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Abstract: In surveillance or exploration mission in a known environment, the localization of the dedicated sensor is of
main importance. In this paper, we discuss the path planning problem for the localization algorithm which
correlates range and bearing measurements and a map composed of several features. The sensor motion
is designed from an information measure derived from the Fisher Information Matrix. It is shown that a
closed form expression of the cost can be obtained. The optimal features location can be neatly geometrically
interpreted. An integral cost which includes the sensor perception limitation is then formulated. Itis used in a
dynamic programming framework to tackle the path optimization problem.

1 INTRODUCTION ementary moves with constant velocity and constant
heading. Moreover, the sensor field of view limita-

The path planning problem for map-based localiza- tions are included to the cost (_:omputati_on. At last, we
tion consists in designing the best trajectory for a mo- formulate the problem as finding an optimal path on a
bile in a known environment, which guarantees the 9raph by means of dynamic programming. The paper
highest performance of positioning during its execu- €nds with one illustrative example.
tion. Data collected from sensors are “matched” to
a prior map to estimate the state (e.g., position and
heading). Depending on the sensor dynamic and the2 PROBLEM FORMULATION
observation models, different localization algorithms
can be used. When the system is linear or near linearWe consider a moving sensor evolving according to
with Gaussian noises, Kalman-based approaches areéhe dynamic model
relevant (Thrun et al., 2005; S. Thrun and Dellaert, .

. : Xt Vt COSPt,
2000). In this paper, we introduce a framework to ) .
compute “optimal” path for a moving vehicle which Yoo = wsing,
collects range and bearing data from 2D features. One b = w. (1)
of the main chaIIe_ng_es is to choose an_app_ropriate where its statex; A %Y, ¢] is composed of its
measulgiio be gpAmized. In random estimation, the , position and its orientation. A feature map of
F'Sh‘?f Information Matrlx (F.IM) can be used. We its environment is available for localization purpose.
considered a D-.opt|mal.de5|gn (Paris .and Le Qadre, In equation 2, we assume that the known control
2002). The first interesting result of this work is the o

[w,wx] € u C R2. During its displacement, the

A
derivation of a closed form expression for the FIM Ut =
determinant. It is shown that it depends on groups of Mobile gets sensor measurements from detected fea-

two or three features. Then, a geometric analysis of turés which are in the embedded map. Let us denote

the optimal features placement can be done. By ex-f; ES {f1,...,fm } the set ofm features visible and
ploiting this measure, we introduce an integral cost used in the localization process at timeEach fea-
functional for a path space, which is composed of el- ture is defined by its 2D position in a global frame
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A A x« g B *
®g 2 (0, T, V): e G E[Rmg E(R
fi — (X,y) € D CR? 2) o In 211, 0n 2[00
and the “sensor-feature” vector 3pi(t) A Without loss of generality, we seiy = g, = 1 then
X —x,y —%]".  The measurements vector is Wecan rewrité
the stacked vectdZ; = [Z,...,7,] wherez is the F(t) = G(t)G(t)". (11)
range and bearing measurement for featfjre So, )
the observation model stands as follows : with
G1t)  Ga(t)
Zy = He(Xy, ft) +Wh. (3) P
G(t) = 12
where the % i and 2x i + 1" elements oH (X, ft) (®) d _Sp—'»)t ' (12)
are the components of the two dimensional vector 0 1
. m m
h(Xt, fi) given by _ o
G(t) is a 3x 2m matrix with columnsG; are part of

Z =h(Xt, fi) +W. (4)  the subseti1(t) or Go(t) :

A{ \/(th_xi>2+(Yt*yi>2 gl(t):{Gil,lgilgnﬂGil:(cil S 0)*},

h(xt7 fl) = ataQ(i::ﬁ)*(bt S,

. G *

. Got) = {Gp 1< <miG, = (3 52 1)}

The noise vectow} is modelled by an i.i.d. Gaus- _ . ) o
sian process with zero mean and covariance matrix !N this paper, we are dealing with the optimization

®)

5. Moreover, we suppose that =, i and of the sequence of displacement which provides the
“best” estimate of the state. This can be achieved us-

s _ (Grz 0) ©6) ing an appropriate measure of information gain. We

0 0% ’ adopt here a D-optimal design considering the deter-

. J. _ minant of the FIM. In the next section, we show
We also consider that{ andwj are independent for  that this measure is a function implying the esti-

| # . So in light of (2), the likelihood function is  mated bearings anglési(t))™, and relative ranges
given by (Pi(t)2y-

1 m
P(Zt[Xt) O exp(—i > Iz =h(Xt, f|)|§> ")
=1 3 DERIVATION OF detF)
If X; is one estimate based on the measurerdent . ]
(e.g., the maximum likelihood estimate), the covari- Let us definec (t) as the determinant of the FIM at
ance errorey, = X; — X, is lower bounded by the timetin positionX;. From (11), we have

Cramer Rao Boun@CRB) (Van Trees, 1968). £(t) = det(G(t)G(t)"). (13)
-1
Covex,) = F(t). (8) Using the Binet-Cauchy formutawe can notice that
The calculation of the FIMF(t) is given in our case 2
by, L(t) = Zk {det(Gi,Gj,Gk)} . (14)
1<i<j<k<2m

m ) % )
F= Zx <M> s-1 (m) .9 hence to compute (t), we have to enumerate the
i= Xt 28 different cases in accordance with the column vec-

The elementary gradient vector can be derived tors (Gi,Gj,Gy) are ingy or g». In the following,

straightforwardly we denoted;jk 2 det(G;,Gj,Gy). If all columns are
Ah(Xe, ) 6 s O in g1, dijx is trivially equal to zero. Using determi-
ﬁ = <_'i G _1) (10) nant computation properties and relations betweeen
t Pi P trigonometric functions, we get
A A A B —
whereqi(t) = ZUdpi(t), pi = ||dpi(t)|], ¢ = cosa 1x js the transpose operator
ands 2 sina;. Let us also introduce the following EOther matrix operator can be used, such asréee
notations : det(AB) = ysdet(As)det(Bs), S= {1,--- ,n}, if A€
A A Mg (m,n) etB € Mg (n,m), As is themx n matrix whose
e C=[C1--Cm|*,S=[S1- -Sm]™ columns are those @ with in S
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a) Gi,Gj € g1andGy € G2

d”k =sin(a; —aj).
b) Gi € g1 andGy, Gj € G2
2 coqa; —ak) coga;—aj)
ijk — - R .
Pk Pj
¢) Gi € g1, Gj andGy € 62
3 _ sin(ai—oy) sin(ai—aj) sin(aj —ag)
1k PiPK pipj PPk

In conclusion, we notice that(t) is the sum of three
terms.(t), £2(t)andLz(t) which characterize inter-

actions between pairs and triplets of visible features.

Lt)=aL1(t) +aLo(t) +azLs3(t).

with £1(t) = 3 30 (fi, fj),
Zinll ZTll ZLZJ 92 (fi, fj, f) and L3(t) =
Zi”il ZT; ZE;J gs(fi, fj, fk)  where (9I)Ie{1,2,3}
are respectively given by the square cﬂjfk in the

above cases. Coefficien(s )1</<3 depend oo, and
O4.
¢

(15)

Lz(t) =

4 THE OPTIMAL PLACEMENT
OF THE FEATURES

We now study the location of the features which pro-
vides the best performance of estimation around a
given mean statX. The analysis takes into account

the sensor field of view and only consider(t) (pairs

Proposition 1. Maximizing £1(t) is equivalent to
find the configuratiorfvi™, ..., V") which minimizes
V| = [| S Vil 12

Indeed, using classic trigonometric propertiase
can show thaty = % (1— |3, v [?).

4.1 Optimal Placement for Dy < §

In this context, the value of the angle made by vectors
Vi andv; is strictly smaller tharm. So||vr|| > 0. Let

i€ {1,---,n} and6i, = ZV" Vf,. We also denote, EY
S j-4io Vi @ndBiy = £V Vi

IV l12 = [Vig + Vil

1+ | Vi 12 + 21 ¥ | co( 81y — B1o) -

As Dy < g, vTg is also between” andv;. So, for
a given placement of vectofs }i;éio* [IVT|] is min-
imized for g}, which makesg(8) = cos(6i, 8y,
minimum.

Proposition 2. In the optimal configuration, each
vectory; is on the frontier of the visibility cone.

Proof. 0 < 6;,8;, < 2Dm = 6j; — 2Dm < 6j; — 6i; <
6i,- Moreover,6;, — 2Dy > —T et 6.0 <1 We can
easily deduce that

o 2D, if |9i£—2Dm|>9i£
0 if |61, — 2Dm| < 6,

|nteract|on) Such an approximation is valid when which proves that either, = V" orvi, = V.. Letus

< < 0y. Let(fi);j, be visible from statéX. We
mtroduceP (XY), (W)1<icn» Dm, V- andv; (see

denoten_ andn, the number of vectorg; respec-
tively equal tov. andVv: (n_ +n; =n). n_ must

figure 1).Dp, is the angular aperture of the sensor field Vverify the relation

of view. An analogy can be made with the reasoning

Figure 1: Sensor features spatial configuration.

in (Gu et al., 2006) for multiple UAVs cooperation

for sensing. The derivation made here is nevertheless

simpler and more geometrically intuitive.
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1V ][2 = 2(1— )2 —2(1—a)nn_ +n2 2 f(n_).
with a = cog2Dp,) (a < 1). f is minimal forn_ = 3,

SO

e if nis even,n_ =n, = J and which provides

L= %zsinz(Dm) .

e else we can set. = 51 andn;, = ™1, then

n? —
4

1sinz(Dm) .

L1 =

4sirfa = (1 - cos2) and coga— b) = cosacosb +
sinasinb
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4.2 Optimal Placement for Dy > 3 | is decreasing onJ, Dy (% 0 —sin(¢) < 0) so its
maximum is given fop = Dp,. This leads to the cost

In this case, we have to make a different reasoning ac-value

cording to the parity of. Whennis even, the optimal

solution is obvious as we can place the features so that L1 = 1 (nz —(1+(n—1) cos(Dm))Z) .

Vi = 0. Indeed, it is enough to choo$&:,--- ,Vih} 4

pairwise such that their difference angle is equatto | his section, we made a geometric analysis to de-

(i-e. ﬁrthoglonal assigI]nmen'; of fehature;s_). We can no- iormine the optimal placement of the features to max-
tice that, there are plenty of such configurations and jize the cost ;. Making the same kind of reasoning

2 .
Lo o - for the complete cost (t) is much more challeng-
the costi3.L; = 4 Otherwise, inis odd, itis more ing. After this static analysis, we deals with the path
difficult to find a placement which giveg = 0. Nev- planning problem in the next section. For the sake of

ertheless, we can search among a particular class ofTeVity, we only detail the approach fan(t) but it
configurations withii, = —Vi,. Assumingip =n, one ~ ¢an be generalized to,(t) andL3(t).

way to obtainv;, collinear and opposite &, is to

choose{Vvy,--- ,vn_1} where

5 PATH PLANNING

T LUVh =0, Vie{l,-.. 1y
welpnl{ T uiiea! . .
Wi =0, Vii=i+5 We consider the evolution of the sensor between
. R . _ . to,ts] with O < ty < T« from positiongs € » to po-
Given V'V, = Bp, Vi € {1,---, %51} and supposing [to, ,
v -0 then 2 5|t|or.1 qt € . We look for paths(xt)te[toif] which
_ maximizes the cost
Vn = cog¢+0p)t+sin($+6p)V, i
v = cog8p)l+sin(Bp)V, Vi, W(lto, tg]) = / La(t)dt (18)
Vi, = coq2¢+ 0,)U+sin(2¢ +6,)V, V. b

dvi e (1 ne1 The problem can be formalize in the optimal control
andvi € {1,---, %"} framework with two boundaries constraints. Unfortu-
Vi+Vj, = cog0p)+cog2¢+6p)u n?tely, (gue t(; :he cost expressioln an? the Tensor ffield
; ; of view (FOV) limitations, no analytic formulation o
2 v 1 4 s :
+sin(Bp) +sin(2p +6p)V.  (16) the optimal path can be derived. An approximated

Using trigonometric properties, we get that: approach based on the discretization of the state and
. control space seems more tractable.
V4V = 2cod)(cogd +8p)U+ sin(d + Bp)V) P
2cog9)Vvh. 5.1 Path Description

To makevr =0, we rigst gce As in (Celeste et al., 2007), We formalize here

n-l y the problem as a discrete path planning. A regu-
Vi + Zvi +Vj, =0, lar grid is considered and one path is a sequence
i= of elementary displacements with constant heading
which is equivalent to the following condition d@n (¢ € {01 =5, i €{-3,..,4}}) and constant veloc-

T[ ity v (a leg). For a path with n; legs, the cost is as
I$) £ 1+ (n—1)cogp) =0, ¢ € |5.m. (17)  follows:

n—1
As the field of view is limited, we have to satisfy W([to, tf]) = Z} / HLl(t)dt. (19)
¢ < Dm. Therefore, if such an angle exists, the cost i=0 7t
. c 2 . .
value is againc, = 5. In particular, if Dy > &, X, = Gs and Xy, , = ¢ are supposed to be on the

we can always find an optimal placement. Indeed, grid. Some constraints on the maneuvers can be im-
it is sufficient to choos@ — 3 vectors as in the even  posed to avoid chaotic behavior (e.g. bang-bang ef-
case (orthogonal assignment) and to use the last thregect)(Paris and Le Cadre, 2002). To solve the planning
with ¢ = Z'. When existsp solution of (17) with  task we need to compute the cost associated with each
Dn<¢d< %’T it seems difficult to find a configuration leg. First of all, it is necessary to determine the part of
which allows to attain the maximum cost. But, we the leg where each feature is visible due to the sensor
propose a suboptimal solution which minimizég). FOV.
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5.2 Cost for OnelLeg attention to the position of the leg relatively to the fea-
tures.
For a FOV model with an aperturdzand a maximum
range detectioRy, the areaz visible from the legeis
composed of three regiors, z, andzz (see Figure
3). A pair of featuregf;, fj) € z? are visible from (AjX+Bij)2  rx+s X+
PY(xL,y") andP! (x!,y}). These limits can be de- PP (X  pix) P2
rived using a simple geometric reasoning. Moreover,
case (2) e is not on the perpendicular bisector of
S2 [fi f;], then

case (1) eis on the perpendicular bisector df fj],
thenp;j(x) = pi(x),Vx and

(22)

(Ajx+Bij)?  rix+s  rXx+s

= . (23)
Pi (%) Pj (%) pi (%) P; (%)
Z1 T S3 Identification of the numerators yields in both
s1 cases to alinear system to dedyee [r1r2s1 ],
Z2 (©
Mij” X = Bij , forcasese=1,2 (24)
s 9 L0 ¢
(1) b 0 a4 O r i
S4 Mit=lc 1 b of %= |2a;8;
Figure 2: The visible region for one leg. 0 0 ¢g 1 Bizj
(25)
we have a relation between an elementary displace- and
ment and the associated duration{{cx if ¢ # [, a a 0 0
dt O dy else). and the leg can be reparametrized as M? = b by a a (26)
follows: . G ¢ bi b
. . 0 0 g Cj
o Y(X) =B+Yx, Vx € [xs,x7] if ¢ # T[] (non verti-
cal motion), For vertical displacements, it is more appropriate to
o X=xs,Ys<y<yr else (vertical motion), consider integration with the variable The same

The total cost for a leg can then be computed using reasoning leads to the integration of a rational func-

relevant change of variable. tion to get the cost expression
i
For non vertical displacement, the cost due to v o
a pair of featureg f;, f;) is the integral of a rational cj(e) U /yii Kij (y)dy. (27)
function: -
[(x=) (y(x) —y1) — (x=xI) (y(%) ,yi)]z 5.2.1 Closed Form Expression for the Cost
Kij (X) = pi (X) p] (X)

A Whatever the leg orientation, we have to deals with
wherep; (x) = (x— X )24 (y(X) —¥')? = ax® + by x+ the computation of integrals of the form € {1,2},

a, | € {j,i} is the respective square range off; _ le{i,j}):
to the sensor. Therefore, these polynomials are irre- «
ducible whatever the sensor positiondn\ { f;, f; }. HO (1, u, v, x+) :/ i %dx (28)
We can rewrite x. (axt+bx+c)
Kij (x) = (Aijx+ Bjj )? (20) Using specific changes of variable and classic prim-
, pi(X)pj(x) itives, the closed form expression for the c¢at),
So, we have to compute: (27) can be derived. For instance,
x] 1 _ v [P (%)
Cir}v(e) O ij+ Kij (x)dx. (21) H! )(|,U,V,X,,X—|—) =Vv7In (|pl )| +
XZ

which can be done with a relevant partial expansion AD 1 by 1
of the rational function. Nevertheless, we have to pay M | @M (a0 + g)) —tan (g (x- + a))
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2
whereq = /% v = 4 and 7 CONCLUSIONSAND
G PERSPECTIVES
)\(l> _ 2va-—ub
| - 2a2 q| . ) ) ) )
The expressions of the costs are finally In this paper, we introduced a path planning algorithm
o o for map based localization. First of all, we derived an
cij(© =HV (e, s, X X))+ H™ (j,rp,5,X X1 information gain as the determinant of the Fisher In-

formation Matrix adapted to multiple features. A geo-
metric interpretation of this measure was made. Then,
to determine the optimal path, we considered the in-
tegral cost of this function. It is important to notice
that the cost computation take into account the sensor
field of view model. Finally, we applied the approach
on a scenario and illustrate the behaviour of the algo-
rithm. We detailed the approach for only the first part
of the total cost, but it can be generalized to the oth-
ers. Now, we plan to take into account noisy feature
6 EXPERIMENT positions which will yields to a path planning problem
with uncertain cost. Then, the next challenge is to find
In this experiment, we consider an embedded map optimal paths which tackle also those uncertainties on
composed of ten features organised on the border ofthe given map.
» = [0;200;0;20Q The sensor FOV is character-
ized by a maximum range detectiBpax= 70mand a
half aperture angl®,, = 120 deg.. Moreover, the au- REFERENCES
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wheren € {1,2} depends on the leg orientation ac-
cording to[fj, f;]. Given the contribution of each vis-
ible pair of features, the complete cost of the leg is
given byc(e) = 3; ; cij (e) Therefore, the cost associ-
ated to a path = {ey,---,en} of lengthn=n; -1

is c(t) = S_;,c(a). The optimization can then be
solved via dynamic programming.

t t
0 20 40 60 80 100 120 140 160 180 200

Figure 3: Optimal path, features(greeqy,andq; (blue).

moves in order to be as soon as possible on the per-
pendicular bisector of pairs of features and to increase
the number of visible pairs. The proposed path allows
to provide better triangulation conditions which im-
proves the estimation process. Moreover some inter-
esting behaviour like cycles can also be observed.
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