ON-THE-FLY AUTOMATIC GENERATION OF SECURITY
PROTOCOLS

Shinsaku Kiyomoto, Haruki Ota and Toshiaki Tanaka
KDDI R & D Laboratories Inc., 2-1-15 Ohara, Fujimino-shi Saitama, 356-8502, Japan

Keywords:

Abstract:

Security Protocol, Automatic Generation, On-The-Fly Generation, Authentication, Key Exchange.

In this paper, we presented an automatic generation tool for authentication and key exchange protocols. Our

tool generates a security protocol definition file from input data of requirements for the protocol. The tool
constructs a new protocol that combines a pieces of security protocols as building blocks. The transaction
time of the tool is less than one second and it is able to realize more rapid generation of security protocols in

comparison to existing generation tools.

1 INTRODUCTION

1.1 Background

Ubiquitous is a key phrase often used in relation with
new generation IT services. In a ubiquitous network,
multi-networks, multi-devices, and multi-services ex-
ist. Many services have been provided over communi-
cation networks such as the Internet and local commu-
nications. In these services, there are many security
protocols used for authentication and key exchange
that realize secure communication. The security pro-
tocol is pre-defined and installed in all entities before
entities commence to communicate. Secure commu-
nication with unknown entities is impossible where
both entities know no common authentication and key
exchange protocol. This is a disadvantage in terms of
the flexibility of ubiquitous environments.

On the other hand, the design process of a security
protocol is often cumbersome and expensive. Even
though security protocols are carefully designed, se-
curity flaws sometimes occur in the protocol. This
must be a serious bottleneck and poses a risk in the
construction of new services and may delay or halt
provision of such services. If the protocol is flawed,
high costs might be incurred, due to forced redesign
and update process. The designer may not be able to
devise the optimal protocol for given system require-
ments. Namely, conservative designers might incor-
porate overly heavy functions just to ensure the pro-
tocols are secure. Thus, schemes for automatically
generating security protocols have been considered.

Kiyomoto S., Ota H. and Tanaka T. (2008).
ON-THE-FLY AUTOMATIC GENERATION OF SECURITY PROTOCOLS.

If both entities have a function to generate security
protocols automatically, the entities can communicate
with each other securely. The functions enable an en-
tity to communicate with any other entity at any time
and in any place, without previously sharing a com-
mon security protocol.

However, existing automatic protocol generation
techniques are impractical because the techniques re-
quire huge transaction time to generate a security pro-
tocol.

1.2 Our Contribution

In this paper, we propose a tool that is capable of
generating security protocols automatically. Our tool
generates two-party authentication and key exchange
protocols to combine medium-size building blocks
called components. Previous tools constructs secu-
rity protocols by randomly to choosing small blocks
for security protocols; the existing methods are not
suitable for fast generation of security protocols, be-
cause the methods have to check a huge number of
candidates constructed by the small blocks. Our tool
first selects medium-size blocks in accordance with
requirements for protocol generation and constructs
a security protocol using selected blocks. The tool
also has an efficient optimization process to avoid that
redundant flows and data is remained in the gener-
ated protocol specifications. Thus, an efficient secu-
rity protocol definition is produced by the tool, al-
though our tool constructs a security protocol using
the medium-size blocks.

97

In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 97-104

DOI: 10.5220/0001677500970104
Copyright © SciTePress

ICEIS 2008 - International Conference on Enterprise Information Systems

The transaction time of existing tools are from
several tens of second to several hours; however, our
tool realizes security protocol generation within one
second. Therefore, the tool is able to realize more
rapid generation of security protocols in comparison
to existing generation tools.

The remainder of this paper is organized as fol-
lows: Section 2 introduces works related to auto-
matic security protocol generation. Next, we present
a tool for generating security protocols automatically
in Section 3. Evaluation results are shown in Section
4. Finally, we conclude this paper in Section 5.

2 RELATED WORK

Automatic security protocol generation is divided into
two steps; the first step is generation of a high level
protocol definition from security and performance re-
quirements, and the second step is source code gen-
eration from the protocol definition by means of a se-
curity protocol compiler. Programs for the first step
denote tool, and programs for the second step denotes
compiler.

There are some compilers for generating imple-
mentations of security protocols that use crypto-
graphic algorithms. F. Muller and J. Millen pro-
posed automatic Java code generation from CAPSL
or CIL specification languages. The tool is used for
cryptographic protocols that only use symmetric key
encryption. ACG (automatic Code Generator) is a
part of the AGVI toolkit(Song et al., 2001) and it is
an automatic compiler that translates the high level
specifications of security protocols into Java source
code. COSP-J(Didelot, 2003) is a security protocol
compiler that takes a description of a security pro-
tocol in a simple, abstract language, and produces a
Java implementation of the same protocol based on
Casper(Lowe, 1997). ACG-C# produces C# imple-
mentation codes for security protocols with Casper.
Spi2Java(Pozza et al., 2004) automatically generates
Java code implementation cryptographic protocols
described in the formal specification language spi cal-
culus(Abadi and Gordon, 1999). SPEAR II(Lukell
and Veldman, 2003) provides Java code generation
from an abstract protocol specification. These tools
require the protocol specification to be described in
their specific language.

On the other hand, very little research has been
conducted on tools for automatic protocol generation.
A. Perrig and D. Song proposed an automatic pro-
tocol generation tool(Perrig and Song, 2000a). A
protocol designer inputs the specification of the de-
sired security properties and the system requirements

98

and generates a high-level protocol definition using
the tool. The tool first generates all protocols be-
low a given cost threshold inputted by the designer.
After sorting the generated protocols, the tool tests
them. If one protocol satisfies the desired proper-
ties, the generation process can stop. Otherwise, more
protocols are generated with an increase in the cost
threshold and they are tested again. They extended
their method so it can be applied for 3-party proto-
col and improve space reduction techniques of can-
didate protocols(Perrig and Song, 2000b). However,
their scheme is not efficient because their scheme first
generates many security protocol candidates and then
chooses one protocol to test if the protocol fits the re-
quirements. S. N. Foley and H. Zhou proposed a be-
lief logic approach that allows entities to realize on-
the-fly generation of security protocols(Zhou and Fo-
ley, 2003). Their automatic security protocol gener-
ator uses logic-based synthesis rules to guide it in a
backward search for suitable protocols from protocol
goals(Foley and Zhou, 2003). Their tool is more ef-
ficient than the previous one; however, it is still too
slow for the dynamic generation of security protocols
because all possible states are searched to generate
sub-protocols, and the number of potential protocol
candidates is small because of binding free variables
only to formulae from known assumptions inputted as
arequirements for the security protocol. Furthermore,
detailed requirements have to be written in a special
language.

In this paper, we present a tool for automatic se-
curity protocol generation. The tool generates secu-
rity protocols from a small set of requirements using
a new approach whereby the tool constructs new pro-
tocols based on the components that are pieces of pro-
tocols.

3 AUTOMATIC SECURITY
PROTOCOL GENERATION

Generally, security protocols are designed taking re-
quirements for security and performance into consid-
eration. Our automatic protocol generation tool gen-
erates a security protocol based on the requirements
for the protocol. The requirements are inputted into
the tool, and the tool then automatically generates a
security protocol definition for security protocol com-
pilers. In this section, we first explain the language
of security protocol definition; next, we present the
whole process of security protocol generation; finally,
we shows details of the selection process for compo-
nents and data sets in the generation process and gen-
eration process of session key generation functions.

ON-THE-FLY AUTOMATIC GENERATION OF SECURITY PROTOCOLS

fffffffffffffffffffffffffffff

Figure 1: Flow, Function, and Data.

3.1 Language of Security Protocol
Definition

The protocol definition is a high-level protocol spec-
ification written in XML language. The high-level
definition makes it easy to write flows and calcula-
tions in the protocol and it is assumed to be inde-
pendent from environments. Furthermore, the XML
description makes it easy to add specific information
to the high-level protocol definition. For example, if
they wish, protocol designers can describe detailed
parameters such as those for cryptographic algorithms
and the initial values of variables. The description is
highly flexible with regard to adding and removing in-
formation for a basic security protocol definition gen-
erated by the tool; thus, the protocol specification can
include not only a common, high-level specification
of the security protocol but also specific information
for environments. This flexibility allows compilers
to be customized for particular environments such as
smart card. The protocol definition file can be used
for a range of security protocol compilers.

We describe security protocols based on defini-
tions of data, functions, and flows as Figure 1. A flow
is described as all data sending by one transaction be-
tween entities and information of sender and receiver.
A function indicates a cryptographic operation and it
is described as input data and algorithm name. Data is
minimum blocks to construct a security protocol defi-
nition. Security protocols definition consist of several
flows, and these flows consist of data and functions.

Furthermore, we describe additional information
in the protocol definitions, such as purpose of the
protocol, information of entities on a header field.
The definition file includes information for all enti-
ties which execute the protocol. Our security protocol
definition is divided into five parts:

e Header Information Field
The header information field defines the purpose
of a protocol such as authentication and key ex-
change, and security parameters.

e Entity Information Field
The entity information field stores information on
each entity. Entity information includes which en-
tity should be authenticated, role of the entity (ini-
tiator of the protocol or responder to the protocol),
and the data list that the entity knows before the

protocol starts. The information also includes key
generation function info and validation function
info. The key generation function info refers to a
function for generating a session key in a key ex-
change protocol, and the validation function info
refers to a function for authentication whereby the
entity computes the function to verify the authen-
ticity of an entity.

e Data Information Field
The data information field is for definition of data.
Data information consists of data-id, data type,
length, creator, label, algorithm, value, usage,
source, store, and comment as shown Table 1.

e Function Information Field
The function information field consists of func-
tion definitions. Function information includes
function identifier, algorithm type, length of out-
put, and input data. Function information option-
ally includes detailed information for a crypto-
graphic algorithm such as OID and padding type.

e Flow Information Field
All protocol flows and computations between
flows are written in the flow information field.
Flow information includes information of sender,
receiver, and sending data and function.

The data type Identifier, Random, Password,
Counter, and Text indicates that the data is an iden-
tifier of an entity, random number, password, counter
value, and other type of data, respectively. Temporal
Public Key and Temporal Private Key indicates that
the data are respectively a public key and private key
generated in the protocol.

Functions for the security protocol are defined as
the function-id, input data, function type, and length
of the output. Flows of the security protocol are de-
fined as flow-id, sender, receiver, and sending data
and functions. Data and functions can be referred to
data-id and function-id. A flow has a special label
for defining action after receiving the flow. For ex-
ample, a label ”for authentication” indicates that the
flow is used when the receiver entity judges whether
the sender entity is valid or not. A label "for key ex-
change” means that the receiver entity calculates a
session key after receiving the flow. A function for
each entity is defined as a special function calculating
a session key in the entity information field.

3.2 Requirements for Security Protocols
Our tool generates security protocol definitions from
requirements for security protocols. The following

parameters are inputted to the tool as security protocol
requirements:

99

ICEIS 2008 - International Conference on Enterprise Information Systems

Table 1: Data Information.

Field Man. Opt.
data-id mandatory
data type | mandatory

Content

Identifier of data

Data type selected from
{Identifier; Random, Text,
Counter, Password,
Symmetric Key,

Public Key, Private Key,
Temporary Public Key,
Temporary Private Key, }
Length of the data

Name of creating the data:
entity names or public
Global name of the data that
is used for other security
definition files

Related algorithm.

This field is mandatory,
where the data is public key,
private key,

temporary public key, or
temporary private key.
Usage of the data

(Initial) value of the data
File name or pass to load
the data as a initial value
File name or pass to save
the data when the protocol
is finished.

For arbitrary description

length mandatory
creator mandatory

label optional

algorithm optional

usage optional
value optional
source optional

store optional

comment optional

o Trustworthiness of entities
This parameter indicates which an entity should
be authenticated. An entity omits the authentica-
tion process in the case where the other entity is
trusted. Thus, this parameter determines whether
the protocol is a single-authentication protocol or
mutual- authentication protocol.

e Number of flows
This parameter indicates the maximum number of
flows in the protocol.

e Known keys of entities
This parameter defines the keys that each entity
has. For example, the condition where two enti-
ties have a common shared key is described.

e Lists of available cryptographic algorithms in
each entity
This parameter shows a list of cryptographic algo-
rithms that an entity can compute.

e Security parameters
These parameters choose the security level re-
quired for the protocol and assumed adversary
models (attack). The security level is defined as
the length of a secret key. The length of pub-
lic/private keys is reduced to the length of a se-

100

cret key using reduction tables in the protocol gen-
eration process. The lengths of other data such
as random numbers are also decided according to
the level. Our tool has three adversary models:
Known Key Attack, Forward Secrecy, Unknown
Key Share Attack. The first model assumes that
the adversary can obtain previous session keys,
and the second model assumes that the adversary
can obtain the secret keys and/or private keys of
entities after the protocol is terminated. The pa-
rameters determine if the tool has to consider each
adversary model. The tool generates a security
protocol that achieves the security level by means
of semantic security of a session key and authen-
ticity under selected adversary models. Details of
adversary models are shown in the papers (Bel-
lare and Rogaway, 1994) (Bellare and Rogaway,
1995) (Blake-Wilson et al., 1997).

e Computational power of each entity (optional)
This parameter is optional. This parameter defines
the computational power of each entity. We define
the computational power to be one of three lev-
els: Low (assumed for mobile terminals or smart
cards), Medium (assumed for laptop PCs), High
(assumed for high-end servers). The tool selects
appropriate cryptographic algorithms and proto-
cols according to the parameters.

e Size restriction for one flow in the protocol (op-
tional)
This parameter is optional. This parameter defines
the size restriction for one flow. The tool decides
data and length of data in flows and divides one
flow into two flows according to the parameter.

The two optional parameters used for execution
environments. For example, if the protocol has to
be used on a smart card, the protocol should be
lightweight and data size in one flow is restricted.

The parameters are inputted as XML format data
to the tool.

3.3 Automatic Generation Procedure

In this subsection, we explain the whole process of se-
curity protocol generation. In our tool, security proto-
cols are generated to combine building blocks called
components. Specifications of components are de-
fied using data sets. We can make several building
blocks to replace the data sets at the components. Fig-
ure 3 and Figure 4 show component overviews for
key-exchange and authentication protocols, and Ta-
ble 2 shows examples of the data sets. The automatic
protocol generation procedure is shown in Figure 2.
A protocol is generated from a file that describes the

ON-THE-FLY AUTOMATIC GENERATION OF SECURITY PROTOCOLS

Requirements
for a Protocol

Combining Components of
Key Exchange Protocols

'

Combining Components of
Authentication Protocols

'

Selection of Data Sets and
Addition of Requisite Data

Remove and Marge
Redundant Flows and Data

Choose Detailed Parameters

Protocol
Definition File

Figure 2: Automatic Protocol Generation Procedure.

requirements for the protocol. The process consists of
the following five steps.

1. Combining Components of Key Exchange Proto-
cols

This step combines components for constructing
key exchange protocols. The components include
four data fields X, Y, Z;, Z; as shown in Figure
3. The data fields X and Y denote transaction data
in each flow and the data fields Z; and Z, indi-
cate data that is generated by an entity and held
by the entity. Data for Z; and Z, does not include
data sent in the protocol. The data set for the data
fields is selected in the next step. Usually, the tool
uses one component for key exchange protocols.

. Combining Components of Authentication Proto-
cols
This step combines components for constructing
authentication protocols. The components include
two data fields V, W as shown in Figure 4. The
data fields V and W denote transaction data in
each flow. For mutual authentication, two com-
ponents are combined. Data for V, W is selected
in the next step. If a protocol is required for mu-
tual authentication, the tool combines two compo-
nents: the component as Figure 4 and its reverse
component that perform the role of entity A and
entity B are switched.

. Selection of Data Sets and Addition of Requisite
Data
This step inputs a data set to data fields of the
protocol generated in the previous step. The data
set is selected from many data sets of the key ex-

change protocol and authentication protocol ac-
cording to requirements for the protocol and se-
lection rules. Examples of data sets are shown in
Table 2. Rand and Rand' indicate random num-
bers, C indicates a time-variant shared value such
as a counter value, LK indicates a long-lived key
such as a shared key between two entities and a
private key or public key for each entity, and *
means no data, respectively. The function F(x) is
a one-way cryptographic function using a private
key or secret key such as MAC and digital signa-
ture, G(x) is a encryption function using a pub-
lic key or secret key, and H(x) is a key exchange
function such as the Diffie-Hellman algorithm.
Note that a function /(x) exists and the func-
tion satisfies the condition I(Rand,H (Rand'))=
I(Rand' ,H(Rand)). An explanation of the selec-
tion procedure is provided in a later section. In
addition, some required data such as public key
certificates and identifiers are appended to the pro-
tocol in this step.

. Remove Redundant Flows and Data

This step removes redundant flows and data to
merge and move data. The step consists of five
sub-steps as follows;

(3-a) Check of similarity of data and merge them:
The tool searches for data that have the same con-
ditions, same sender and responder, same type
data or same type function, and same creator. If
two pieces of data satisfy the condition, the tool
merges one piece of data with the other piece of
data on a former flow.

(3-b) Combine data: The tool searches for two
functions that are of the same type, that use the
same key and are calculated by the same entity,
and generates a new function provided the input
data of the new function is input data of both func-
tions. Then the tool replaces the function on the
former flow with the new function.

(3-c) Move corresponding data: The tool finds
data corresponding to data and functions that were
removed in the previous sub-steps and moves
them to the former flows. If data is sent by a flow
is the same as the removed data, the data is moved
to a flow that has merged data and functions or has
generated a new function. If data is sent by a flow
that is one flow before the flow of removed data,
the data is moved to a flow that is one flow before
the flow of the merged data and functions or com-
bined functions.

(3-d) Remove known data: Known data is data
that an entity has received previously or the en-
tity knows it at the beginning of the protocol. The
tool searches for data that are known data for the

101

ICEIS 2008 - International Conference on Enterprise Information Systems

Entity A Entity B
—
X

| L2

‘

I

I Y

| L=

v

|
|
'

Figure 3: Component for Key Exchange Protocol.

Entity A Entity B

Figure 4: Component for Authentication Protocol.

receiving entity and removes the data from the
flows.

(3-e) Remove flows: The tool searches flows that
have no data and functions and removes them
from the protocol.

5. Choose Detailed Parameters
This step chooses detailed parameters of the pro-
tocol such as data length, key length, and crypto-
graphic algorithm specification, according to the
requirements for the protocol. Then, the tool gen-
erates a function for computing a session key.

3.4 Constructing Selection Rules

The tool selects one data set from data sets according
to selection rules. The selection rules indicate the
relationship between data sets and requirements.
The selection rules are similar to filtering rules for
a firewall, and the rules reduce the number of data
set candidates according to the requirements. The
data set is arranged in priority order. Thus, the tool
selects the highest priority data set when two or more
data sets remain under a requirement for the protocol.
Examples of selection rules for Table 2 are described
as follows.

For Authentication. If authentication with one
flow is required, the selection rule removes the No.1
data set and the No.2 data set for authentication.
If a message authentication algorithm and a digital
signature algorithm are not available for entity B, the
selection rule removes the No.1 data set and the No.3
data sets for authentication.

For Key Exchange. If Forward Secrecy is required,
the selection rule removes the No.1 and No.3 data

102

sets for key exchange and G(X) in the No.2 and No.4
data sets is restricted by public key encryption using
a temporal public key. If the protocol has to be secure
against a Known Key Attack, the selection rule re-
moves the No.1 and No.2 data sets for key exchange.
If the protocol needs security against Unknown Key
Share Attack, the selection rule removes No.1, and
No.2, data sets for key exchange. If entities have no
shared key, the No.1 and No.3 data sets are removed.

Data sets are also selected according to the per-
formance requirements. For example, if one-flow key
exchange and an authentication protocol are required,
the tool excludes the No.1 and No.2 data sets for au-
thentication and the No.3, No.4, and No.5 data sets
for key exchange from the candidates. If entities have
a shared key and have low computational power, the
tool removes the No.5 data set for key exchange from
the candidates.

Our tool is easily extensible to several security
protocols. To add new data sets and selection rules,
the tool generates protocols suitable for new security
requirements that are currently unknown.

3.5 Selection of Key Generation
Functions

A key generation function is related to a selected data
set for key exchange. Table 3 shows the relationship
between selected data sets and key generation func-
tions. The tool generates a key generation function for
each entity by using the relationship. The functions
F(x) and F'(x) are one-way cryptographic functions
using a private key or secret key such as MAC and
digital signature, G(x) is a encryption function using
a public key or secret key, and H(x) is a key exchange
function such as the Diffie-Hellman algorithm. Note
that a function /(x) exists and the function satisfies the
condition I(Rand,H (Rand'))= I(Rand’,H(Rand)).

4 EVALUATION

We evaluated transaction time for security protocol
generation on a PC (Pentium 4 2.6GHz, 2GB RAM).
The evaluation results are shown in Table 4.

We evaluated three cases: generation of a mutual
authentication protocol, generation of a key exchange
protocol, and generation of an authenticated key ex-
change protocol. All transaction time is less than one
second. We obtained 2999 different protocol defini-
tion files from 9828 different inputs of requirements
for security protocols. The protocol definition files
was categorized into 98 patterns of protocols.

ON-THE-FLY AUTOMATIC GENERATION OF SECURITY PROTOCOLS

Table 2: Example of Data Sets.

For Authentication

No. Vv |4 — —
1 Rand F(Rand) - -
2 G(Rand) Rand - -
3 * F(C) - -

For Key Exchange

No. X Y Z1 z2
1 * Rand’, F (LK ,Rand") * Rand’
2 * Rand’, G(LK,Rand"),F (LK",G(LK,Rand’)) * Rand’
3 Rand Rand', F (LK ,Rand,Rand’) Rand | Rand’
4 Rand G(LK,Rand"),F (LK’ ,Rand,G(LK,Rand")) * Rand’
5 | H(Rand),F(LK,H(Rand)) H(Rand),F (LK,H(Rand),H (Rand’)) Rand | Rand'

Table 3: Example of Key Generation Function.

Data Set | Function for Entity A | Function for Entity B
SK = SK =
No.1 F'(LK, Rand)) F'(LK,Rand’)
No.2 Rand’ Rand’
No.3 F'(LK,Rand,Rand’) | F'(LK,Rand,Rand)
No.4 Rand’ Rand’
No.5 I(Rand ,H(Rand')) I(Rand' ,H(Rand))

Table 4: Evaluation Results.

Protocol Transaction Time
Mutual Authentication 398 msec
Key Exchange 617 msec
Mutual Auth. and Key Exch. 875 msec

Transaction time required by the APG to generate
mutual authentication and a key exchange protocol is
2 hours using a 400MHz CPU and the ASPB takes
20 sec to generate the protocol using a 1.8GHz CPU
(Zhou and Foley, 2003). Thus, we think that our tool
is fast enough to generate security protocols.

5 CONCLUSIONS

In this paper, we presented an automatic generation
tool for authentication and key exchange protocols.
Our tool generates a security protocol definition file
from input data of requirements for the protocol. The
tool constructs a new protocol to that combines a
pieces of security protocols as building blocks. We
also implemented the tool and evaluated the transac-
tion time of a security protocol generation by the tool.
The transaction time of the tool is less than one sec-
ond. It is able to realize more rapid generation of se-
curity protocols in comparison to existing generation
tools. Variations in generated security protocol de-
pend on the number of data sets in our tool, and the
number of potential candidate protocols may be re-
duced; thus, optimization of data sets for real services

is a further topic of study for these tools.

ACKNOWLEDGEMENTS

A part of this work was supported by the National In-
stitute of Information and Communication Technol-
ogy (NICT).

REFERENCES

Abadi, M. and Gordon, D. (1999). A calculus for cryp-
tographic protocols the spi calculus. Inf. Comput.,
148(1):1-70.

Bellare, M. and Rogaway, P. (1994). Entity authentication
and key distribution. In Proc. of CRYPTO 93, LNCS,
volume 773, pages 232-249. Springer Verg.

Bellare, M. and Rogaway, P. (1995). Provably secure ses-
sion key distribution: thethree party case. In Proc. of
27th Annual Symposium on the Theory of Computing,
pages pp. 57-66. ACM.

Blake-Wilson, S., Johnson, D., and Menesez, A. (1997).
Key agreement protocols and their security analy-
sis. In Proc. of 6th IMA International Conference
on Cryptography and Coding, LNCS, volume 1355,
pages pp. 30—45. Springer Verg.

Didelot, X. (2003). A compiler for se-
curity protocols. Available at http:/
web.comlab.ox.ac.uk/oucl/work/gavin.lowe/Security/
Casper/COSPJ/s%ecu.pdf.

Foley, S. N. and Zhou, H. (2003). Towards a framework
for automatic security protocols. In Proc. of Security
Protocol Workshop 2003, LNCS, volume 3364, pages
49-54. Springer Verg.

Lowe, G. (1997). Casper: A compiler for the analysis of
security protocols. In Proc. of 10th IEEE Computer
Security Foundations Workshop, pages 18-30. IEEE.

Lukell, S. and Veldman, C. (2003). Automated attack anal-
ysis and code generation in a multi-dimensional se-
curity protocol engineering framework. In Proc. of

103

ICEIS 2008 - International Conference on Enterprise Information Systems

Southern African Telecommunications Networks and
Applications Conference 2003 (SATNAC 2003).

Perrig, A. and Song, D. (2000a). A first step towards the
automatic generation of security protocols. In Proc. of

Network and Distributed System Security Symposium
NDSS 2000, pages 73-83.

Perrig, A. and Song, D. (2000b). Looking for diamonds in
the desert — extending automatic protocol generation
to tree-party authentication and key agreement proto-
cols. In Proc. of 13th IEEE Computer Security Foun-
dations Workshop, pages 64-76. IEEE.

Pozza, D., Sisto, R., and Durante, L. (2004). Spi2java: Au-
tomatic cryptographic protocol java code generation
from spi calculus. In Proc. of 18th International Con-

ference on Advanced Information Networking and Ap-
plication (AINA’04), pages 400-405. IEEE.

Song, D., Perrig, A., and Phan, D. (2001). Agvi —automatic
generation, verification, and implementation of se-
curity protocols. In Proc. of 13th Conference on
Computer Aided Verification (CAV), pages 241-255.
Springer Verg.

Zhou, H. and Foley, S. N. (2003). Fast automatic synthesis
of security protocols using backward search. In Proc.
of the 2003 ACM Workshop on Formal Methods for
Security Engineering, pages 1-10. ACM.

APPENDIX

This appendix shows an example of a security
protocol generated based on requirements. The
requirements for the security protocol are as shown
in Table 5. The horizontal rows Purpose, Secu-
rity, Comp. Power, Algorithm, and Initial Key
respectively indicate the purpose of the protocol,
required security level and assumed adversary mod-
els, computational power of each entity, available
cryptographic algorithm for each entity, and keys
that the entities have before the protocol starts. The
protocol generated by the tool is described as follows.

STEP1 (A — B) : R17PubA,ML[(€y(R1,PubA)
STEP2 (B —>A) :[BsRZsEnCPubA (R3),
Mikey(I,R1, Encpup, (R3))

STEP3 (A — B) 3 IA,MLKey(IA7R3)

The protocol is a mutual-authenticated key ex-
change protocol between an entity A and entity B.
The function Mx (Y) is a message authentication func-
tion of Y input with a key X using the Hmac-SHA256
algorithm. The function Encx(Y) is an encryption
of Y with a key X using the RSA-OAEP algorithm.
Puby, Priy are the temporal public key and corre-
sponding private key of RSA public key encryption
that is generated by entity A at the beginning of the
protocol. I4 and Ip are identifiers of the entity A and

104

Table 5: Requirements for a Security Protocol.

Requirements
Purpose Mutual Authentication
Key Exchange
Security 128-bit level security

Forward Secrecy

Secure against Known Key Attack
Unknown Key Share Attack
Entity A: High

Entity B: Medium

Comp. Power

=

Algorithm Entity A: SHA256, Hmac-SHA256,
RSA-OAEP
Entity B: SHA256, Hmac-SHA256,
RSA-OAEP
Initial Key A Shared Key
E1 EZ
lgi=id kgi=fa
ko <1 kenons 11
E R, PHl, 13 hi
L 1,12, 12, R i
! 1, 16 l

Figure 5: Picture of Generated Protocol.

entity B. Ry, Ry, and R3 are random numbers, and
LKey is a shared key between two entities. A session
key for both entities is Hs(R;,R3,LKey) in this pro-
tocol, where Hs(X) is a hash value of X using SHA-
256 algorithm. The lengths of RSA keys are 2048
bits and a length of output of Hmac-SHAI is 256 bits.
The lengths of random numbers R, Ry, and R3 are
128 bits. Figure 5 shows a picture of the protocol in
the tool GUI.

