural network to 
classify cognitive states such as relaxed/engaged, 
focused/distracted, and alert/fatigued. The authors 
also state that as the data captured at the rate of 60-
250 Hz, the states could be predicted in real time. 

3.4 Data Fusion, Cognitive State 
Estimation 

Once appropriate features psychometric data are 
extracted, a strategy is needed for defining the 

mathematical relationship between the feature the 
state change.  For example, Marshall (2007) used 
features extracted from the eyetracker (e.g., eye 
blinks, eye movement, pupil size, and divergence) to 
classify cognitive activity into ‘low’ and ‘high’ 
activity measures. The authors used discriminant 
function analysis to create a linear classification 
model. A feed-forward neural network architecture 
was trained with backpropagation learning scheme 
to create a non-linear classification using the 
eyetracker features. 

We are in the process of creating 
multidimensional classifiers based upon feature 
analysis across multiple psychophysiological 
metrics. These classifiers will eventually index 
levels of cognitive state, which in turn will drive the 
mitigation selection process of the AIA. The pilot 
work presented in the next section highlights current 
results. 

4 PRELIMINARY RESULTS 

4.1 Sensor Sensitivity in Cognitive 
State Estimation 

We are currently investigating the sensitivity of the 
multimodal sensors to define cognitive state changes 
dynamically. For example, Figure 4 shows 
eyetracker data merged with the instantaneous 
arousal level of the observer, as the observer 
passively views a series of varying visual stimuli. 
The arousal metric is calculated from the heart rate 
data and was obtained using the WAM (Hoover & 
Muth, 2005).  

In Figure 4(d), the ellipse represents the current 
viewing location of the observer. When the observer 
moves his or her eyes in a vertical direction, the 
major axis of the ellipse appears as vertical. A 
diagonal movement of the eyes will produce a circle 
as shown in Figure 4(a) and 4(c). Fixations are 
illustrated in 4(c). As the observer fixates onto a 
point of interest, the ellipse becomes a dot. The 
fixation time can be presented along with the 
fixation point in real-time or in an after action 
review format.  

The arousal levels are mapped to the ellipse via 
colors ranging from red for high, yellow for 
medium, and green for low. The scale used to 
change the color will be verified experimentally 
using a variation of the International Affective 
Picture Sort (Lang et al., 2005). These transformed 
features may further be used to develop 
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multidimensional metrics with which to predict 
visual attention and arousal states of the learner.  

 
Figure 4: Four screen captures from our system, showing 
the observer’s current gazing location along with the 
arousal (Images: Lang et al., 2005). 

4.2 Identifying Baseline Values  

Understanding how multimodal psychometric data 
combine to predict cognitive states is only one part 
of the problem in AIA design. Another issue is 
identifying initial baseline values that will set the 
system indices and determine the appropriate 
classification of the learner’s cognitive state. Not 
only will these baseline values vary based upon 
individual difference, they may also vary during the 
training session. 

In a recent study, we monitored the arousal state 
of persons placed in a mixed reality scenario 
representing an every day social experience. The 
social interaction was classified as friendly (e.g., 
mutual regard) or rude (e.g., confrontational). Figure 
5 shows the percent high engagement as measured 
by the EEG and the mean skin conductance for a 
single participant.  We used a multiple baseline 
approach to identify points in the scenario that may 
indicate a new baseline score.   
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Figure 5: Skin conductance mean amplitude with 95% 
Confidence Interval and % High Engagement as measured 
by the EEG. 

As shown, high engagement alone would not capture 
the change in state of the participant accurately. 
Regardless of variability, the sustained arousal 
carried over from experiencing the rude interaction 
may indicate a change in baseline that must be 
account for in order to appropriately select the next 
mitigation. Multimodal data is necessary to construct 
an appropriate metric to capture this type of 
sustained effect. 

5 CONCLUSIONS 

In this paper we reviewed the historical aspects of 
ITS design and discussed a new direction in 
combining current learning theory with adaptive 
system theory. The resulting AIA represents a step 
forward in providing on-demand training in a 
complex and contextually relevant training 
environment. The addition of physiological 
measures to estimate the cognitive state of the 
learner is not a novel; however, the data fusion 
techniques and the use of the multimodal data drive 
mitigation selection may present a worthwhile 
contribution to the field. 
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