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Abstract: We describe a neural network for invariant object recognition. The network is generative in the sense that it
explicitly represents both the recognized object and the extrinsic properties to which it is invariant (especially
object position). The model is biologically plausible, being formulated as a neuronal system composed of
cortical columns. At the same time it has competitive face recognition performance.

1 INTRODUCTION

An impressive capability of our visual system is in-
variant object recognition. The same object seen at
different position, distance, or under rotation leads to
entirely different retinal images which have to be per-
ceived as the same object. In short, the system has to
be invariant in terms of these transformations.

The traditional approach to achieving invariance
in a neural system is the use of feature hierarchies.
This idea was first expressed by Frank Rosenblatt in
his four-layer perceptron (Rosenblatt, 1961) and a
multitude of similar models has followed since (e.g.
(Fukushima et al., 1983; Riesenhuber and Poggio,
2003)). Feature hierarchies consist of a number of
stages that combine simpler features into more and
more complicated ones while at the same time pool-
ing over position, scale, etc. in order to achieve in-
variance to these transformations. This leads to a po-
tential weakness of the concept, the inability to distin-
guish patterns that contain the same features in differ-
ent arrangement, an ambiguity that is especially likely
to occur in scenes with complex background. While
this problem has been partially solved by newer mod-
els, one property of feature hierarchies remains: By
pooling over variances, they do not only become in-

variant to them, but they effectively discard this infor-
mation. In consequence, a system of this kind may
be able to detect and recognize objects, but it has no
way of telling where the object is, what size it has,
whether the person just recognized has a happy or a
sad expression on her face, etc.

Our visual system is definitely able to perceive
these extrinsic properties in addition to identifying an
object. There is even widespread belief (e.g., (Xu,
1993)) that it has the ability to reconstruct the at-
tended parts of a scene from an internal representa-
tion. Only such ability to accurately reconstruct gives
ultimate assurance that all relevant aspects of the im-
age have been understood and represented correctly.
This is related to a distinction in computer vision,
where generative models represent the joint proba-
bility distribution of input data and recognized ob-
ject explicitly, while discriminative models only use
the posterior probability of the object given input data
(Ulusoy and Bishop, 2005).

We here propose a novel model of object recogni-
tion that follows this spirit of explicitly representing
extrinsic properties and reconstructing the perceived
object. Information about where the object of inter-
est is located in the visual field is represented by dy-
namic links (a concept first introduced in (von der
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Malsburg, 1981)) that control information flow be-
tween the input domain and an invariant “Assembly”
window in the model (see Fig. 1). At the same time,
the Assembly receives top-down input from the model
“Gallery”, and uses this information to try to recon-
struct the perceived object. In this way, the whole
system implicitly reconstructs the full image of the
perceived object, representing its intrinsic properties
in the assembly window and the extrinsic properties
(position, deformation) in the dynamic links.

Figure 1: The principle of our reconstructive model for ob-
ject recognition. See text for details.

We apply this mechanism here to face recognition
as example of object recognition. Sect. 2 introduces
the smallest computational elements that make up our
model, which we then proceed to describe in detail
in Sect. 3. We analyze performance of the system in
Sect. 4 and close the paper with a discussion.

2 THE BASIC COMPUTATIONAL
UNITS: CORTICAL COLUMNS

Our model is neurally implemented as a network of
cortical columns. Today it is widely accepted that
columns are basic computational units of the brain
(Mountcastle, 1997). Columns in turn consist of mini-
columns, which are bundles of ≈ 100 strongly inter-
connected cortical neurons.

All neurons of a minicolumnar network represent
one single feature by their average firing rate x, which
we call the unit’s activity. It has been shown that the
average spike rate of large excitatorily coupled neuron
populations can be realistically described by continu-
ous variables (van Vreeswijk and Sompolinsky, 1998)
even on a fast timescale, and a specific minicolumn
model has been proposed in (Lücke and von der Mals-
burg, 2004).

Several cortical minicolumns constitute a
(macro)column (also called “hypercolumn” (Hubel
and Wiesel, 1977) or “segregate” (Favorov and Dia-
mond, 1990)), a group of minicolumns that together
represent all relevant features at a certain point. The

different features represented by a macrocolumn can
compete through mutual inhibition of its constituing
minicolumns (see below).

We describe column activity by a set of continuous
differential equations called modified evolution equa-
tion. The activity of the ith minicolumn in a macro-
column of K minicolumns is given by

ẋi = xν
i Ii− xi

K

∑
j=1

I jx j. (1)

The parameter ν introduces competition among the
minicolumns forming a macrocolumn. For ν = 0,
there is no competition. All minicolumns represent
their input proportionally, while the interaction term
∑K

j=1 I jx j normalizes the steady state macrocolumn
activity to a 2-norm of 1.
For ν = 1, we have strong competition among the
minicolumns, leading to winner-take-all (WTA) be-
havior. To see this, regroup Eq. 1 (with ν = 1):

ẋi = xi(Ii−
K

∑
j=1

I jx j).

In this case the 1-norm of the column activity ∑ j x j
is equal to 1 for the steady state, so the interaction
term ∑K

j=1 I jx j here is the average activity-weighted
input to the macrocolumn. This means that only those
minicolumn activities grow whose input is higher than
this weighted mean input to the macrocolumn, other-
wise they shrink. This lets the weighted input aver-
age grow, because the bias shifts towards strong in-
puts. Eventually, all minicolumn activities decrease
to 0 except for the minicolumn with the strongest in-
put, whose activity approaches 1.

In our model of object recognition we assume that
there are two types of columns with different func-
tions. Dynamically, they only differ in the use of the
competition parameter ν:

• Feature columns represent their input in a linear
fashion. Consequently, the minicolumns in a fea-
ture column have no need to compete among each
other, i.e. for them the parameter ν = 0.

• Decision columns show a WTA behavior leading
towards a state where only the minicolumn getting
the strongest input remains active. These columns
receive a ν-signal that cyclically rises from 0 to 1.
So they start out with linear dynamics like feature
units. With rising ν, competition sets in, leading
to an ever stronger WTA behavior that leaves only
the minicolumn with the strongest input active.

In the networks that we will introduce in Sect. 3, mini-
columns communicate with minicolumns of other
macrocolumns. For this communication, a macrocol-
umn scales the output activities of its K minicolumns
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such that its output energy stays constant:

xi,out :=
xi√

∑k
j=1 x2

j

. (2)

3 THE MODEL

Our network is made up of layers, which loosely cor-
respond to the different cortical areas that make up
the ventral stream (the object recognition system of
the brain). Layers are organized topologically, with a
topology that may correspond to that of the retina or
to a more abstract space. The layers of our network
interact and activity collectively converges towards a
final state that represents the “percept” of the network,
in our case the possible recognition of a face.

Layers may contain both feature and decision
columns. If we assume every feature column to rep-
resent all relevant features in one position of a retinal
image, then layers of feature columns can represent
whole images. The network introduced below uses
layers of two different spatial arrangements:

• Rectangular grid: Straightforward representation
suitable for any image. Every column represents
one specific geometric location (see Fig. 2(a)).

• Face graph structure: An arrangement specifically
suited for faces, where each macrocolumn repre-
sents an important landmark position on a face
(see Fig. 2(b)). Note that in this case, a macrocol-
umn does not necessarily represent a fixed spatial
location in the image, but rather a fixed semantic
location (nose, mouth, eye, chin, etc.). Geomet-
ric locations of landmarks can change according
to the face they represent.

(a) Rectangular grid (b) Face graph

Figure 2: Different representations of images.

The network consists of columns organized in the fol-
lowing layers (see Fig. 3):

• Input Layer: Represents the input image in a rect-
angular grid of P = 20×20 points.

Figure 3: Architecture of our network. The gray oval struc-
tures represent macrocolumns, with minicolumns as lighter
cylinders inside. The numbers of mini- and macrocolumns
shown here are chosen exemplarily for visualization pur-
poses only and are not identical to the real numbers of units
used in this work. Input Layer is organized in a rectan-
gular grid (represented by the red lines connecting macro-
columns), while both Assembly Layer and Gallery Layer
have a face graph topology. Input and Assembly are con-
nected all-to-all (shown exemplarily for the left-lowermost
point in Assembly Layer), while Assembly landmarks are
connected only to the same landmarks in Gallery, but to all
identity minicolumns there. The green lines connecting the
three layers represent a possible final state of the network.

• Assembly Layer: Contains intermediate informa-
tion from both the input image (represented in the
Input Assembly macrocolumns) and the gallery
(represented by the Gallery Assembly units).

• Gallery Layer: Represents all gallery face images
in a face graph of macrocolumns.

The following three subsections describe these layers
in detail.

3.1 Input Layer

The Input Layer represents the input image in a rect-
angular grid of P = 20× 20 points. At each grid
point a macrocolumn represents K = 40 Gabor fea-
tures (Daugman, 1980) extracted from the image at
that position, namely wavelets of 8 orientations and
5 scales. The minicolumns xIp

i (Ip being an index for
the input layer colums) in this layer are feature units,
i.e. they linearly represent the input they are getting
from the image:

ẋIp
i = GaborIp

i − xIp
i

K

∑
j=1

GaborIp
j xIp

j , (3)

for every Gabor feature i and every position p on the
input grid.
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3.2 Assembly Layer

The Assembly layer contains intermediate informa-
tion from both the input image (represented in the
Input Assembly macrocolumns and the gallery (rep-
resented by the Gallery Assembly units). This infor-
mation is organized in an average face graph arrange-
ment with Q = 48 landmarks (see Fig. 2(b)). The units
of Input Assembly and Gallery Assembly are feature
units. Mathematically, the input to an Input Assembly
unit at position q of the face graph is given by

II Aq
i =

1√
P

P

∑
p=1

xCp,q
out xIp

i,out, (4)

with xCp,q
out the output strength of the dynamic link (see

below) controlling the flow between Input column Ip
and Input Assembly column I Aq.

The input to a Gallery Assembly unit at position q
is the weighted superposition of all Gallery activities
at the same landmark, filtered/multiplied by the fea-
ture vector represented by that respective landmark:

I
GAq
i =

1√
M

M

∑
m=1

xGq
m,outw

Gq

i,m,eff, (5)

with the “efferent weight” wGq
i,m,eff representing the

strength of Gabor feature i in landmark q of Gallery
image m (of M in total).

The Assembly Layer contains the control units
mentioned above, which mediate the signal coming
in from Input Layer. These control units provide po-
tential connections (dynamic links) between every In-
put Layer point to every point in the Input Assem-
bly. The activity of the control units is driven by the
feature similarity of the corresponding points in In-
put Layer and Gallery Assembly and in the end rep-
resents a position-invariant match between Input and
Assembly Layer. Additionally, there is mutual sup-
port of control units that together would represent a
geometrically consistent match between Input Layer
and Input Assembly (see Sect. 3.2.1 for details.). The
dynamic links are decision units, all links at one posi-
tion of the Assembly Layer pointing to different Input
Layer positions forming one decision column. The in-
put to a dynamic link xCp,q connecting input position p
and assembly position q is given by the scalar product
between both macrocolumn outputs and the topologi-
cal influence from its neighbors:

ICp,q =
K

∑
j=1

xIp
j,outx

I Aq
j,out + ctop,C ∑̃

p,q̃
ftop(p,q, p̃, q̃), (6)

where ctop,C defines the strength of topological inter-
action (see Sect. 3.2.1).

3.2.1 Topological Cooperation Among Control
Units

As mentioned before, there is topological cooperation
among the control units of the Assembly Layer. The
purpose of this cooperation is to establish a reason-
able match between the different geometries of Input
and Input Assembly. A given dynamic link connects
a specific macrocolumn A of the Input Layer with an-
other macrocolumn B of the Input Assembly. Due to
the geometry of both layers, both macrocolumns rep-
resent distinct positions pA and pB in retinal coordi-
nates and internal image representation space, respec-
tively. Consequently, the dynamic link between them
represents a certain geometric distance di = pB−pA.

The idea is now to have topological connections
in order to support parallel or near-parallel dynamic
links. Therefore we define the strength of a topologi-
cal connection between any two dynamic links i and j
whose macrocolumns are neighbors in the face graph
through a monotonically decreasing function of their
non-parallelity/disparity:

ci j = f (‖dj−di‖2) (7)

Here we use a linearly decreasing thresholded func-
tion of the form

f (x) = max(0,1−βx) (8)

Thus topological interaction is always positive and
acts only between more or less parallel (depending on
β) neighboring links.

3.3 Gallery Layer

The Gallery Layer represents all M gallery face
images in a face graph of macrocolumns. Each
macrocolumn corresponds to one landmark, with
the minicolumns representing specific feature vec-
tors for the individual faces at the respective land-
marks. The units in Input Assembly activate the
Gallery minicolumns through receptive fields repre-
senting the stored facial landmark features, activating
more strongly units of faces that are similar to the nor-
malized input image in Input Assembly:

IGq
m =

K

∑
i=1

wGq

i,m,affx
I Aq
i,out +

ctop,G
‖N(q) ‖ ∑

q̃∈N(q)
xGq̃

m,out, (9)

with ctop,G defining how strongly Gallery units repre-
senting the same face in a neighborhood N(q) around
landmark q cooperate. Since Gallery columns are de-
cision columns, this process leaves only the correctly
recognized identity active in the end.

The Gallery projects a weighted superposition of
its stored faces to Gallery Assembly. Point-to-point
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comparison with the Input Assembly and competition
among stored models leaves only the correctly recog-
nized identity active in the end.

3.4 System Behavior

Figure 4: The principle of information processing in our
system. Full arrows denote flow of information from one
area to another. At the diamond symbols, information com-
ing in via dashed lines is compared (scalar product). From
there, a similarity signal flows out via the thin dotted lines,
modulating point by point the information flow between ar-
eas.

We simulate the network dynamics using the simple
Euler method, however, the time step iss adapted dy-
namically to the average change of activity in the net-
work in order to keep the system stable. All mini-
columns have a small, but non-zero initial activity
x(0) = 0.01. We drive the two decision layers with
slightly different ν dynamics: νTopology rises from
0.25 to 0.9 during the cycle, while νGallery starts out
from 0, also rising to 0.9. Consequently, competition
and decision set in earlier in the control units than in
the Gallery. The final value νmax = 0.9 makes the de-
cisions of the network less sharp than a final value of
1.

The way the network processes information is
sketched in Fig. 4 The units in the Input Layer, which
receive input directly from the incoming image (not
shown in Fig. 4), quickly develop to a state where
they represent the input image via the different Gabor
feature values at all grid positions. This information
flows to the Input Assembly modulated by the activi-
ties of the control units connecting every point in In-
put Layer with every point in Input Assembly. The
control units in turn are driven by the similarity of In-
put and Gallery Assembly at that pair of positions that
they control.

The image information in Input Assembly in turn
acts as input to the Gallery units, where it gets fil-
tered through the individual receptive fields of the
minicolumns, exciting those units more that represent
faces more similar to the input image. A superposi-
tion of all stored faces, weighted by the current activ-

ity of the Gallery units, then flows to Gallery Assem-
bly. This is equivalent to having a non-weighted flow
of all stored faces from Gallery to Gallery Assembly,
but modulated by the similarity of the representation
in Input Assembly and each respective Gallery face
(see 4).

The time course of the recognition process is visu-
alized in Figs. 5 and 6. Since initially all control units
have equal activity, this leads to a superposition of
image information from all Input points at each Input
Assembly location, resulting in a feature-less, more or
less homogeneous mix of visual information in Input
Assembly (first image in Fig. 5). In Gallery Layer,
all faces are equally active initially. Gallery Assem-
bly, which receives equal input from all Gallery units,
will therefore initially receive a superposition of all
Gallery faces, resembling an “average face” (like the
first image in Fig. 6). The control units are driven
by the similarity of the information stored in their
dedicated feature units. Therefore control units that
connect points of the average face with similar Input
points will become stronger, while control units rep-
resenting irrelevant matches will be weakened. Since
the information flow from Input Layer to Input As-
sembly is modulated by the control units, the image
in Input Assembly starts to develop from a gray non-
descript superposition to a more and more clear ver-
sion of the input image. It may be shifted and possibly
distorted such that it conforms to the topology of the
face graph of Gallery Assembly. This development
is shown in Fig. 5. Due to competition between the
minicolumns of each Gallery macrocolumn and co-
operation among minicolumns of different landmarks
representing the same face the Gallery will start to fa-
vor some of the stored faces over others. This in turn
changes the image in Gallery Assembly from an av-
erage face to a superposition that is biased towards
one or several of the better fitting gallery faces (sec-
ond and third image of Fig. 6). This sharpened tar-
get face now helps at positioning the normalized input
image even more precisely. In the final state, the Input
Assembly will contain a shifted and maybe distorted
version of the input image, while in Gallery the mini-
columns of only one face are still active, and Gallery
Assembly contains a copy of that face of the Gallery
that the system judges to be most similar to the input
image.

4 TEST RESULTS

We tested our system on the FERET (Phillips et al.,
1998) and the AR (Martinez and Benavente, 1998)
databases, two very popular databases for the evalu-
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Figure 5: The process of finding the correct mapping be-
tween Input Layer and Input Assembly. The three images
show the nonchanging input image on the left side, and an
image reconstructed from the activities of the 48 landmarks
of the Input Assembly on the right side. This initially (top
image) contains a superposition of all input information, re-
sulting in a gray more or less uniform image. This image
then differentiates towards a normalized (i.e. shifted and de-
formed if necessary) version of the input image. This pro-
cess is driven by the control units, which are represented
here by lines connecting the input image with the Input
Assembly. Each line represents the “center of mass” of a
control macrocolumn, i.e. the location in the input image
where its minicolumns are pointing to as a group, weighted
by their activity.

ation of face recognition systems. We followed the
testing protocols of (Phillips et al., 2000) (the offi-
cial FERET evaluation) and of (Tan et al., 2005). The
FERET database contains images of 1196 individu-
als, while the subsets of the AR database used in (Tan
et al., 2005) and by us contain 100 faces. In order to
test the performance of a face recognition system, it
is confronted with a gallery of images of all faces in
the database, and is then asked to identify a different
set of images containing pictures of (possibly a subset
of) the faces in the gallery photographed under differ-
ent conditions. Often not only the best match cho-
sen by the system is recorded, but also the follow-up
matches. This allows to construct cumulative match
scores, the match score of rank n representing the
fraction of test images whose correct match appears
among the n best matches found by the system.

From the FERET database we used the following
testing subsets: The set fafb contains photographs of
1195 individuals taken on the same day as the gallery
images, but with the subjects showing a different fa-

Figure 6: Time course of the image represented in Gallery
Assembly (from left to right). The Gallery Assembly gets
input from all Gallery units and thus contains an activity
weighted average of all faces in the gallery. Initially, when
all Gallery units are equally active, this weighted average is
a real average of all gallery faces, i.e. a mean face like in the
leftmost image. With ongoing dynamics and rising compe-
tition, it gets biased towards the better fitting gallery faces,
and finally contains only a representation of the image the
system has recognized.

cial expression. The set Duplicate I contains 722 of
images that were taken at least one day but less than
18 months after the gallery images. Finally, the set
Duplicate II contains 234 images taken more than
18 months after the gallery images. The cumula-
tive match scores of our system for this database are
shown in Fig. 7.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5  10  15  20  25  30

C
u
m

m
u
la

ti
v
e
 m

a
tc

h
 s

c
o
re

Rank

fafb
Duplicate I

Duplicate II

Figure 7: Performance of our system on the FERET
database.

The AR Face Database contains several testing sub-
sets with images of the same 100 subjects that make
up the gallery. The subsets b, c, and d contain images
of the subjects smiling, expression anger, or scream-
ing, respectively. While those subsets were taken on
the same day as the gallery images, the subsets h, i,
and j show the subjects at a later session expression
those same three emotions. Subsets e and f show sub-
jects wearing sunglasses and scarfs, and subsets k and
l show the same situation at a later date. Cumulative
match scores for this database are shown in Fig. 8.

Table 1 shows the performance of our system con-
sidering only the best match (i.e. rank 1), and com-
pares it to the recognition rates of the systems eval-
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Table 1: Rank 1 match scores (in %) of our system, compared to those reported in the literature. The middle column shows
the scores for the best performing system (Wiskott et al., 1997) of the official FERET evaluation, and in brackets the average
score of all 13 systems evaluated. The next column shows the performance of the two systems (SOM-Face/LocPb) proposed
in (Tan et al., 2005). The probe sets from the FERET database are the same as those of Fig. 7, while for the AR database, the
three emotion sets (b,c,d and h,i,j, respectively) and the two types of occlusion (e,f and k,l) have been averaged.

our system (Phillips et al., 2000) (Tan et al., 2005)
fafb 95 95 (85) 92/-

FERET duplicate I 47 59 (40)
duplicate II 26 52 (22)
Emotion 91 95/82

AR Em. duplicate 61 81/82
Occlusion 73 96/81
Occ. duplicate 36 56/51
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(a) Results for the emotion datasets.
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(b) Results for the occlusion datasets.

Figure 8: Performance of our system on the AR database.

uated in (Phillips et al., 2000), and to the perfor-
mance of (Tan et al., 2005). We can see that our
system outperforms the average of the systems tested
in the FERET evaluation, but does not reach the per-
formance of the winner of this evaluation. Similarly,
performance on the AR database is poorer than that
of the better approach proposed in (Tan et al., 2005).

We can conclude that while our system is defi-
nitely competitive, its performance does not reach that
of current top-notch face recognition systems. How-
ever, we did not apply any parameter tuning to the
system as tested here. For example, it turns out that
performance of the model grows monotonously with
input grid size, with our resolution of 20x20 points
still being far from saturation. In fact, the winner
of the FERET evaluation (Wiskott et al., 1997) uses
Gabor wavelets from every pixel of the input image!
Other parameters that could be adjusted include the
relative contribution of different landmarks, or the
strength of topological interaction among the control
units (Sect. 3.2.1).

5 DISCUSSION

Our main motivation behind this work was to create a
fully neural and biologically plausible model, which
is why we did not pay more attention to parameter
tuning. The nature of our approach of explicitly using
neural elements to route information enables a sys-
tem that performs object detection and recognition in
one single network. This is in contrast to most other
neurally inspired object recognition approaches, (in-
cluding the approaches in (Wiskott et al., 1997) and
(Tan et al., 2005)), which usually have to fall back on
some algorithmic shortcuts to close the gap between
the detection/segmentation and the recognition sub-
systems.

The price we have to pay for such a system is
its enormous computational cost. The strong depen-
dence of this cost on input grid size is the reason why
we constrained ourselves to a sub-optimal resolution
of 20x20 points. However, we are workingon solving
this problem by spreading the routing from input to
assembly over several layers (Wolfrum and von der
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Malsburg, 2007). Also, our current system is only
invariant to translation and slight deformation of im-
ages. Work is under way to also address other trans-
formations like rotation and scaling.

On the other hand, a fully neural system with most
parameters represented locally naturally allows for
adaptation through learning. Therefore we refrained
from hand-tuning such local parameters here, but will
address this issue through learning in future work.

In that sense, the system presented here marks
but a starting point from which we could develop a
fully neural version of a generative vision model that
does not throw away variance information, but retains
and uses it for recognition through active information
routing. We are convinced that also for technical sys-
tems this appraoch to vision can serve as an inspi-
ration. The impending transition to massively paral-
lel processor arrays will revive interest in data flow
architectures, in which data arrive just in time over
dedicated pathways on processing nodes. Studying
how these mechanisms work in the brain may turn out
fruitful for designing robust and autonomous parallel
computing systems.
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