M

AXIMIZING THE BUSINESS VALUE OF SOFTWARE PROJECTS
A Branch & Bound Approach

Antonio Juarez Alencar, Eber Assis Schminijo Pires de Abreu, Marcelo Carvalho Fernandes

Graduate Program in Informatics, Institute of Mathematics and Electronic Computer Center
Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

Armando Leite Ferreira
The COPPEAD School of Business, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

Keywords: Branch & Bound, Minimum Marketable Feature, Incremental Funding Method, Project Management and

Business Performance.

Abstract: This work presents a branch & bound method that allows software managers to determine the optimum order

1

In

for the development of a network of dependent software parts that have value to customers. In many different
circumstances the method allows for the development of complex and otherwise expensive software from a
relatively small investment, favoring the use of software development as a means of obtaining competitive
advantage.

INTRODUCTION interdependent software units that create value to
business in one or several of the following areas:

today’s highly-competitive globalized market, e Competitive Differentiation the software unit al-

software development projects are unlikely to be lows the creation of service or product features

fun

ded unless they yield clearly-defined low-risk that are valued by customers and that are different

value to business (McManus, 2003). Moreover, from anything else being offered in the market;
in such competitive markets stakeholders frequently e Revenue Generationalthough the software unit

call for shorter investment payback time, product- does not provide any unique valuable features to
development faster time-to-market, and a business ar- customers, it does provide extra revenue by offer-
chitecture with improved operational agility (Lam, ing the same quality as other products in the mar-
2004; Helo et al., 2004; Whittle and Myrick, 2005). ket for a better price;

Al of this requires new approaches to software o cost Savings the software unit allows business

pro

ject development (Jorgenson et al., 2003; High- {5 save money by making one or more business

smith, 2002). processes cheaper to run;

software developers have strongly emphasized the
need for methods, concepts and tools that favor the

ear

tems that are valued by customers (Abacus et al.,
2005; Nord and Tomayko, 2006). In this sense, the
Incremental Funding Methqdor IFM, is a finan-

cial

To deal with this situation both academics and Brand Projection- by building the software unit

the business projects itself as being technologi-
cally advanced; and

e Enhanced Customer Loyaltythe software unit
influences customers to buy more, more fre-
quently or both.

ly delivery of functional parts of software sys-

ly responsible approach to requirement prioriti- Moreover, the total value brought to an organiza-

zation that increases the value creation of software tion by a software consisting of several interdepen-

pro

jects (Denne and Cleland-Huang, 2004a; Denne dent units, each one with its own cash flow and prece-

and Cleland-Huang, 2004b). dence restrictions, is highly dependent on the imple-

162

The IFM groups requirements into self-contained mentation order of these units.

Juarez Alencar A., Assis Schmitz E., Pires de Abreu E., Carvalho Fernandes M. and Leite Ferreira A. (2008).
MAXIMIZING THE BUSINESS VALUE OF SOFTWARE PROJECTS - A Branch & Bound Approach.

In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 162-169
DOI: 10.5220/0001685801620169

Copyright © SciTePress

MAXIMIZING THE BUSINESS VALUE OF SOFTWARE PROJECTS - A Branch & Bound Approach

Therefore, the method includes a set of ements, calledArchitectural Elementor AEs for
polynomial-time sequencing strategies that helps short, enables the architecture to be delivered accord-
finding a suitable development schedule that im- ing to demand, further reducing the initial investment
proves the overall value of projects, reduce initial needed to run a software project. See (Rashid et al.,
investments, or enhance other project metrics such as2003) for directions on how software module and
time needed for a project to break even and paybackarchitectural elements may be derived from require-
time (Denne and Cleland-Huang, 2004b; Denne and ments.

Cleland-Huang, 2005).

However, the strategies proposed by the IFM does 2.1 Cash Flow
not lead, in all circumstances, to the best possible
schedule, which can only be achieved, in the general After the MMFs and AEs have been identified, devel-
case, in an exponential time. Furthermore, in order opers and business personnel collaborate to analyze
to allow the sequencing algorithm to run in a polyno- for each MMFs and AEs their estimated cost and ex-
mial time, the IFM requires that the development of pected revenues over a window of opportunity. See
a software unit may depend upon the development of (Hubbard, 2007) for a discussion on how these esti-
no more than a single software unit. mates may be obtained in real-world projects. These

This work presents a branch & bound method that costs and revenues form a cash flow that can be used
finds the schedule that maximizes the business valueto estimate the total value of the software.
of a software project and that imposes no restrictions For example, Figure 1 presents a set of interdepen-
on the dependencies that may exist among softwaredents MMFs and AE’s. In that figur@IL is the first
units, making the method more attractive to be used tool to be developed andLM the last. Moreover, an
in the real world. Although, the branch & bound is an arrow connecting two activities such BdS— Pcin-
exponential method, there are many circumstances indicates that the latter development efforts may only
which it can find the best possible solution to an opti- start when the former has been completed and all the
mization problem in a polynomial time. See (Liberti, necessary resources are available. Table 1 shows the
2003; Hillier and Lieberman, 2001) for an introduc- activity supported by each unit and whether they are

tion to the branch & bound method. an MMF or an AE.

The remaining of this paper is organized as fol-
lows. Section 2 presents a review of the principal con- PsS — LP
cepts and methods used in the article. Section 3 intro- Start AN \ End
duced the branch & bound method with the help of an @761t —=Pds — Pc \ o a ©
example. The method is formalized in Section 4. Sec- én i /

tion 5 discusses the implications of the method for dif-
ferent dimensions project management. Finally, Sec- _))
tion 6 presents the conclusions of this paper. Figure 1. A precedence graph of project units.

Table 1: List of software units to be developed.

2 CONCEPTUAL FRAMEWORK Tool Typeof
Name | Supported Activity Softwar e Unit
The self-contained units in which the IFM partitions a S(;LS Sraph'ca' Interface Library AE
. L roduct Selection MMF
software project are callddinimum Marketable Fea- PsS Prospect Selection MMVE
tures or MMF for short, indicating that they contain ¢ Pricing VIME
strongly-related software features that can be quickly [¢cp Catalog Design MME
delivered and that are valued by customers (Steindl,[LP Label Printing MMF
2005; Denne and Cleland-Huang, 2004b). SC Stock Control MMF
Although an MMF is a self-contained unit, it is | CP Catalog Printing MMF
often the case that an MMF can only be developed [CLM | Catalog Labeling & Mailing MMF
after other project parts have been completed. These
project parts may be either other MMFs or the archi- Table 2 shows the expected cash flow for the set

tectural infrastructure, i.e. the set of basic features of project units presented in Figure 1. In that table
that offers no direct value to customers, but that are periodsare time interval of equal length, where an

required by the MMFs. investment is made or a revenue is earned.
The architecture itself can usually be decomposed In formal terms a window of opportunitl is a
into self-contained deliverable elements. These el- set{p1, p2, ---, px} of time periods of equal length.

163

ICEIS 2008 - International Conference on Enterprise Information Systems

In Table 2,P ={1,2,---,12}. Also, the cash-flow of .)

a project unity; is given bycf(v) and the cash flow pv(vt) = cfivj-t+1)

element ofv; in periodp € P is given bycf(v;, p). In ’ ,Zx (1+ 100)"

Table 2,cf(CD) at period 1, i.ecf(CD, 1),is-70and \yherer is the discount rate and is the last period

cf(CD) in period 2, i.ecf(CD,2), is 20. of the window of opportunityP. For example, if the
development of MMFCD starts in period 1, then its

2.2 The Precedence Relationship NPV is

)

The development constraints between MMFs and NpUCD, 1) = -70 20
AEs can be represented by a directed acyclic graph ’ (1+ %)t (1+ 150)12
showing their precedence relationship. Figure 1 in- _$123
troduces one of these graphs. In that grégtiastand -
Finish are dummy units that take no time to be exe- Table 3 shows the discounted cash-flows of each
cuted and yield no cash flows, signaling respectively MMF in Figure 1, considering a 2% discount rate, at
the beginning and end of a project. different starting points within a window of opportu-
In formal terms a precedence graph of project nity P. Note that the table considers only the first nine

units is a mathematical structudV, E) where: periods of the window of opportunity, as these are the
) periods in which the software units are going to be
o V ={vi,V,---,Vn} is a set of MMFs and AEs, developed.

and
e Eisasetofordered pairs, such thafif, v,) € E, Table 3: The NPVs of the project units in thousands of US
thenv, depends on the completion of. dollars with a discount rate of 2%.
In the graph presented in Figure\ls = {Start, GIL, P[Jorjlﬁd T 1 2] P3e“0|ds T 9
PdS ---, CLM, End} e Eg = {(Start, GIL), (GIL, I a9 [48 T 47 | 46 | | 22
thorough introduction to graph theory can be found in PsS 239 | 211 | 184 | 157 | .- | 31
(Gross and Yellen, 2005). Pc 115 | 101 | 87 74 | .- | 11
CD 123 105 88 71 -+ | -10
; LP 28 24 20 15 -5
2.3 Discounted Cash Flow = Tss 155 1o 86— 71
CP 95 81 68 55 -6
Because it is improper to perform mathematical op- [CLM | 1870 | 1679 | 1491 | 1307 | --- | 441

erations on monetary values without taking into ac-
countan interest rate, in order to compare the value of The reader should not be surprised that the dis-

different MMFs one has to resort to their discounted counted cash-flow o&E; in period 1 is -$49 thousand
cashflow (Fabozzi et al., 2006). In formal terms, the 3nd not -$50 as one could have naively expected. One
net present value of a software uniwhose develop- shoyld keep in mind that although development ser-
ment starts at periotlc P is given by the sum 0 its yjces are earned at the beginning of a period, they
discounted cash flows, i.e. are paid for upon delivered at the end of that pe-
riod, when, according to the discount rate, money is

_ o worth slightly less than at the beginning of the period
Table 2: The cash flow of the project units in thousands of (Fabozzi et al., 2006).

US dollars.

Project Periods 2.4 Net Present Value

Unit T [23] [12

G('jL S0 | O O 1---10 Obviously, the value of a project depends upon the or-
F;Sg :gg gg gg gg der in which the software units are developed. For ex-

ample, if the development order of the software units

Pc -30 | 15 15 | --- 15 . . .
<D =0 130 T 20 1 20 in Figure 1 isGIL — PdS— Pc — CD — PsS—
P 50 T § 5 ... 5 SC— CP — LP — CLM, than they yield a revenue
SC | -200| 40 | 40 | --- | 40 of
CP 50 | 15 | 15 | - | 15 vpl(GIL,1) +vpl(PdS2) +--- +vpl(CLM,9) =

CLM | -50 | 200 200 | --- | 200 _$49— $134+ .- + $441— $853

164

MAXIMIZING THE BUSINESS VALUE OF SOFTWARE PROJECTS - A Branch & Bound Approach

However, if the development order@IL — PdS— leads to an algorithms consisting of two steps that
Pc— CD — PsS— LP — SC— CP — CLM, than uses a search tree to find the optimum solution. While
they yield a revenue of $818. the branchstep is responsible for growing the tree,

Because not all sequences of software units neces-the boundstep is responsible for limiting its growth
sarily comply with the established precedence restric- (Hillier and Lieberman, 2001).
tions (see Figure 1), it is important to formally define
what a valid sequence of units is. In this sense a valid
shequence/Sis an ordered set of software units such 3 A REAL-WORLD INSPIRED
that:
o All software units belong to the sequence and are EXAMPLE

listed exactly once, . . .
¢ Only one software unit can be in the implementa- Consider a chain of furniture stores that uses cata-

tion process at any given time period, log marketing to increase its sales. On a regular ba-
e The process of developing a software unit can sis this company edit a catalog with a variety of se-

only start after its precedent units are completed, lected products that are sent to a large group of po-
e The first software unit must start in the first period tential buyers, who are selected from the company’s

and database. The proper undertaking of this task requires

* Apartfromthe last, there is no time delay between nat eight activities are efficiently executed within a
the end of the implementation of a software unit tjgnt time-frame, i.e.

and the start of the next one. 1. Product Selection that chooses the products that

It may be the case that some software units take will be advertised in the catalog;
more than one period to be developed. Therefore, 2. Prospect Selection that identifies the prospects
there is a functio®(s) that returns the number of pe- to whom the catalogs are going to be mailed,;
riods required to develop each software wni V. In 3. Pricing - that establishes the promotional price of
financial terms the sum of the discounted cash-flowof every product to be advertised in the catalog;
a valid sequence of MMFs and AEs is Mgt Present 4, Catalog Design- where the graphic and textual
Valug or NPV for short. In formal language aspect of the catalog, and accompanying advertis-
ing material are conceived and put together;
El i—1 5. Label Printing - where labels with prospects’
npv(S) = npvvy,1) + Zznpv(vi, 1+ Z D(vj)) names and addresses are printed and organized;
i= =1 6. Stock Control that makes sure that the products
whereS = vy, Vs, --- ,vm is a valid sequence of soft- advertised in the catalog will be available for ship-

ware units belonging t¥, || is the number of soft- ping when they are ordered; _
ware units in the sequence airid the period inwhich /- Catalog Printing- where the actual print of the

vi is developed. catalog is done;
8. Catalog Labeling & Mailing- which labels the
25 TheBranch & Bound Method catalogs with prospects’ names and addresses and
sends them to their intended destinations over the
mail.

The branch & bound method provides one of the most
successful and widely used strategy for solving large With the view of increasing the efficiency of its
complex non-linear optimization problems (Liberti, catalog marketing campaigns, the company has de-
2003). When the problem to be tackled is too difficult cided to develop a system of software tools that,
to be solved directly, the branch & bound approach working together, provide adequate support for the
divides the problem into smaller and smaller subprob- activities leading to the roll-out of its marketing cam-
lems until these subproblems can be directly solved. paigns. Because each of these activities is supported
Hence, the basic concept underlying the branch & by a different software tool, altogether, eight tools
bound strategy is to divide and conquer. have to be built in such a way that information made
The dividing (or branching) is done by repeatedly available by one tool may be used by others.
partitioning the entire set of feasible solutions into Figure 1 presents the network of activities con-
smaller subsets. The conquering is accomplished bycerning the development of the software tools. Ta-
placing a bound on how good the best solution in a ble 1 relates each activity to the roles they play in
subset can be. A subset is discarded if its bound in- the project. It should be noted th&iL is a library
dicates that it cannot possibly contain an optimal so- of software components that allows the graphic inter-
lution for the problem being tackled. This strategy face of the whole software to have a common visual

165

ICEIS 2008 - International Conference on Enterprise Information Systems

identity. Also, to keep the number of arrows in the of opportunity, considering the precedence restric-
network small, many of the dependencies that hold tions introduced in Figure 1. Therefore, the upper
among software tools are indirectly represented by a bound of node zero, i.aib(0), is given by

path going from one tool to the other. For example, ub(0) = NpUGIL, 9) + npu(PdS 2) + npuPsS4)+

the development of all software tools depends upon

the development of the graphical interface library. As npy(Pc,3) +npv(CD, 4) + npy(LP, 5)+

a result, there is a path going fra@iL to all the other npvY(SC5) +npv(CP, 6) +- npv(CLM, 9)

tools. = —42+ 134+ 157+ 87+ 71+ 11+ 53+
In the course of time, tough competition in the 30+441

furniture business has brought down the company’s — $943

annual profit. As a result, due to lack of financial

resources, only one tool may be under development
at any time. Moreover, high management has deter-
mined that every proposal for the development of new
software must be accompanied by a report showing its
total cost and expected financial benefits to business. period

Aware of these restrictions the project manager The lower bound of ndddzewdis tHeSum of the
has decided that the system of software tools must|owest NPV of each software unit throughout the win-
be developed in such a way that the project’s overall dow of opportunity from the earliest period in which
value to business is maximized. Because this value each unit may be developed, considering the prece-
is highly dependent on the order in which the soft- dence restrictions introduced in Figure 1. Therefore,
ware units are developed, the order that maximizes Ib(0) = vpI(GIL, 1) + vpl(PdS 9) + vpl(PsS9)+
the project’s net present value must be found. ’ ’

It should be noted that in formula the highest NPV
of unit Pc throughout the window of opportunity is
$87, and not $115 as one could expect. This happens
because the precedence restrictions introduced in Fig-
ure 1 do not allowPc to be developed until the third

vpl(Pc,9) + vpl(CD,9) + vpl(LP,9)+

3.1 Generating the Search Tree vpI(SG9) +vpl(CP, 9) +vpl(CLM,9)
= -49+15+314+11-10-5-71-

Obviously, the development order that maximizes the 6+441

value to business is the one holding the highest NPV = $357

among aII_possibIe valid sequences of software units. gpserve that, in the worst case, to calculate both
In these circumstances, the branch & bound method o upper and lower of a node one has to visit all el-

presents itself as the best option available and, as agments of Table 3. Therefore, these value can always
result, a search tree must be built. be obtained in a polynomial time.

Step 1: Initialization Step 2: Doing the initial branch

The construction of the tree starts with the selection of The search for the sequence of software units that
the Startnode as the tree root. This node is identified maximizes the project's NPV goes on with the inser-
by the number zero. Figure 2 shows the contents of tion, in the search tree, of the nodes that corresponds

node zero. to the units that may be developed in the next period.
In this case, the choice is obvious, given that node

Inserti d Software tool X N .
reemensX ero — zero is the only node in the tree a@L is the only
2 tool that may be developed immediately after. Figure
Upper bound JJB: 943 | Values in thousands . .
Lower bound JLB: 3571 ["of USA dollars 3 shows thg search tree after the |nsert|0n of nc_)de 1,
— corresponding to th&IL unit. The calculation of its
Figure 2: The contents of node zero. upper and lower bounds are done as described in Step
1

Note that the upper bound of node zero is the sum St€P 6: Selecting a node to branch
of two values. The first, is the sum of the NPV of each | N€ search goes on according to the steps already de-
software unit (MMF or AE) belonging to the currently scribed until the tree reaches the state presented in
known part of the development sequence of software Figure 4 and a decision must be madehich node

units. The second is the sum of the maximum NPV of Should be branched? I .
each unit belonging to the unknown part. At this point, several possibilities are available.

Because node zero is the only one in the tree, its FOr example, one may choose the node with the high-
upper bound is the sum of the highest NPV of each est upper bound, the one with highest lower bound,
software unit throughout the whole project’s window or even the one with the highest average between its

166

MAXIMIZING THE BUSINESS VALUE OF SOFTWARE PROJECTS - A Branch & Bound Approach

0 [Start
0 [Start W
UB: 943 LB: 357
LB: 357

(1]GIL]

UB: 935
LB: 357

Figure 3: The contents of node one.

lower and upper bound. In the absence of hard evi-
dence on which criteria is the best, a heuristic has to
be established. In this case, throughout the building of
the whole search tree, the algorithm always opt for the
node with the highest upper bound. Therefore, node
4 is selected for branching.

0 |Start
UB: 943

Figure 5: The search tree generated by the branch & bound
method.

LB: 678
node 5 (which is the highest value that a sequence

Figure 4: Search tree when node 4 is selected for branching. Of Units that starts witiGIL — PdS— Pc— CD may
have) is lower than the lower bound of node 15 (which

Step 13: Identifying the optimal solution is the lowest value that a sequence that starts with
The search proceeds until the tree achieves the staté3L — Pds— Pc— PsS— SC— CD — CPmay re-
described in Figure 5. turn). As a result, node 5 ceases to be considered for

At this point, there is no node that has an upper branching.
bound that is higher than the lower bound of node
18, which cannot be branched. Therefore, the search
stops, and the path to node 18 corresponds to the4 THE BRANCH & BOUND
sequence that maximizes the NPV of the software
project, i.e. Start— GIL — PdS— Pc — PsS— ALGORITHM

SC— CD — CP— LP — CLM — End which yields
an NPV of $878. d Y In formal terms , the branch & bound algorithm that

It is important to observe that many nodes are maximizes the NPV of a software project is described

not branched during the search process. For exam-2S follows. Given

ple, node 5 is never branched. This happens for two e A precedence graph of software un@éVs,Eg),
reasons. First, while being considered for branching, composed of a set of software unitg, and the
its upper bound is never the highest. Second, when precedence restrictions describedEis

node 15 is inserted into the tree, the upper bound of e A window of opportunityP and

167

ICEIS 2008 - International Conference on Enterprise Information Systems

o Adiscount rate.

The sequenc§ of software unitsy; € Vg that yield
the highest NPV is found by the following algorithm:

Qr « {Start}; Oy «— 0; Q — {Start};
Repeat
N — g € Q, such thaub(q) =
Maximunt {ub(q)[¢ € Q}),
Q1 «— Q7 Ueligible(N),
o1 — 01 U{(N,e)|eceligible(N)},
MaxLB — Maximun{{lb(v)|ve Qt}),
Q—{ve Qr|ve (Q—{N})Ueligible(N) A
ub(v) > MaxLB},
until Q =0
S« pathto(N).

where:
e Sis the best solution among the node€in
o Q7 is the set of nodes in the search tree;

e O7 is the set of edges connecting search tree

nodes;
e MaxLBis the highest lower bound so far; and
e Qis the list of candidate nodes.

4.1 The Upper Bound Heuristic

The upper-bound functioob(ne Q1) — R returns

e pathto(N € Q1) — Sedvs that returns the se-
quence of software units that leads to the nbide
of the search tree.

e when(y € Vg,n € Qt) — P that returns the earli-
est period in which a software unit may be de-
veloped, considering the sequence that goes from
the tree root tan.

5 DISCUSSION

At the outset of this article the authors undertook to
successfully present a branch & bound approach that
allows managers to determine the optimum order for
the development of a network of software units. Bel-
low we answer some key questions about the implica-
tions of the method to software development and the
deployment of business strategy.

5.1 Why should aBranch & Bound
Method be used to Maximizethe
NPV of a Software Project?

The number of possible development sequences of
a network of software units tends to grow exponen-

the maximum NPV that a development sequence of tially according to the number of MMFs and AEs into
software units may yield considering the known part WhI.Ch aso.ftwar_e prole_ct is d|V|ded,_ making |t_d|ff|cult
of the sequence, i.e. the sequence that goes from thdo find their optimum implementation order in a fea-

tree root to node.
ub(n) — S npus,i) such thats € pathto(n)-+
Y npvMaxvj,wher(n,vj)) such that
vj € (Ve — {w|w € pathto(n)})

4.2 ThelLower Bound Heuristic

The lower bound functiotb(n € Q) — R returns
the minimum NPV that a development sequence of
software units may yield considering the known part

sible time. Consequently, the search for the optimum
order benefits from the use of heuristic methods such
as the branch & bound that, in most cases, does not
need to enumerate all possible sequences of software
units to indicate the optimum (Liberti, 2003).

5.2 What doesthis Method offer that
the I[FM does not?

of the sequence, i.e. the sequence that goes from therpere are two major advantages in using the branch

tree root to node.
Ib(N) < S npV(s,i) such that € pathto(n)+
> npvMin(vj,wher(n,v;)) such that
vj € (Ve — {w|w € pathto(n)})

4.3 Auxiliaries Functions

The branch & bound method also make use of the fol-
lowing functions:
e eligible(N € Q) — PVg that returns the set of
possible immediate successors of a node the
search tree.

168

& bound method instead of the IFM. The first is that
it ensures that an optimal solution to a problem is al-
ways found, while the IFM may provide inferior re-
sults with no warning. In projects that cost millions of
US dollars, even a small difference from the optimal
solution may lead to a loss of a substantial amount
of money. Losses of this magnitude may hamper
business competitiveness, allowing the growth of rival
companies. The second advantage is that this method
can be applied to projects that present multiple depen-
dencies among its software units, which is frequently
the case in real-world software projects.

MAXIMIZING THE BUSINESS VALUE OF SOFTWARE PROJECTS - A Branch & Bound Approach

5.3 DoestheBranch & Bound Method Denne, M. and Cleland-Huang, J. (2004b)Software

) by Numbers - Low-Risk, High-Return Development
allow for Parallel Development. Prentice Hall.

d Denne, M. and Cleland-Huang, J. (2005). Financially in-

No, it does not. Actually, building a branch & boun formed requirements prioritization. In Roman, G.-C.,

algorithms that dea_ls w_|th the parallel development Griswold. W., and Nuseibeh, B., editors, ®nter-
of MMFs and AEs is still an open problem. How- national conference on Software Engineetipgges
ever, the vast majority of software projects in the real 710-711, St. Louis, MO, USA. ACM.

world are run by small companies that do not have the Fabozzi, F. J., Davis, H. A., and Choudhry, M. (2008)-
personnel nor the necessary resources to use parallel troduction to Structured Financelohn Wiley.

development (Harris et al., 2007). Gross, J. L. and Yellen, J. (2005Graph Theory and Its
Applications Chapman & Hall and CRC ™ edition.

54 What isthe Expected Effect of the Harris, M., Aebischer, K., and Klaus, T. (2007). The

Branch & Bound Method on whitewater process: Software product development in
o) small IT businesses.Communications of the ACM
Software Development” 20(5):89-03

Because of the tough competition that are currently He'o’ap-i-n"'iiﬁg'ﬁo(gag}{/i‘"’t‘”%fw'?ggﬂ'gfggeﬁ (rznoeorﬁ?-a'\gag'
being experienced In many dlﬁerem markets, nowa- tegm gynanr"l)ics analygidntgrnational Jourﬁal of Man-y
days many companies are offshoring the development 55ement and Enterprise Developmet(#):333-344.
of software, creating a healthy competitive environ-
ment in which software companies compete against
each other for contracts. Obviously, proposals that . ; .
maximize the financial value of a software project 1'%, 1 Cebernar, €. 3 Go0tuodhclon o
provide a better competitive position in regard to 7th edition.
those that have adopted a more traditional view of the
software development.

Moreover, it is important to keep in mind that the

Highsmith, J. (2002)Agile Software Development Ecosys-
tems Addison-Wesley.

Hubbard, D. W. (2007)How to Measure Anything: Finding
the Value of “Intangibles” in Businesslohn Wiley.

; ; Jorgenson, D. W., Ho, M. S., and Stiroh, K. J. (2003).
smaller investment in the development of a software Growth of us industries and investments in informa

project provided by the branch & bound method fa- tion technology and higher educatioiconomic Sys-
vors the development of other projects that could not tems Resear¢hi5(3):279-325.
be execute_d otherwise. All of th|§,_favor the existence Lam, H. (2004). New design-to-test software strategies ac-
of companies that_ are more efficient and better pre- celerate time-to-market. In 99international Elec-
pared to compete in the world market. tronics Manufacturing Technology Symposjuyrages
140-143, San Jose, CA, USA. IEEE.
Liberti, L. (2003).Optimization and Optimal Contrpthap-
6 CONCLUSIONS ter Comparison of Convex Relaxations for Monomials
of Odd Degree, pages 165-174. Computers and Op-

This article presented a branch & bound method that erations Research. World Scientific.

identifies the development plan that maximizes the McManus, J. C. (2003)Risk Management in Software De-
business value of a software project. The method al- velopment ProjectsElsevier. _

ways finds the best solution and does not imposes un-Nord, R. and Tomayko, J. (2006). Software architecture-
reasonable limitations to the precedence relations that ﬁggg'éé?g&‘;‘j_sssnd agile developmentoftware,
may exist among the software units, facilitating the ' ' '

development of complex software projects from a rel- Rashid. A., Moreira, A., and Aradjo, J. (2003). Modu-
atively small investment, larisation and composition of aspectual requirements.

In Proceedings of the"d International Conference
on Aspect-oriented Software Developmerages 11
— 20, Boston, Massachusetts, USA. ACM.

REFERENCES Steindl, C. (2005). From agile software development to
agile businesses. In Matos, J. S. and Crnkovic, I.,
Abacus, A., Barker, M., and Freedman, P. (2005). Us- editors, 3% EUROMICRO Conference on Software
ing test-driven software development tooBoftware, Engineering and Advanced Applicatiornmages 258—
IEEE, 22(2):88-91. 265, Porto, Portugal. Porto University.
Denne, M. and Cleland-Huang, J. (2004a). The incremental Whittle, R. and Myrick, C. B. (2005)Enterprise Business
funding method: data-driven software development. Architecture Auerbach.

IEEE Software21(3):39-47.

169

