NONRIGID OBJECT SEGMENTATION AND OCCLUSION
DETECTION IN IMAGE SEQUENCES

Ketut Fundana, Niels Chr. Overgaard, Anders Heyden
Applied Mathematics Group, School of Technology and Society, Malmd University, SE-205 06 Malmd, Sweden

David Gustavsson, Mads Nielsen
DIKU, Copenhagen University, DK-2100 Copenhagen, Denmark

Keywords:  Segmentation, occlusion, image sequences, variational active contour, variational contour matching

Abstract: We address the problem of nonrigid object segmentation in image sequences in the presence of occlusions.
The proposed variational segmentation method is based on a region-based active contour of the Chan-Vese
model augmented with a frame-to-frame interaction term as a shape prior. The interaction term is constructed
to be pose-invariant by minimizing over a group of transformations and to allow moderate deformation in
the shape of the contour. The segmentation method is then coupled with a novel variational contour matching
formulation between two consecutive contours which gives a mapping of the intensities from the interior of the
previous contour to the next. With this information occlusions can be detected and located using deviations
from predicted intensities and the missing intensities in the occluded regions can be reconstructed. After
reconstructing the occluded regions in the novel image, the segmentation can then be improved. Experimental
results on synthetic and real image sequences are shown.

1 INTRODUCTION posed to be incorporated into the segmentation pro-
cess, such as in (Chan and Zhu, 2005; Cremers et al.,
Object segmentation is one of the most important pro- 2003; Cremers and Soatto, 2003; Cremers and Funka-
cesses in computer vision which aims at extracting Lea, 2005; Rousson and Paragios, 2002; Leventon
the object of interests lying in the image. This is et al., ; Bresson et al., 2006; Tsai et al., 2003; Chen
a very difficult process since the object of interests et al., 2002). However, major occlusions is still a
could be diverse, complex and the understanding onbig problem. In order to improve the robustness of
them vary according to each individual. The process the segmentation methods in the presence of occlu-
becomes more difficult when the objects to be seg- sions, it is necessary to detect and locate the occlu-
mented are moving and nonrigid and even more whensions (Strecha et al., 2004; Gentile et al., 2004; Kon-
occlusions appear. The shape of nonrigid, moving ob- rad and Ristivojevic, 2003). Then using this informa-
jects may vary a lot along image sequences due to, fortion, the segmentation can be improved. For exam-
instance, deformations or occlusions, which puts ad- ple, (Thiruvenkadam et al., 2007) proposed that the
ditional constraints on the segmentation process. spatial order information in the image model is used
Numerous methods have been proposed and ap+o impose dynamically shape prior constraints only to
plied to this problem. Active contours are powerful occluded boundaries.
methods for image segmentation; either boundary-
based such as geodesic active contours (Caselles This paperfocuses on the region-based variational
etal., 1997), or region-based such as Chan-Vese mod-approach to segment a non-rigid object in image se-
els (Chan and Vese, 2001), which are formulated as quences that may be partially occluded. We propose
variational problems. Those variational formulations and analyze a novel variational segmentation method
perform quite well and have often been applied based for image sequences, that can both deal with shape
on level sets. Active contour based segmentation deformations and at the same time is robust to noise,
methods often fail due to noise, clutter and occlu- clutter and occlusions. The proposed method is based
sion. In order to make the segmentation process ro-on minimizing an energy functional containing the
bust against these effects, shape priors have been prostandard Chan-Vese functional as one part and a term
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that penalizes the deviation from the previous shape value problem:

as a second part. The second part of the functional
is based on a transformed distance map to the pre-
vious contour, where different transformation groups,
such as Euclidean, similarity or affine, can be used de-
pending on the particular application. This variational
framework is then augmented with a novel contour

flow algorithm, giving a mapping of the intensities

d

ar(t) = —DOEcv(T (1)), (5)
where g is an initial contour. HerdlEcy(IN) is
the L-gradient of the energy function&cy ("), cf.
e.g. (Solem and Overgaard, 2005) for definitions of
these notions. Then the&-gradient ofEcy is

I(0) =Ty,

insi i insi 1 1
inside the contour of one image to the inside of the OEcv(T) :C(K+[3[§(| —nt(M))2— (1 7“ext(|—>>2}’

contour in the next image. Using this mapping, oc-
clusions can be detected and located by simply thresh-
olding the difference between the transformed intensi-
ties and the observed ones in the novel image. By us-
ing occlusions information, the occluded regions are

reconstructed to improve the segmentation results.

2 SEGMENTATION OF IMAGE
SEQUENCES

In this section, we describe the region-based segmen-
tation model of Chan-Vese (Chan and Vese, 2001) and
a variational model for updating segmentation results

from one frame to the next in an image sequence.

2.1 Region-Based Segmentation

The idea of the Chan-Vese model (Chan and Vese, g¢

2001) is to find a contouF such that the imagé

is optimally approximated by a gray scale valuyg

on int(I"), theinsideof I', and by another gray scale
value pext 0N extl), the outsideof I'. The optimal
contourl* is defined as the solution of the variational
problem,

Ecv(M) = mrinEcv(r), 1)
whereEcy is the Chan-Vese functional,
4 1 T \2
Eou(w) =l +8{3 [ (160~ oy
1 2
+§ exqr)(l(X)_ueXt) dx}.
(2)

Here|l| is the arc length of the contoux, 3 > 0
are weight parameters, and

1
Mint = Hint(r) = m nt(r) | (X) dx, 3)
Hext = Hext(I) = L (4)

[&xU0)] Joxir)

The gradient descent flow for the problem of min-
imizing a functionalEcy (") is the solution to initial
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(6)
wherex is the curvature.

In the level set framework (Osher and Fedkiw,
2003), a curve evolutio;— I(t), can be represented
by a time dependent level set functipnR? x R — R
asl (t) = {x€ R?; @(x,t) =0}, @(x) < 0 andg(x) >
0 are the regions inside and the outsidd pfespec-
tively. The normal velocity of — I'(t) is the scalar
functiondr” /dt defined by

d C og(xt)/at
ar(t)(x) =T 0] (7)

Recall that the outward unit normaland the curva-
turek can be expressed in termsgésn = O¢/|0q|
andk = 0 (Og/|0q)).

Combined with the definition of gradient descent
evolutions (5) and the formula for the normal velocity
(7) this gives the gradient descent procedure in the
level set framework:

(xel()) .

%2 = (o4 B3 (1~ ne())?— 5 (1 —pex(T))?] ) T,

where@(x,0) = @(x) represents the initial contour
0-

2.2 The Interaction Term

The interactiorE, (Io, ") between a fixed contodity
and an active contour may be regarded as a shape
prior and be chosen in several different ways, such
as the area of the symmetric difference of the sets
int(") and in{T"g), cf. (Chan and Zhu, 2005), and the
pseudo-distances, cf. (Cremers and Soatto, 2003).

Let o = @(X) and @ = @(Xx) denote the signed
distance functions associated wilthand I o, respec-
tively, wherex is a generic point in the image domain
R. By assuming thal o is already optimally aligned
with T in the appropriate sense, then the interaction
term proposed in this paper has the form:

E(Fo)= | (8)
int(

The area of the symmetric difference, which has been
usedin (Chan and zZhu, 2005) and (Riklin-Raviv et al.,
2007) has the form:

ESP(M, o) = aredQAQp) |

@(x)dx .
r

(9)
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where the notatio®2AQq := (QU Q0)\(QN Qo) to
denote the symmetric difference of the two s@ts-
int(l"), Qo = int(l'g). The pseudo-distance has the
form:

EPO(T. o) = 5 [ 66— o)k

which has been studied, with various minor modifi-
cations, in (Rousson and Paragios, 2002), (Paragio
et al., 2003), and (Cremers and Soatto, 2003).

The main benefit of our interaction term defined
in (8) is that itsL2-gradient can be computed easily:

OrE (T, To) = @(X) = @To;X)  (x€T)

and that this gradient is smalllifis close to the shape
prior g, and large if the active contour is far from
the shape prior. HoweveE, (I",Ig) is not symmet-
ric in I andl g, which may in general be considered
a drawback. However, in our particular application,
where we want to use shape information from a pre-
vious image framel{p) to guide the segmentation in
the current framel(), the lack of symmetry does not
seem to be such a big issue.

(10)

I1,12,...,lk_1 have already been segmented, such that
the corresponding contours, 2, ..., k1 are avail-
able. In order to take advantage of the prior knowl-
edge obtained from earlier frames in the segmentation
of Iy, we propose the following method: ki=1, i.e.
if no previous frames have actually been segmented,
then we just use the standard Chan-Vese model, as
presented in Sect. 2.1.kf> 1, then the segmentation
Sof Iy is given by the contouf which minimizes an
augmentedChan-Vese functional of the form,

E&(Mk-1,Tk) := Ecv(Tk) + VEI (Mk-1,Tk),  (13)
where Ecy is the Chan-Vese functionalg =
E (Tk-1,Tk) is aninteraction term which penalizes
deviations of the current active contolg from the
previous onely_1, andy > 0 is a coupling constant
which determines the strength of the interaction. See
Algorithm 1.

The augmented Chan-Vese functional (13) is min-
imized using standard gradient descent (5) described
in Sect. 2.1 withJE equal to

0BGy (Me-1,Tk) == OBcv (M) + YOE (Me-1: k),
(14)

The proposed interaction term is constructed to be and the initial contouf (0) = k1. HereOEcy is the

pose-invariant and to allow moderate deformations in
shape. Lek € R? is a group of translations. We want
to determine the optimal translation vectoe a(I),
then the interactior; = E;(Ip,") is defined by the
formula,

E (ro, F) =min

a

)(po(x —a)dx. (11)

int(l"’

Minimizing over groups of transformations is the
standard device to obtain pose-invariant interactions

see (Chan and Zhu, 2005) and (Cremers and Soatto

2003).
Since this is an optimization probleatl”) can be

found using the gradient descent procedure. The opti- 1.

mal translatiora(I") can then be obtained as the limit,
as timet tends to infinity, of the solution to initial
value problem
a(t):/ Ogo(x—a(t)dx , a0)=0 .
int(T")

(12)

Similar gradient descent schemes can be devised for

rotations and scalings (in the case of similarity trans-
forms), cf. (Chan and Zhu, 2005).

2.3 Using the Interaction Term in
Segmentation of Image Sequences

Letlj:D—R, j=1,...,N, be a succession of

L2-gradient (6) of the Chan-Vese functional, &0,
theL?-gradient of the interaction term, which is given
by the formula,

OB (Tk-1,T ki X) = @—1(x—a(lk)), (forx € Ty).
(15)

Hereq_; is the signed distance function fbg_1.

Algorithm 1 The algorithm for segmentation &
frames image sequence from the second freméy.
"INPUT: Current framdy and the level set function
from the previous framey_1

OUTPUT: Optimal level set functiom.

Initialization Initialize the level set functiom =
Oc-1-

Computation Compute the optimal translation
vector and then the gradient descent of (14).

. Re-initialization Re-initialize the level set func-
tion (.

4. ConvergenceStop if the level set evolution con-
verges, otherwise go to step 2.

2.

3 OCCLUSION DETECTION BY
CONTOUR MATCHING

frames from a given image sequence. Also, for some In this section we are going to present a variational
integerk, 1 < k < N, suppose that all the frames solution to a contour matching problem. We start with
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the theory behind the contour matching problem and where the initial displacemeht(0,x) = Ug(X) € M
then describe the algorithm we use to implement it specified by the user, atdl= 0 ondQ, the boundary

to detect and locate the occlusions. See (Gustavssorof Q (Dirichlet boundary condition). Theld*(x) =

et al., 2007) for more detail. lim_.U(t,x) is a solution of the Euler-Lagrange
equation (18). Notice that the PDE (19) coincides
with the so-calledyeometry-constrained diffusion-
troduced in (Andresen and Nielsen, 1999). Thus we

3.1 A Contour Matching Problem

Suppose we have two simple closed curigsand
"> contained in the image domafih Find the “most
economical” mappingd = ®(x) : Q — R? such that
® mapsl; ontol, i.e. ®(I'1) = 2. The latter condi-
tion is to be understood in the sense that i a(y) :
[0,1] — Q is a positively oriented parametrization of
1, thenB(y) = P(a(y)) : [0,1] — Q is a positively
oriented parametrization df, (allowing some parts

have found a variational formulation of the non-rigid
registration problem considered there.

Implementation. Following (Andresen and Nielsen,
1999), a time and space discrete algorithm for solving
the geometry-constrained diffusion problem can be
found by iteratively convolving the displacement field
with a Gaussian kernel and then project the deformed
contourl"; back onto contouf, such that the con-

of I'2 to be covered multiple times). _ straints are satisfied (see Algorithm 2). The algorithm
To presentour variational solution of this problem, ee(s a initial registration provided by the user. In our

let 27 denote the set of twice differential mappings jmplementation we have translategdand projected it

@ which mapd; to 'z in the above sense. Loosely ontor, and used this as the initial registration. This

speaking

M = {®c C*Q;R?)|d(I) =}
Moreover, given a mappin® : Q — R?, not neces-
sarily a member ofif , then we expres® in the form
®(x) = x+ U (x), where the vector valued function
U =U(x): Q — R? s called thedisplacement field
associated withb, or simply the displacement field.

It is sometimes necessary to write out the components

of the displacement fieldJ (x) = (uy(x), uz(x))T.

We now define the “most economical” map to be

the membem* of a7 which minimizes the following
energy functional:

El0] =5 [ IDUGIEex |

where ||DU (x)||r denotes the Frobenius norm of
DU (x) = [Dua(x),0uz(x)]", which for an arbitrary
matrix A € R2*? is defined by||A||2 = tr(ATA). That
is, the optimal matching is given by
®* =argminE[®P] .
Pem
The solutiond®* of the minimization problem (17)
must satisfy the following Euler-Lagrange equation:

AU* —(AU*-ng)ng,,  only,
0=
AU*,

wheren;_(x) = nr,(Xx+U*(x)), x € 'y, is the pull-
back of the normal field of the target contduy to
the initial contourl";. The standard way of solv-

(16)

(17)

(18)
otherwise

ing (18) is to use the gradient descent method: Let
U =U(t,x) be the time-dependent displacement field

which solves the evolution PDE
U [ AU-(@U-n:)n;,.
5=
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onlq,
(19)

AU, otherwise

gives good results in our case where the deformation
and translation is quite small. Dirichlet boundary con-
dition - zero padding in the discrete implementation -
have been used. By pre-registration and embedding
the image into a larger image, the boundary condi-
tions seems to be a minor practical issue. The dis-
placement field is diffused using convolution in each
of x andy coordinates independently with a fix time
parameter.

Algorithm 2 The algorithm for the contour matching

INPUT : Contourd 1 andr .
OUTPUT : Displacement fieldD.

1. Initial displacement field Initial registration of
the contours.

2. Diffusion Convolve the displacement field using
a Gaussian kernel.

3. Deformation Deform "1 by applying the dis-
placement fieldD.

4. Projection Project the deformefi; ontol; (i.e.
find the closest point on the contduy).

5. Updating the displacement fieldUpdate the dis-
placement field according to matching points on
the contour;

. ConvergenceStop if the displacement field is sta-
ble, otherwise go to step 2.

(¢}

3.2 Occlusion Detection

The mappingd = ®(x) : Q — R? such that® maps
"1 ontol 7 is an estimation of the displacement (mo-
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tion and deformation) of the boundary of an object be- Algorithm 3 The algorithm for occlusion detection
tween two frames. By finding the displacement of the using the displacement field to predict the contents in
contour, a consistent displacement of the intensities the next frame inside a contour.

inside the closed curve; can also be foundp maps INPUT: The previous framé&y, the current framé,

"1 ontol and pixels insid€ 1 are mapped inside. displacement field

This displacement field which only depends on dis- OUTPUT: Occlusion mask.

placement - or registration - of the contour (and not 1 peformation DeformFy using displacement field
on the image intensities) can then be used to map the D into EDeformed

intensities insidé 1 ontol,. After the mapping, the P )

intensities insidé€ ; andl > can be compared andthen 2. Interpolation |nterpo|ate|:,§’e“0”“Ed to get in in-
be classified as the same or different value. Since we  tensities in each grid point.

can still find the contour in the occluded area, there- o Low-pass filtering Low-pass filter the images
fore we can also compute the displacement field even Deformed

in the occluded area. Fp andFe.

Implementation. Occlusions are detected by com- 4. Similarity measure CompareFy ®"°™* and F.
paring the predicted and the observed intensities in-  inside contouf ; using a similarity measure to get
side the segmented object. Unfortunately the dis- @ similarity measure for each pixel.

placement field is not exact: it is an estimation of the 5. Thresholding Find occlusions by thresholding in
contour displacement and simultaneously an interpo-  the similarity measure image.

lation of the displacement for pixels insiflg. The in-
tensities in the deformed frame must be interpolated.
The interpolation can either be done in the deformed ; )
(Lagrange) coordinate or in the original (Euler) coor- term on the segmentation rgs_ults. The contour is only
dinate. The next neighbor interpolation scheme in the Slightly affected by the prior ifis small. On the other
Euler coordinate has been used. Both the deformedhand, ifyis too large, the contour will be close to a
and the current frames are filtered using a low-pass similarity transformed version of the prior. To choose

filter to decrease differences due to the interpolation @ Propery is rather problematic in segmentation of
and to the displacement. image sequences. Using strong prior can give good

results when the occlusions occur, but when segment-
Deformeq ) “and the cur- 9

; n:[l']t:ergef::)rr)r:ed Iramethp red pixel by pixel usin ing the image frame where occlusions do not occur,
ent frameF(x), are compared pixel by pixel using the results will be close to the prior.

some similarity measures. The absolute differences . .
y In Fig. 1, we show the segmentation results for a

Deforme r .
[Fp d(.x) — Fe(x)| are used in our experiments. ,,,qid object in a synthetic image sequence, where
Different S|m|_lar|t_y measugsTequigs d|ffer_ent d?gfee occlusion (the gray bar) occurs. Another experiment
of low-pass filtering. A simple pixel by pixel simi- 3 b ;man walking image sequence shown in Fig. 3
larity measure requiffs mors flltermg, while a patch where an occlusion (the superposition of another per-
based similarity measure may require less or none g,y gecurs. In both experiments, the standard Chan-
low-pass filtering. See Algorithm 3. Vese method fails to segment the selected object when
it reaches the occlusion (Top Row). The result can be
improved by adding a frame-to-frame interaction term
4 EXPERIMENTAL RESULTS as proposed in (1:_3) (Bottom Row). .In these _experi-
ments, we use quite largeto deal with occlusions.
As we can see on the last frame in Fig. 3, the resultis
close to a similarity transformed of the prior although
intensities in between the legs are different from the

Following the Algorithm 1, we implement the pro-
posed model to segment a selected object with ap-
proximately uniform intensity frame-by-frame. The object
minimization of the functional is obtained by the gra- %s described in Sect. 3.1 and Sect. 3.2, occlusion
dient descent procedure (14) implemented in the level can be detected and located. By using the segmenta-
set framework outlined in Sect. 2.1. Since the Chan- tion results of the image sequences, we then imple-
Vese segmentation model finds an optimal piecewise- ment the Algorithm 2 and 3 to detect and locate the
constant approximation to an image, this model works occlusions. In Fig. 2 and Fig. 4, we show the occluded
best in segmenting object that has nearly uniform in- regions in the Frame 2-5 of Fig. 1 and in the Frame 2
tensity. of Fig. 3, respectively.

The choice of the coupling constaris done man- Having information about the location of the oc-
ually. Itis varied to see the influence of the interaction clusions in the image, the occluded region can be re-
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Figure 1: Segmentation of a nonrigid object in a synthetiagmsequence with additive Gaussian noise. Top Row: without
the interaction term, noise in the occlusion is capturedtd®o Row: with interaction term, we obtain better results.

Figure 2: Detected occlusions in the synthetic image sexpien

Figure 3: Segmentation of a walking person partly coveredrbgcclusion in the human walking sequence. Top Row: without
interaction term, and Bottom Row: with interaction term.

Figure 4:

Figure 5. Segmentation of the synthetic image sequenceibyg amaller coupling constant than the one in Fig. 1. Top row:
without reconstruction of the occluded regions. Bottom:rafter the occluded regions are reconstructed.
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Figure 6: Segmentation of the human walking sequence whessibg smaller coupling constant than the one in Fig. 3. Top
row: without reconstruction of the occluded regions. Bott@w: after the occluded region is reconstructed.
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