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Abstract: We describe three recurrent neural architectures inspired by the proprioceptive system found in mammals; 
Exo-sensing, Ego-sensing, and Composite. Through the use of Particle Swarm Optimisation the robot 
controllers are adapted to perform the task of identifying motion dynamics within their environment. We 
highlight the effect of sensory-motor coordination on the performance in the task when applied to each of 
the three neural architectures. 

1 INTRODUCTION 

In situated agents, the actions that they perform are 
the pre-cursor for the senses that they experience 
which, in turn, are the basis for their next action. 
Often it is assumed that senses are read and then 
actions are made. It has been suggested that the 
coordination of the action is as important as the 
sensing and that the close coupling of these 
behaviours is fundamental to building complex 
behaviours (Nolfi, 2002b) and even knowledge 
(O’Regan, 2001).  

We investigate the task of a mobile robot being 
able to identify the dynamics of a moving target in 
its environment using only local information. In 
nature this is an important skill that enables animals 
to hunt prey, evade predators and also to 
communicate with gesture or dance. The work is an 
extension of the experiment by (McKibbin et al, 
submitted for review) where three recurrent neural 
architectures are evaluated however in this paper, a 
comparison is drawn between those controllers that 
are allowed to invoke Sensory-Motor Coordination 
(SMC) in their motion strategy and those that are 
not. The controllers have been designed in such a 
way that they can be conceptually defined by a 
number of features. This definition makes the study 
of the effect of each feature more apparent.  

The controllers that are prevented form using 
SMC are given a pre-trained set of weights that 
control their movement and these weights are not 

adpated throughout the optimisation process. Each 
controller is given the same pre-trained weights 
allowing a comparison to be drawn between them 
and also with the controllers that are free to adapt 
their motion strategy. The work carried out in this 
paper is an extension of previous work by the author 
(McKibbin et al, submitted for review) and focuses 
on the role of SMC in simplifying or complicating a 
task that requires some amount of deliberative 
processing. 

2 TASK DESCRIPTION: 
IDENTIFYING MOTION 
DYNAMICS 

The task under investigation in this paper requires a 
mobile robot to discriminate and identify the two 
phases of the trajectory of a moving target object 
using only local information (McKibbin et al, 
submitted for review). 

The robot used in the task is a simulated version 
of the Khepera II robot from k-team, it is cylindrical 
in shape with a diameter of 32mm and it is simulated 
in the Webots 3D fast prototyping software package 
from Cyberbotics. The robot has two wheels 
controller by independent motors (m0 and m1) that, 
when spun in opposite directions, allow the robot to 
rotate on the spot. It has 8 IR sensors (ds0 – ds7) 
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distributed around its perimeter and the particular 
configuration of the sensors is shown in figure 1. 

 

 
Figure 1: A functional diagram of the Khepera robot 
showing the configuration of the IR sensors (ds0 – ds7) 
and the motor driven wheels (m0, m1). 

The target object moves in a bounded arena with 
a constant “figure of 9” trajectory as shown in figure 
2. It moves with a constant speed and takes no input 
from the environment and will not stop if confronted 
with an obstacle i.e. a robot. The size and shape of 
the target are approximate to that of the robot, being 
cylindrical in shape with a radius of 32mm. Since 
the shape of the target is cylindrical its sensory 
profile will remain the same from which ever angle 
it is sensed and on its trajectory as it changes 
direction and turns corners this sensory profile will 
remain unchanged from the point of view of the 
robot. As a result of this uniformity of shape, there is 
only one distinguishing feature of the target and that 
is the dynamics of its motion plan; the path of its 
trajectory. 

 
Figure 2: Screenshot of the arena showing the robot next 
to the target. The arrows indicate the target’s straight 
edged “figure of 9” trajectory. 

The targets trajectory is considered to have two 
phases, the lower part of the loop, phase0, 
comprising of a flat horizontal rectangular shape, 
and the upper part, phase1, comprising of a regular 
square-like shape. The task for the robot is to follow 
the target and to decide which phase of the trajectory 
it is currently executing and to display this using an 
output LED. When the LED is switched on it 
denotes phase1 and when it is off it denotes phase0.  

The task has 2 parts;  

1) Follow the target through the “figure of 9” 
loop, keeping it within sensory range 
2) Indicate at each time step which phase of its 
trajectory the target is currently performing 

Part 1 of the task is a predicate for part 2. Since 
the only sensory information available to the robot is 
that provided by its IR sensors, in order to decide 
which part of the loop the target is in at any given 
time, the robot should be able to sense it. The only 
way the robot can sense the target is when it is at 
close range (<50mm). As detailed in Section 4.2, the 
robot needs to remain close to the target at each time 
step in order to gain fitness.  

Considering part 2 of the task, the robot must be 
able to discriminate the two phases of the trajectory 
using only local information. As we have already 
described, the sensory profile of the target remains 
constant throughout each phase. The target moves in 
straight lines and takes corners at 90 degrees for 
each turn.  The transition from one phase to another 
is performed in a straight line through the grey 
banded “no man’s land”. This locally uniform 
motion does not give any clue to the transition 
between phases. In view of these constant and 
regular conditions, there are no explicit signals or 
sensory states presented to the robot to aid it in its 
identification task. There is no single sensory state 
afforded by its environment that would allow the 
robot to distinguish the two phases of the targets 
movement. The robot must incorporate an ability to 
add context to its current sensory information and, 
depending on the context, identify the current 
trajectory of the target.  

3 RECURRENT NEURAL 
NETWORK CONTROLLERS 

The neural networks examined for this task are 
DNNs with update functions that take into account 
previous activation levels when producing new 
activations. The architectures of the networks are 
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inspired by a rough model of how the human body 
uses internal and external senses. The use of the 
combination of external and internal senses is called 
proprioception and it is this feedback system that 
allows the human body to modulate its behaviour. 
For example, it is through the use of proprioception 
that we are able to touch our nose with our finger 
whilst we have our eyes closed. Motor commands 
are sent to the muscles to cause actions and so too 
sensory signals are returned for processing to 
provide closed loop control. The mechanisms used 
to process these flows and contra-flows of 
information are still active areas of research in 
biology. 

We describe 3 types of DNN below, each of 
which have an input layer, a fully connected hidden 
layer and an output layer. Each of the 3 architectures 
uses different types of recurrent feedback. We have 
named the 3 types of DNN Ego-sensing, Exo-
sensing and composite. They are so named due to 
the type of sensing they employ;  

1. The Ego-sensing controller takes the output 
of the previous motor actions as inputs to 
the hidden layer.  

2. The Exo-sensing controller takes inputs to 
the hidden layer only from the IR sensors. 

3. The Composite controller uses inputs to the 
hidden layer from both the motor actions 
and the IR sensors. 

The input layer consists of 6 input nodes each 
connected to one of the 6 frontal IR sensors of the 
robot. The actual input value is the IR activation 
normalised in the range [0, 1]. There is also a bias 
node which provides a constant input of 1. This 
layer feeds forward only to the motor outputs in the 
Ego-sensing architecture, in the Exo-sensing and 
Composite architecture it also feeds forward to the 
hidden layer and the IDU output.  The hidden layer 
consists of 5 nodes that are fully connected to each 
other also with recursive connections that encode the 
hidden node activation at the previous time step. The 
input to the layer is the weighted sum of all its inputs 
and each node operates with the logistic transfer 
function however the output of each node is both a 
function of its current inputs and its previous output 
(Nolfi, 2002a). In each of the 3 types of controller 
this layer feeds forward to the IDU output but does 
not connect to the motor outputs. The update 
equation for the hidden nodes is given in (1). 
 

hidden_unit_outi  =  
√(mem_coefi *hidden_unit_outi) +  

(1 - √(mem_coefi *hidden_unit_outi(t-1)) 

(1) 

Where hidden_unit_outi is the output of the 
current hidden node in the supervisory layer and 
mem_coefi is the memory coefficient associated with 
the current node in the supervisory layer. The 
memory coefficient for each hidden node is an 
encoded parameter in the PSO algorithm and is 
bound in the range [0, 1]. This parameter determines 
to what extent a hidden node is affected by its 
current inputs and its previous outputs. This has the 
effect of altering how quickly a particular node 
reacts to changes at its inputs. 

3.1 Ego-Sensing Controller 

The architecture for the Ego-sensing controller 
consists of 2 parts. The first part is a purely reactive 
system that connects the sensors at the input directly 
to the motors with weighted connections. The 
second part consists of a fully connected hidden 
layer containing recursive feedback loops that takes 
input from the sensors and feeds forward to the 
Identification Unit (IDU). In an analogy with natural 
systems, the first part is similar to the reflex system 
found in mammals where motor actions are coupled 
closely to sensory input and the second part is 
loosely based on the afferent signal feedback system 
in proprioception that processes self-initiated motor 
actions. Figure 3 shows the reactive part on the left 
with the connections directly from the sensors to the 
motor shown with the thick arrow and the 
deliberative part on the right with connections from 
the outputs of the motors and the IDU feeding back 
into the hidden layer. These connections are 
weighted and they connect to each node in the 
hidden layer. The hidden layer only connects to the 
IDU and is thus the decision maker. 

 
Figure 3: The architecture of the Ego-sensing controller. 
The thick arrow indicates the reactive part of the network. 

 

THE ROLE OF SENSORY-MOTOR COORDINATION - Identifying Environmental Motion Dynamics with Dynamic
Neural Networks

131



 

3.2 Exo-Sensing Controller 

The Exo-Sensing controller also has two parts, the 
reactive part with its direct coupling to the motors 
and the deliberative part which processes 
information over time that feeds forward to the IDU. 
In the Exo-Sensing controller however, the input to 
the fully connected hidden layer comes from 
external information sensed by the sensor nodes. 
There are no feedback connections from the output 
layer thus providing no information on internal 
states or actions. There is still feedback in this 
controller however, provided by the recursive 
connections in the hidden layer. The analogy for the 
this controller is the exteroceptive sensing system 
found in mammals that respond to stimuli 
originating outside the body such as the sense of 
touch, smell, sight and sound. Figure 4 shows the 
input connections from the sensors that feed forward 
to the hidden layer and to both the motor outputs and 
the IDU output. 

 
Figure 4: The architecture of the Exo-Sensing controller. 
The thick arrow indicates the reactive part of the network. 

3.3 Composite Controller 

The Composite controller as shown in Figure 5 is a 
hybrid of the Exo-Sensing and the Ego-sensing 
controllers described previously. Again this 
controller has two parts, the reactive part which is 
the same as the other two controllers and the 
deliberative part. The deliberative part in this 
controller takes inputs both from the outside world 
using its IR sensors and from its internal states and 
actions provided by the feedback inputs from the 
output layer. In fact a truer description would be that 
the previous two controllers are a decomposition of 
the composite controller. This represents a more 
complete system as found in nature where organisms 
are furnished with sensory information from the 
outside world along with information of their own 

internal state. An example of this would be moving 
one’s hand through space, whilst watching it move 
and feeling it move at the same time. The structure 
of the composite controller is shown in Figure 5 with 
connections to the hidden layer from both the 
external sensors and from the feedback from the 
output layer. 

 
Figure 5: The architecture of the Composite controller. 
The thick arrow indicates the reactive part of the network. 

3.4 Pre-Trained Reactive Controller 

For each of the three types or architecture detailed 
above, there are 2 sets of experiments carried out. In 
the first set, all of the weights for each of the 
connections shown in figures 3 – 5 are allowed to 
adapt freely throughout the adaptation process. In 
the second set of experiments, the weights of the 
connections from the sensors to the motors, 
indicated by the thick arrow in each figure, are not 
adapted by the PSO algorithm. The weights 
associated with these connections are fixed and are 
taken from a pre-trained architecture which was 
trained only on its ability to follow the target. By 
comparing the performance of the architectures in 
each of the two experiments we should be able to 
highlight the role of sensory-motor coordination in 
their identification strategy. The pre-trained 
architecture used is the same as the reactive part of 
the network in each of the architectures, without the 
hidden layer and the IDU output. Figure 6 shows the 
details of the reactive network that was trained only 
on its ability to follow the target. This can be 
considered an expansion of the boxes labelled 
“MOTORS” and “SENSORS” and the connections 
between them in figures 3 – 5. 
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Figure 6: Reactive architecture used to obtain the pre-
trained weights for the second set of experiments. 

4 PSO FOR ADAPTATION 

In this paper, we employ Particle Swarm 
Optimisation (PSO) to adapt the weights of a robot 
neural controller. It is a bio-inspired technique that 
was introduced by Kennedy and Eberhart (Kennedy, 
1995) and draws inspiration from the flocking 
models of birds and fish.  

The free parameters, n, of an individual robot 
controller are represented as the position of a single 
particle that is flying through an n-dimensional 
hyperspace. The particle updates its velocity at each 
iteration based on its own previous best position, 
pbest, and also the previous best position of its 
neighbours, nbest. With time, the particles tend to 
explore the solution space and, by sharing 
information on the areas each of them have covered, 
converge on good solutions. 

The methodology for applying PSO to 
adaptation in robotics is akin to that used in 
Evolutionary Robotics (ER). A similar iterative 
process is used for PSO in robotics, however, the 
selection methods and update operators are PSO 
specific. Figure 7 shows the basic methodology and 
iterative process of the PSO algorithm. 

 

 
Figure 7: PSO in robotics. 

4.1 PSO Parameters 

The PSO used in this work was the constriction 
factor version that was developed by (Clerc, 1999). 

vi = K(vi(t-1) + c1r1(pi - xi) + c2r2(pg - xi))  
K = 2/(| 2 - φ - √(φ² - 4φ)|) ,  

φ = (c1 + c2),  
φ > 4  

Where:  
K =    constriction factor 
vi =    velocity 
xi =    position 
pi =    own best position 
pg =   group best location 
c1 = constant weight of attraction to own 

best location 
c2 =  constant weight of attraction to group 

best location  
r1 & r2 = uniform random variables in the 

range [0,1] 

 
 
 

(2) 

This version of the algorithm has been shown to 
always converge towards a solution (Clerc, 2002) 
for a particular range of parameters. The constriction 
factor version of the algorithm is given in (2). 

Some standard parameter settings are used rather 
than trying to tune the algorithm using empirical 
methods to be problem specific (Eberhart, 2000). 
The constriction factor, K, has been set to 0.729 and 
the cognitive coefficient and the social coefficient 
(c1 and c2) have both been set to 2.05.  

The free parameters of the controller that are to 
be adapted include the dynamic range of the 
weights, which are randomised in the range [-10, 10] 
and the memory coefficient, that has been 
randomised in the range [0, 1]. These two 
parameters are encoded to represent a particle’s 
position vector. Each particle’s velocity vector is 
also initialised to a random value in the same range 
as the position vector. The velocity and position 
vectors are also hard-limited to the range [-10, 10] 
throughout the adaptation process. A population size 
of 40 particles has been used for the swarm. This 
value was achieved through empirical testing and is 
an acceptable compromise between performance and 
training time. The neighbourhood topology used for 
each experiment is the ring topology with a 
neighbourhood size of 3. Each particle has 2 
neighbours and since the neighbourhood size is 
restricted, the current particle can be its own 
neighbourhood best particle. 
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4.2 Fitness Function 

Per iteration of the algorithm, each robot is allowed 
to live for 4 epochs of 2500 time steps of 96ms each. 
An epoch is ended early if the robot crashes. At the 
beginning of each epoch, the robot is place close to 
the target in one of each of the four starting 
positions; 2 in the part0 

The fitness function (4) for the task has two 
parts. The first part rewards for staying close to the 
target object as it moves along its trajectory. The 
definition of “close” here is that the robot must be 
within sensory range of the target. For each time 
step that the robot is close to the target 
found_target_count is incremented. Fitness is given 
as the percentage of the total time (4 epochs x 2500 
life steps) that the robot is close to the target. If 
found_target_count is greater than threshold, then 
the second part of the fitness function is evaluated 
and the first part is ignored.  

For the pre-trained Reactive Controller, only the 
first part of the fitness is evaluated since this 
network has no identification output. The result is a 
controller that consistently follows the target well 
and attains maximum fitness in doing so.  

The second part of the fitness function rewards 
for the robot correctly identifying which part of its 
trajectory the target is currently in. Figure 6 shows 
the trajectory of the target and the robot, with its 
projected IR sensor beams, next to it. The white 
square shape in the upper part indicates phase1 of 
the trajectory and the white rectangle shape in the 
lower part indicates phase0. The grey band between 
the two phases represents “no man’s land” where no 
reward is given as the robot and target travel 
between the two phases. The identified_ 
phase0_count is incremented for each time step that 
the robot correctly identifies phase0 of the trajectory 
and identified_phase1_count is incremented for 
correctly identifying phase1. The second part of the 
fitness function uses these values represented as 
percentages of the correct identifications for each 
phase. 

fitness  = (found_target_count / 
max_life_span)  

(4) 

 
if(found_target_count > threshold) 
 

fitness  = 1 + (perc_identified_phase0 * 
perc_identified_phase1) 

 

 
where: 
max_life_span  
     = number of epochs * life span 

 

     = 10000 
 
threshold  
     = max_life_span * 0.8  
     = 8000 

5 RESULTS 

For each of the neural network architectures and 
both the fixed and non-fixed weight test, the 
experiment was run 10 times and the fitness data 
was recorded and averaged. Figures 8a, 8b and 8c 
show the plots of the training data. Each plot shows 
the fixed weight training data and also the same data 
shifted to the right to the point where the non-fixed 
weight controller achieves a similar fitness score. 
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Figure 8a: Training data of the best individual at each 
iteration for the Ego-sensing controller. Maximum 
theoretical fitness is 2.0. 
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Figure 8b: Training data of the best individual at each 
iteration for the Exo-sensing controller. Maximum 
theoretical fitness is 2.0. 
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Figure 8c: Training data of the best individual at each 
iteration for the Composite controller. The plots in figures 
8a, 8b and 8c show the data from both the fixed weight 
and non-fixed weight training. Also the fixed weight data 
is shown shifted so the fitness scores start at the same 
point to aid in their comparison. Data is averaged over 10 
runs. Maximum theoretical fitness is 2.0. 

The reason for this is to make the comparison 
between the experiments more clear. The controllers 
in the non-fixed weight experiment had to learn to 
complete the following part of the task, part 1, 
before they could gain any fitness from the 
identification part, part 2.  The fixed weight 
controllers in each case made use of the pre-trained 
reactive weights and so where already able to 
complete part 1 of the task from the start of the 
adaptation process. 

The Ego-sensing controller was the only one of 
the three architectures that performed less well when 
the motion strategy of the robot was not allowed to 
adapt along with the identification strategy. For the 
other two architectures, when the weights 
controlling robot’s motion strategy were fixed, they 
were both able to train faster on the identification 
task and achieve a higher maximum score. 

comparison of fixed-weight averages

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 101 201 301 401 501 601 701 801 901

exo3_fix_avg
ego2_fix_avg
comp2_fix_avg

 
Figure 9: Training data of each of the three architectures 
for the fixed weight version of the experiment. Data is 
averaged over 10 runs. Maximum theoretical fitness is 2.0. 

When comparing the three architecture types of 
the fixed weight experiment, it is clear from figure 9 
that the Ego-sensing controller also performs the 
worst with a highest average score of 1.851. The 
Exo-sensing controller and the Composite 
controllers perform similarly well scoring highest 
average scores of 1.921 and 1.925 respectively.  

6 DISCUSSION 

For the non-fixed weight experiment, each of the 
controllers was able to quickly adopt a target 
following behaviour. For each architecture this took 
between 43 and 44 iterations. This shows that each 
controller was able to learn a good motion strategy 
that enabled it to remain close to the target object at 
all times and that also prevented it from crashing 
into the target as it suddenly changed direction when 
turning corners.  

In the fixed weight experiment each controller 
used the same pre-trained weights from the reactive 
architecture and so all of them were instantly able to 
follow the target without crashing. All fitness scores 
above 1.0 are attributed to the robot’s ability to 
identify the phase of the target’s trajectory. Each of 
the fixed weight fitness scores start above 1.0 due to 
the chance level of identification ability they might 
have. 

When the Ego-sensing controller’s performance 
in the fixed weight experiment is compared to non-
fixed weight experiment, the controller performs 
better when it is allowed to adapt its own motion 
strategy. The reason for this may be that the 
information that is fed to the hidden layer in the 
Ego-sensing controller is somewhat bland (only 2 
inputs instead of 6 in the Exo-sensing version). The 
Ego-sensing controller uses only its own outputs as 
inputs the hidden layer and these outputs are in fact 
a function of the sensor inputs. The motion strategy 
used in the fixed weight experiment was not adapted 
to aid in the completion of the identification task and 
was used only as a method to allow the robot to 
remain close to the target. This fixed motion strategy 
combined with the fact the that the inputs to the 
hidden layer were not as rich in patterns as some of 
the other controllers may have made it harder for the 
Ego-sensing controller to perform the identification 
part of the task without being able to adapt its 
sensory-motor coordination and thus its motion 
strategy. 

The Exo-sensing controller was able to perform 
better in the fixed weight experiment than the 
experiment where it was free to adapt its own 
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motion strategy. In the fixed weight experiment it 
trained faster and reached a higher maximum 
average score. Similarly the Composite controller 
performed better when the weights controlling its 
motion strategy were fixed. Both of these controllers 
had inputs to their hidden layer from the six IR 
sensors. Since this data was the raw instantaneous 
sensor values, the patterns will have contained much 
more information than was available to the Ego-
sensing controller. The Composite controller also 
had the ego-sensing data as inputs to its hidden layer 
and it scored the highest maximum average score of 
the three architectures.  

In previous work by the author (McKibbin et al, 
submitted for review) a study of the nature of the 
information being fed to the hidden layer revealed 
that the fast changing sensor (exo-sensing) data can 
make it more difficult for the controller to learn 
slower changing temporal patterns. Conversely, the 
slower changing output (ego-sensing) data seemed 
to be more useful to the controller to be able to learn 
the temporal patterns more quickly. However each 
of the controller types was able to identify the target 
trajectory with similar success after training for 1000 
iterations. The main difference between the 
architectures was the time taken to train. From the 
experiments in this work however, it is clear that 
when the motion strategy is fixed and not adaptable, 
the controllers perform differently. The controllers 
that had the fast changing sensor data available to 
them (Exo-sensning and Composite controllers) 
were more able to perform the identification task 
than the controller with only the slower changing 
output data (Ego-sensing controller). In the latter 
case, it seems to be that the restriction of the 
richness of the sensor information available to the 
controller combined with it not being able to invoke 
its own sensory-motor coordination strategy has 
inhibited it. 

It should be noted that in the fixed weight 
experiment, every individual was initialised with the 
weights that exhibited a pre-trained following 
behaviour. This meant that every member of the 
population could begin to optimise the controller for 
the second part, the identification task. In the non-
fixed weight experiment only the individuals who 
were able to complete the following part of the task 
could gain fitness in the identification task. It should 
be noted that even after 1000 iterations only 75% of 
the members had learnt the following task. 

 
 
 
 

7 CONCLUSIONS 

This paper has presented a study of the performance 
of three recurrent neural robot controllers in 
identifying environmental motion dynamics. 
Although all three can perform the task well, we 
have shown that there are significant differences in 
performance when sensory-motor coordination is 
eliminated from their motion strategy. We have 
highlighted the utility of DNNs as mobile robot 
controllers and suggest further investigation into the 
role of sensory-motor coordination in aiding 
complex robot tasks. 
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