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Abstract: Sub-division splines generate a number of new control points calculated fron the old control points. Both 
control polygons/grids define the same curve/surface. At each iteration the resulting new points are much 
greater in number than the old points and lie nearer to the actual curves. After a number of iterations, the 
generated points lie on the actual curve, very close to each other, and by displaying them on a computer 
screen the result is a smooth curve/surface. This paper describes a method, which is an extension to the 
Bezier sub-division method, where the resulting curve is an approximation curve which interpolates only 
the first and the last control points. The method is also derived for surfaces. 

1 INTRODUCTION 

The most popular methods for curve-fitting are 
based on approximation – that is, the generated 
curve passes near the original points approximating 
their shape – like Bézier splines (Bezier, 1970, 
1974, 1977), B-splines (Bartels et al, 1987), Beta-
splines (Barsky, 1981, 1986), ν-Spline (Nielson, 
1986), NURBS (Bartels et al, 1987; Piegl, 1990), 
Kochanek spline (Kochanek, 1984), Catmull-Rom 
spline (Catmull and Rom, 1974) and many others. 

Subdivision methods have also attracted a large 
amount of research due to their ability to generated 
complex surfaces defined by an arbitrary topology 
of points, which are not based on a regular 
rectangular mesh and even still today the most 
important methods are those of Catmull and Clark 
(Catmull and Clark, 1978) and Doo and Sabin (Doo 
and Sabin, 1978). 

This paper describes a subdivision method that 
subdivides a Bézier curve and then generalizes it to 
produce an approximated curve that interpolates 
only the first and the last original points. Section 2 
describes the Bezier sub-division method, section 3 
derives its extension, and section 4 concludes. 

2 THE BÉZIER SUBDIVISION 
METHOD 

The cubic Bézier curve defined by the control points 
V0, V1, V2 and V3 is given by Eq.1 for 0 1≤ ≤u . 
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The same curve can also be generated by another 

two Bezier curves, ( )2
uQ  and ( )1

2 2
uQ + , where the 

first is defined by the control points  S0  ,  S1  ,  S2  ,  
S3, and the second by  T0  ,  T1  ,  T2  ,  T3 where S

3
 = 

T
0
, as illustrated in Fig.1. The control points S0  ,  S1  

,  S2  ,  S3 = T0  ,  T1  ,  T2  ,  T3 are called new points 
and they can be calculated by the old points V0, V1, 
V2 and V3 by Eq.1 and Eq.2 (Bartels et al, 1987). 

The new points are twice as much as the original 
points, (in-fact double minus one, since S3 and T0 is 
the same point) and they lie nearer to the actual 
curve than the original control polygon V
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. Then from the new control points another set of 

points (double minus one in size than the previous 
points) can be calculated that are even nearer to the 
actual curve. After a number of iterations the new 
points lie on the actual curve, very close to each 
other, and by displaying them on a computer screen 
the result is a smooth curve. 
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Figure1: The old and new points. 

Consecutive segments in a composite Bézier 
curve are C1 continuous if the penultimate control 
vertex of the first curve, the shared endpoint and the 
second vertex of the next curve are collinear and 
equally spaced. In Fig.2 the unprimed vertices 
define one curve segment and the primed vertices 
define another. Because V2, V3 = ′V0  and ′V1  are 
collinear and | V3 - V2 | = | ′V1 - ′V0 | the composite 
curve will be C1 continuous. 

 
Figure2: Two Bézier segments. 

From Eq.1 and Eq.2 it yields 
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which means that S3 (which is the same point as T0) 
is the midpoint of S2 and T1 and therefore the 
required condition for continuity between successive 
Bézier segments at each step is satisfied. Fig.3 
illustrates a Bezier curve after 1, 2 and 6 
subdivisions. It can be noted that the actual curve 
interpolates the first and fourth control point of each 
segment. 

  

 

 
Figure 3: A recursive Bézier curve after 1, 2 and 6 
subdivisions. 
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3 GENERATING AN 
APPROXIMATION CURVE 

The new points can be divided into four different 
categories (Fig.4). The V-points which correspond to 
an old point at the two ends of the segment and are 
equal to the old point, the V’-points which also 
correspond to an old edge but not at the ends of the 
segment, the E-points that correspond to an old edge 
that one of the old points sharing the edge is at the 
ends of the segment, and the E’-points that 
corresponds to an old edge that none of the two old 
vertices sharing the edge is at the ends of the 
segment. Additionally, it can be emphasized that the 
E’-points lie on the actual curve.  
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Figure 4: The new control polygon resulted from the 
original one after one iteration. 

It has been derived in (Savva and Clapworthy, 
1998) that if we use V’-points and E’-points 
everywhere on a curve except at the corner points 
then the resulting curve becomes an approximation 
curve that interpolates only the first and the last 
control points. Also the penultimate control vertex 
of the each previous segment, the shared endpoint 
and the second vertex of the next segment does not 
need to be collinear and equally spaced for 
continuity, and actually the resulting curve is has C2 
continuity everywhere. This is illustrated in Fig.5. 

Eq.4 shows that 2 1
32

S T S+
=  . This condition is 

satisfied after the first iteration. But if we add the 
midpoints of all the edges in the initial control 
polygon then the resulting curve is similar as above 
(Fig.5) but it gives a better approximation to the 
control points as shown in Fig.6. 

The same method is also derived for surfaces. 
The resulting surface is an approximation to the 
control grid but interpolates the corner points of the 
surface. 

 
Figure 5: An approximated curve that interpolates the first 
and last control points after 1, 2 and 6 sub-divisions. 

4 CONCLUSIONS 

A Bezier curve interpolates the first and last control 
point for each segment and in order to achieve C1 
continuity between successive segments the 
penultimate control vertex of the first segment, the 
shared endpoint and the second vertex of the next 
curve must be collinear and equally spaced. Despite 
the fact that there is only C1 continuity at these 
points, having to make the three control points 
collinear makes it difficult to be used in modelling 
applications. 
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Figure 6: Adding the edge midpoints after 1, 2 and 6 
subdivisions. 

This paper describes an extension to the Bezier 
sub-division scheme. The resulting curve is an 
approximation curve that interpolates only the first 
and the last control points and the curve has C2 
continuity everywhere. 
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