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Abstract: In this paper we study how to implement a fully GPU-based rigid body simulator by programming shaders 
for every phase of the simulation. We analyze the pros and cons of different approaches, and point out the 
bottlenecks we have detected. We also apply the developed techniques to two case studies, comparing them 
with the analogous versions running on CPU. 

1 INTRODUCTION 

The study of animation techniques has played a 
decisive role in the evolution of computer graphics. 
Traditionally in this topic, the issue of the physically 
based motion of rigid bodies has been one of the 
most attractive areas, mainly due to the high level of 
realism achieved when rendering the involved 
scenes. Since precision usually competes against the 
run-time cost, most rigid body simulators have 
specialized in configurations that get a trade-off 
between accuracy and efficiency. However, it is 
common to most of them to implement two phases 
to solve two tasks: collision detection and collision 
response. The first one looks for contacts between 
pairs of objects, and it is usually split in other two 
phases: the broad phase and the narrow phase. The 
broad phase applies bounding volumes to objects in 
order to check whether bounding volumes collide or 
not (Teschner et al., 2005). If a pair collides, the 
narrow phase determines if the included objects are 
in collision. Only after determining that there will be 
a real collision, the collision points are calculated. 
The reason to decompose collision detection in these 
two phases is that broad phase algorithms have a 
much lower cost than those involved in the narrow 
phase. Apart from these software solutions, there are 
also other collision detection approaches which use 
specific hardware (Raabe et al., 2006). 

Different techniques have been proposed to deal 
with the collision response. Although some 
implementations allow interpenetration of objects, 
such as the penalty method (McKenna and Zeltzer, 
1990), most of them try to avoid it by accurately 
computing the instant the impact comes up. This can 

be achieved with the classic bisection method 
(Baraff, 1997): the interval in which the collision 
takes place is gradually reduced by comings and 
goings in time. Once the collision instant is 
computed, the response can be obtained by applying 
the forces which solve certain constraints −Baraff’s 
constraint method (Baraff, 1989)− or by 
instantaneously modifying the velocity of the objects 
after computing the related impulse (Mirtich, 1996). 

The efficiency of a rigid body simulator does not 
only depend on the components integrating the 
system, but also on the way they are integrated into 
the simulation loop, especially when a large number 
of objects are involved. Note that the collision time 
of a pair of objects can affect to –even avoid– many 
other collisions that come up later in the same loop 
iteration. For this reason, the computation of the 
instant for these other collisions is a useless task that 
could collapse the simulation as a whole. In order to 
prevent this eventuality, in a uniprocessor context, 
(Mirtich, 2000) proposed the timewarp algorithm 
which uses heaps as data structures.  

On other hand, the evolution of GPUs, as regards 
performance and programmability, has brought 
about their intensive use in many applications. 
Today they are a key element in the design stage of 
any simulator. This is the case for the interactive 
visualization of particle systems (Krüger et al., 
2005), where GPUs have been used to parallelly 
manage the independent movement of each particle. 

In the context of rigid body simulations, shaders 
have been used to relieve CPU of specific tasks, but 
never to solve the whole algorithm. For instance 
(Yuksel, 2007) introduces fragment shaders in the 
rendering phase to quickly support special effects, 
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while all the computations involved in the 
simulation part are implemented on the CPU. 
Concerning the simulation methodology, moving the 
detection of collisions to GPU has been the most 
studied topic. Collision detection algorithms on 
GPUs can be classified into two categories. On one 
hand, screen-space approaches use the depth or 
stencil buffers to perform the collision tests by 
rendering the geometry primitives (Govindaraju et 
al., 2005) (Teschner et al., 2005). Their main 
problems are that effectiveness is often limited by 
the image space resolution, and that only potentially 
colliding pairs are reported, so another test must be 
applied on the CPU later. 

On the other hand, object-space approaches use 
the floating point bandwidth and programmability of 
modern GPUs to implement the collision test. 
(Zhang and Kim, 2007) performs massively-parallel 
pairwise, overlapping tests onto AABB streams, 
although exact primitive-level intersection tests are 
performed on CPU. (Greβ and Zachmann, 2004) 
(Horn, 2005) (Greβ et al., 2006) generate bounding 
volume hierarchies on the GPU from a geometry 
imaged (Gu et al., 2002) representation of the solids. 
In order to expose the parallel processing 
capabilities of the GPU, they breadth-first traverse 
these hierarchies by using the non-uniform stream 
reduction presented in (Horn, 2005). Nevertheless, 
these approaches cannot autonomously operate on 
the GPU, since the selection of the objects of the 
pair to be tested is usually chosen on the CPU. 
Furthermore, they do not apply any response when 
the objects actually collide, so they should require 
extra CPU collaboration to address interactions. 

In the context of deformable objects, recent 
papers have used the GPU capabilities to quickly 
update their geometry: (Pascale et al., 2005) 
proposes the use of vertex shaders to locally deform 
the object, (Zhang and Kim, 2007) employs a 
fragment shader to update the AABB streams, and 
(Kim et al., 2006) uses a fragment shader to compute 
the mass properties of rigid bodies in a buoyancy 
simulation. Nevertheless, none of these papers cover 
interactions between objects. 

In this paper we study how to implement a fully 
GPU-based rigid body simulator, by programming 
shaders for every phase of the simulation. We 
analyze the pros and cons of different approaches, 
and point out the bottlenecks we have detected. We 
also apply the developed techniques to two case 
studies, comparing them with the analogous versions 
running on CPU. 

2 THE SIMULATION LOOP 

The animation in a rigid body simulation is achieved 
through a main loop, which updates the information 
related to every object, after a cycle or step has been 
completed. The size of the step must be accurately 
chosen because of stability reasons. So the realism 
level of the simulation directly depends on it. 

In order to complete a step, the dynamics of 
every object (position of its center of mass x(t), 
orientation r(t), linear velocity v(t), and angular 
velocity ω(t)) must be updated by using numerical 
methods to solve ordinary differential equations. 
Figure 1 shows both the configuration Y(t) of the 
state of an object and its time derivative in a 2D 
scenario. In this case, the vector r(t) and ω(t) 
can be simplified to single scalars. Velocities change 
according to the action of forces, since there exist 
simple relations between their time derivatives and 
the applied forces. The torque generated by a force 
F(t) is defined as τ(t) = (p-x(t))×F(t), 
where p is the location at where F(t) acts. Again 
the vector τ(t) can be simplified to a single scalar 
in a 2D scenario. The mass M and the moment of 
inertia I are two scalars expressing the resistance of 
a body to a linear or an angular motion, respectively. 

The collision computation is the main task 
involved in each step, since collisions make forces 
generate motion. It is made up the three sequential 
stages that will be presented in the following 
subsections. Roughly speaking, rigid body 
simulation can be considered as a large catalogue of 
subroutines, some of those are carefully chosen to 
fill each of these stages to build systems that 
efficiently solve the specific scenes they drive. Here 
we show how some of these subroutines can be 
implemented on GPU, analyzing pros and cons with 
respect to other approaches. Since the subroutines 
can be independently incorporated into the whole 
simulator, they are interchangeable parts; therefore 
systems alternating CPU- and GPU-computations 
are available. Nevertheless such hybrid simulators 
would require additional tasks to change the 
processor (e.g. transmitting data between CPU and 
GPU, binding textures to shaders, and assigning 
values to uniform variables) that could slow down 
the simulation. Thus we will only consider fully 
GPU-implementations in the sequel. 
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Figure 1: Configuration of the state of an object and its. 

The programming of GPUs includes stream 
processing which is based on the definition of 
kernels and streams. Kernels process data in parallel, 
while streams organize the information in the 
memory card. In our GPU-implementations we use 
the following three textures of size 2nx1 –where 2n 
is the chosen number of objects; we use power-of-
two sizes since they are required for the algorithm of 
Section 2.2– to store the state of any object:  

 Linear: a RGBA-texture to store x(t) and 
v(t) 

 Rotational: a RGBA-texture to store r(t) and 
ω(t)  

 Geometry: a RGBA-texture to store the 
geometry of any object as follows: component 
R holds the index of the first vertex of the 
object, component G is the number of its 
vertices, component B keeps its mass, and 
component A stores its moment of inertia. 

The dynamics of an object is updated after every 
simulation step, so the two first textures act as input 
and output at the same time, thus we use the ping-
pong technique described in (Gödekke, 2005). Note 
that although only two components of the Rotational 
texture are required, the format RGBA has been 
chosen to allow the renderization to it. The 
Geometry texture can be seen as globally-shared 
read-only memory that always acts as input. It is 
used to determine the current coordinates of the 
vertices of the objects, which will be used in the 
following stages. We use the first two components 
of its texels to access the real coordinates of the 
vertices, which will be in a fourth texture called 
Vertices. This one can also be seen as globally-
shared read-only memory to keep the –locally 
expressed– coordinates. In a 2D scenario, the format 
RGBA stores the coordinates of two vertices in each 
texel, so the size can be reduced to  Σ{⎡vertexi/2⎤ 
/ 0≤i≤2n-1}. The following is a fragment of the 
GLSL-code to access the vertices of an object. This 
is graphically shown in Figure 2. 

 

 //We extract the geometry data of objectI 

 vec4 geo=textureRect(Geometry,vec2(objectI,0.5));  

 //The x-component of geo is the address of 

 //the first vertex of objectI in Vertices  

 float index=geo.x+0.5;  

 //We extract the first two vertices of objectI 

 vec2 v1=textureRect(Vertices,vec2(index,0.5)).xy;  

 vec2 v2=textureRect(Vertices,vec2(index,0.5)).zw; 

In order to focus on the GPU-implementation issues, 
we have chosen a 2D rather than a 3D scenario. 
Extending the algorithms we propose to the 3D case 
is a technical exercise, not covered by this paper. In 
this case, most of the data we manage would become 
larger, so additional textures would be required. For 
example, x(t) and v(t) should be stored in 
separated textures, since they are 3D vectors. 
Angular data as ω(t) and τ(t) also become 3D 
vectors, while r(t) and I should be implemented 
through quaternions and 3×3 matrices, respectively. 

2.1 Detecting Collisions 

In the collision detection stage, the simulator looks 
for contacts between pairs of objects. The realism of 
the simulation strongly relies on the accuracy in the 
detection and computation of these collisions. In 
order to minimize the computational effort to detect 
collisions, each object is wrapped with an axis 
aligned bounding box (AABB). The premise that 
motivates its use is the fact that intersections among 
AABBs are much easier to detect than the collisions 
between the actual objects.  

In the simulation loop, prior to compute AABBs 
intersections, each volume must be updated 
depending on the current position of the contained 
object. There are two ways to envelop the object 
within a new AABB: either by using the vertices of 
the updated object or by using the vertices of the 
updated AABB. We have chosen the first method, 
which has an updating cost obviously greater than 
the second one, but more no-collision situations are 
discarded since the volume is tighter to its object.  

In order to update bounding volumes, we require 
one pass of the kernel UpdateAABB which renders 

Geometry 22, 6, 2, 5 25, 10, 2, 5 

25 22 

Vertices 

Figure 2: Accessing the vertices of an object.
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to a RGBA-texture of size 2nx1 to encode the 
updated AABB related to any object. More 
precisely, RG and BA are used for its left-bottom 
and right-top corner, respectively. Each fragment 
processing includes reading both the current position 
and rotation of the object as well as mapping these 
transformations to all of its vertices to build the 
AABB. Thus, its inputs are the Linear, Rotational, 
Geometry and Vertices textures. The cost of 
fragment processing depends on the number of 
vertices of the related object; hence the whole pass is 
a linear operation w.r.t. the total number of vertices. 

Once the AABBs have been updated, we check 
for overlapping by using one pass of the kernel 
OverlapAABB. Its input is the output of the previous 
kernel. It renders to a Luminance texture of size 
2nX2n, where the texel (i,j) indicates whether the 
AABBs of objects i and j get to be overlapped. 
Now, the cost of a fragment processing is constant, 
since only one comparison of the involved corners is 
required. Moreover the symmetry of the texture can 
be used to restrict the computation to the lower 
triangular (LT) region below its main diagonal. 

The next phase consists in determining if the 
objects contained in the overlapping AABBs 
actually collide. We detect such collisions, and the 
related collision times, on GPU. In the case of 
convex polygons, specific algorithms have been 
designed to check whether two objects collide. We 
think the classic approach based on separating 
planes is not convenient for a GPU implementation, 
since they seem rather difficult to be reused in the 
simulation. Instead we use a simple algorithm which 
behaves well in almost every situation; we do not 
consider the remaining ones to be a problem since 
the paper does not focus on the simulation realism, 
but on comparing GPU- to CPU-implementations. 
We actually test if every vertex of a given polygon is 
inside the other one. This naive algorithm could be 
improved by using the O’Rourke’s approach 
(O’Rourke, 1993). 

For every pair of objects that will collide after a 
complete step, we use the method of bisection to 
calculate the exact collision time by testing whether 
the objects collide each other in the middle of the 
current interval of time. Since the first iteration of 
this loop requires the texture produced by 
OverlapAABB, the bisection method has been 
divided into two kernels: Bisection1 and 
Bisection2. Nevertheless, the two kernels are 
essentially the same. They share the Linear, 
Rotational, Geometry and Vertices textures as 
inputs, and they render to a RGBA-texture 
HitTimes of size 2nX2n, where each texel stores four 

data corresponding to the involved pair of objects: 
the bounds of the interval enclosing the collision, a 
flag to continue (0) or to reject (1) the search of 
collision, and the hit time. In order to integrate the 
loop related to Bisection2 we have implemented 
two while-sentences. The first one occurs inside the 
shader and it is used to calculate the hit time. In 
order to prevent from the execution of too many 
iterations, we use an extra parameter -a uniform 
variable iter- to control the number of iterations, 
since the number of instructions available on the 
card is limited. The second one is outside the shader 
and it is used to execute the kernel several times. 
Due to this multi-pass approach, we successively use 
outputs as next inputs. Programming this way allows 
us to compare different combinations. The following 
is a fragment of the GLSL-pseudo-code of the 
Bisection kernels. The uniform variable epsilon 
is the accuracy when determining the hit time. 
uniform samplerRect Linear, Rotational,  

                  Geometry, Vertices, HitTimes;  

uniform float epsilon; 

uniform int iter; 

 

vec4 Bisection(float coordObject1, float  

   coordObject2, float maxTime, float minTime){ 

   //[minTime,maxTime] is the current interval 

  float maxT=maxTime; float minT=minTime; 

  vec4 result; 

  int i=0; 

  while((maxT-minT>epsilon) && (i<iter)){ 

float midT=(maxT+minT)/2.0; 

 if (collision in midT) maxT=midT; 

else  minT=midT; 

i++; 

  } 

  if (maxT-minT<=epsilon) 

    result=vec4(minT,maxT,1,minT);//bisection ends 

  else result=vec4(minT,maxT,0,minT);//[minT,maxT] 

     //is the interval for the next bisection pass 

return result; 

} //Bisection  
 

Table 1 shows timing data for two cases. In the 
column Inside (iter=ceil(-log2(epsilon))), 
every iteration takes place inside the shader, while in 
the column Outside (iter=1) only one takes place 
inside the kernel. As we see, executing the loop 
inside the shader is much better than a pure multi-
pass approach. Along this paper, we have tested the 
GPU implementations on a NVIDIA GeForce 7900 
GS card. All timing data will be always expressed in 
seconds along the paper. 
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Figure 3: a) Darkest texels are not visited when the classic minimization method is applied to the LT region. b) 6-reduction. 
c) (4+6)-reduction. In b) and c), darkest texels are visited more than once. 

Table 1: Running 1000 times the Bisection kernels for the 
two forms of iterating. An initial random scene has been 
used in each row. 
 
 

 
 
 
 
At the end of the two kernels we have a texture 

of size 2nX2n, with the alpha component containing 
the hit time t∈[0,1] for every pair of objects, or a 
constant greater than 1 to indicate that the related 
objects do not collide. Due to symmetry, the kernel 
only requires to process the LT region of the texture. 

2.2 Searching the First Collision 

There are different ways to process the contacts 
computed in the previous phase. On one hand, we 
can arrange the contacts with respect to the collision 
time. The problem is that solving one collision may 
affect many other collisions produced later within 
the same step. To be precise, some of them could not 
be produced or even new collisions could arise. On 
the other hand, there is a simpler approach 
consisting in truncating the step at the just moment 
of the first contact, and discarding the rest. We have 
chosen this latter approach; so we have used the 
classic reduction kernel (Buck and Purcell, 2004) to 
compute the minimum of the collision times. 
Nevertheless, we have proposed and analyzed 
different methods to improve the classic reduction 
kernel by exploiting the symmetry of the input 
textures. For all of them, the input is a texture of size 
2nX2n, where the texel (i,j) stores the floating 
point corresponding to the collision time of the 
objects i and j, or a constant greater than 1 if they 
do not collide. Since the texture is symmetric and its 
main diagonal is irrelevant, we can restrict to texels 
with i<j. The output of the kernel will be computed 
by successively iterating a shader to halve each 
texture dimension.  

In the classic method, the fragment processing 
computes the minimum of a 2×2 square. Since the 
texture is symmetric, our approach only requires 

Table 2: Comparing the three reduction methods for 1000 
complete minimizations. 

 
processing the LT region. If we applied the classic 
2×2 reduction to the LT region, some texels would 
not be considered (Figure 3a). In order to include 
them, we must visit six texels when processing 
fragment (i,j), those with coordinates (2i,2j), 
(2i+1,2j), (2i,2j+1), (2i+1,2j+1), (2i-

1,2j) and (2i+1,2j+2). This solution, which we 
call 6-reduction, improves the classic algorithm, but 
it generates too many redundant readings (Figure 
3b). In order to avoid them, we exploit the fact that 
only the adjacent components to the diagonal need 
to check the six elements, while the others only 
require the four elements of the classic method. 
Therefore this (4+6)-reduction is a combination of 
two shaders: one to check the six elements that 
correspond to fragments adjacent to the diagonal, 
and the other one to check the four elements that 
correspond to the remaining fragments of the LT 
region (Figure 3c). 

The complexity of a pass reducing a texture of 
size 2m×2m to a texture of size m×m is 4m2 for the 
classic algorithm, 3(m2-m) for the 6-reduction and 
2(m2-1) for the (4+6)-reduction, with respect to the 
number of required readings. Since the complete 
reduction process is based on a multi-pass approach, 
the quadratic coefficient involved in a single pass 
becomes critical. Table 2 compares the three 
options, running 1000 complete minimizations. As it 
was expected, results report that the (4+6)-reduction 
significantly reduces time as the texture size 
increases. 

2.3 Solving the First Collision 

After computing the minimum hit time, we must 
apply the related response on the GPU. Firstly, we 

2n Inside Outside 
28  0.6100 1.1500 
29  0.7200 1.7875 
210 0.7600 10.200 
211   1.1400 10.600 

2n Classic 6-reduction (4+6)-reduction 
28  1.422 1.625 1.532 
29  1.750 1.906 1.438 
210 2.031 2.047 1.656 
211  3.187 2.437 1.831 
212  14.265 10.939 6.484 

a) b) c) 
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check whether the contacts at the same time are real 
collisions. The relative velocity Vrel of the pair of 
objects A and B is useful to solve this question: 

( ..) ( ) ( (..) 1)A B
rel hit hit hit

dp dpV t t n t
dt dt

⎛ ⎞= − ⋅⎜ ⎟
⎝ ⎠

 

where dp/dt denotes the velocity of the contact 
point within the corresponding object, and n is the 
contact normal. If Vrel<0 (see Figure 4), the objects 
are colliding and an impulse must be computed to 
avoid that they get overlapped. The impulse J is an 
instantaneous force, thus it produces a variation of 
the velocities according to the following equations: 
Δv=J/M and Δω =ΓJ/I, where the torque is defined 
by ΓJ=(p-x(t))×J. The impulse J is a vector 
whose direction is the contact normal n and whose 
magnitude j must be computed by using the 
following equation (2): 

0 0
0 0

(1 )
( ) ( )1 1 ( ) ( )

rel

A B
A B

A B A B

Vj
r n t r n tn t r n t r

M M I I

ε −− +
=

⎛ ⎞ ⎛ ⎞× ×
+ + × + ×⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

where ε is the restitution coefficient between the two 
objects, Vrel− is the relative velocity before the 
impulse, and rA, rB are the vectors from the center of 
mass of each object to the contact point p. The 
action of J is positive (+jn(t)) on the object A and 
negative (-jn(t)) on B. 

The computation of the impulse is carried out by 
the kernel Impulse. Its inputs are the Linear, 
Rotational, Geometry, Vertices and HitTimes 
textures, and the minimum hit time. It renders to a 
RGBA-texture of size 2nX2n, where the texel (i,j) 
stores the accumulation of the impulses between the 
objects i and j, since several collisions points can 
simultaneously arise. The impulse is computed 
whenever the collision time equals the minimum hit 
time. If this is the case, the accumulation of impulses 
is performed as the following pseudo-code shows. 

 

 while (i<numVerticesA) { 

  while (j<numEdgesB) {  

   if (i-th vertex of A is on the j-th edge of B){ 

 1.- Compute Vrel of A and B in the i-th    

vertex of A 

 2.- If (Vrel<0) { 

2.1.- Compute the impulse 

2.2.- Accumulate the impulse 

 }}}} 

//Repeat with vertices of B and edges of A  

 

Finally we execute one pass of any of the 
following kernels to update the scene after a step of 
the simulation: NoCollisionForward and 
CollisionForward. Their inputs and outputs are 
the Linear and Rotational textures. The kernel 
NoCollisionForward is used when the instant of 
the first collision is greater than a step of time. In 
this case, no collision is produced, the impulse is not 
computed, and the kernel updates the objects until 
the end of the step of time. Thus, processing a 
fragment requires constant time. The kernel 
CollisionForward is used otherwise and includes 
the output texture of the kernel Impulse as input. 
This kernel accumulates the impulses between an 
object and the remaining objects, and applies the 
total impulse. Hence processing a fragment requires 
linear time. 

3 THE RENDERING PHASE 

The image of the objects after a step is obtained by a 
vertex shader, which applies the transformations 
needed to suitably translate and rotate the object in 
the scene. This entails two jobs. 

First of all, the translation and the rotation of the 
processed object must be loaded. Since the Linear 
and Rotational textures are located in memory card, 
they must be read back from GPU to CPU after any 
step. This option is called toCPU in Table 3. On the 
other hand, we can access these data within the 
shader itself by using a uniform variable to hold the  
texture coordinates that must be read. We use such a 
variable as an index, which must be properly 
assigned before rendering the object. This option is 
called Index in Table 3. The total cost of the latter 
approach includes two texture accesses per vertex, 
plus an extra uniform assignment per object.  

A 

B
n Vrel 

Vrel > 0 

A

B
n Vrel

Vrel = 0

A 

B 
n

Vrel 

Vrel < 0 

Figure 4: Relative velocity ( )()( t
dt

dp
t

dt
dp

V BA
rel −= ) of objects A and B. 
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Second, the shader needs the local coordinates of 
every vertex. Now we must decide how to send 
vertices to the pipeline. We propose these options: 
1. Sending fictitious coordinates that will be 

replaced with the coordinates stored in the 
Vertices texture. In order to access the 
Geometry and Vertices textures, the shader 
needs the index of the object and the ordinal of 
the vertex within the object. To this aim, the 
simplest way is to use the fictitious coordinates 
to communicate these data to the shader. More 
precisely, the x-coordinate indicates the object 
and the y-coordinate refers to the vertex offset 
when accessing the Vertices texture. Hence any 
fragment processing requires two texture 
accesses: one to read the object data in the 
Geometry texture, and another to get the local 
coordinates of the vertex in the Vertices texture. 

2. Sending fictitious coordinates and using one of 
them to indicate the ordinal of the vertex within 
the object, as in the previous option, and the 
other one to refer to the location of the first 
vertex of the object within the Vertices texture. 
Thus, we save one access per vertex. 

3. Directly sending the local coordinates of each 
vertex to save the two accesses. The 
disadvantage of this option is that a copy of the 
Vertices texture must be located in CPU 
memory. 

Table 3 compares the six combinations related to the 
solutions of the two jobs, that is, the two options to 
read the transformations and the three options to 
send the coordinates to the pipeline. The time 
measures correspond to 1000 renderings of a random 
scene configuration. In the last row we show how 
many texture accesses (a) are required per vertex, 
how many uniforms (u) must be assigned per object, 
and how many textures (t) have to be read from 
GPU to CPU. Note that texture accesses from vertex 
shaders are only available from shader model 3.0. 

Table 3: Comparing the six implementations of the 
rendering phase. 

4 CASE STUDIES 

We have implemented two versions of the previous 
simulation algorithms, including different geometric 
shapes: the first for circles and the second for 
convex polygons. Our shaders need several GPU 
capabilities supported from the shader model 3.0, 
such as texture accesses from a vertex shader, or 
conditions in loops that cannot be solved at compile 
time. The time measures correspond to 1000 steps in 
order to reduce measurement errors. Apart from the 
GPU implementation, we have also developed a 
CPU version of every algorithm. They have been run 
on an Intel Core 2 Duo 1,86 Ghz. A comparison is 
shown in Table 4. The initial scene is randomly 
generated. In addition, initial positions are enclosed 
within a squared room to improve the simulation 
visualization. Walls are differently implemented in 
each case. 

4.1 Circles 

Circles are the simplest shapes in rigid body 
simulation, mainly because rotations can be skipped. 
It is also possible to compute the hit time of two 
circles algebraically, thus the bisection loop can be 
changed into a constant time code. It is enough to 
solve the equation distance(A+ta,B+tb)=rA+rB, 
where rA, rB are the radius, A, B are the centres, and 
a, b are the linear velocities of the two circles. It 
leads to a second order equation which must be 
solved to find the, at the most, two values of t. 
Nevertheless the difference between both 
approaches is irrelevant since the few but expensive 
computations of the algebraic approach can be 
compared to the low-cost but many iterations of the 
bisection loop. Table 4 compares both approaches. 
The walls are also easy to implement since perfect 
reflections are applied. 

4.2 Convex Polygons 

For the sake of convenience, we only generate 
scenes with regular polygons. In fact we only use 
triangles in Table 4. The bisection kernels are 
required to compute hit times. Walls are 
implemented as rectangular objects with infinite 
mass, so they are static objects. Table 4 shows that 
the GPU implementation significantly reduces time 
as the number of objects increases.  
 

Option 1 Option 2 Option 3  
2n 

Index toCPU Index toCPU Index toCPU 

28 16.659
9 

16.659
9 

16.649
9 

16.649
9 

16.659
9 

16.659
9 

29 25.909
9 

26.239
9 

25.870
0 

23.969
9 

16.670
0 

16.659
9 

210 51.580
0 

49.110
0 

50.910
0 

45.639
9 

33.330
0 

16.659
9 

211 117.26
0 

102.27
9 

102.37
9 

89.750
0 

65.529
9 

16.659
9 

 4a 2a+2t+2
u 3a+1u 1a+2t+2

u 2a+1u 2t+2u 
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Table 4: Comparing the three circles implementations 
(GPU-algebraic, GPU-bisection, CPU-bisection) and the 
two polygons ones (GPU-bisection, CPU-bisection). 

 
Table 5 shows the timing data of the main 

kernels of the simulation algorithm after running 
1000 steps on the same initial random configuration. 
Hence we cannot use it to deduce which kernel is the 
most demanding one, since their execution depends 
on the initial configuration. For instance, the 
Bisection2 kernel will not run whenever the 
OverlapAABB kernel computed no pair of 
overlapping AABBs, and the Impulse and the 
CollisionForward kernels do not run whenever 
no collision arises. 

Table 5: Timing data of the kernels used in the simulation. 

 
Finally, we show in Figure 5 a snapshot of the 

rigid body simulator applied to a scene made up of 
1024 dynamic triangles, with a detail of the scene 
highlighted. 

 

Figure 5: Snapshot of the rigid body simulator. 

5 CONCLUSIONS 

In this paper we have presented a fully GPU-
implemented rigid body simulator, which is suitably 
composed of different −fragment and vertex− 
shaders to execute both the simulation and the 
renderization tasks. Moreover we have proposed 
several solutions for many of the development 
phases, comparing their behavior. Finally, we have 
applied these techniques to two case studies, one 
based on circles and another on convex polygons.  

The main contribution of the paper is to show 
that the GPU capabilities can be used to improve the 
overall timing of a CPU implementation. In the case 
studies, we compare our GPU solutions to analogous 
CPU versions, showing that GPU implementations 
win as the number of objects increases.  
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