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Abstract: Recently, semiotics has begun to be related to computing. Since semiotics is about the interpretation of 
signs, of which language is a chief part, such an interest may seem quite reasonable.  The semiotic approach 
is supposed to bring semantics to the computer.  
In this paper I discuss the realistic in this from the point of view of computers as linguistic systems, that is, 
as interpreters of descriptions (programs). I maintain the holistic view of language in which the parts are a 
whole and cannot be detached. This has the implication that computers cannot be semiotic systems since the 
necessary interpretation part cannot be made part of the program.  From outside, a computer program can 
very well be considered semiotically since the equivalence between computers and formal system implies 
that there is a well defined model (interpretation) that has to be communicated.  

1 INTRODUCTION 

Semiotics is a branch that recently has been of 
interest for computer scientists in development of 
information system. Shortly, semiotics can be 
characterized as the “study of signs and their 
meanings”. With sign is not only meant written signs 
but also signs in artistic disciplines like music and 
theatre. On the whole, semiotics is about the act of 
interpretation. As is clear, language is a chief part of 
it.  

The interest in semiotics in computer science 
stems from the idea of seeing computers as sign 
systems. Andersen (Web, p.5) writes:  

“A computer system can be seen as a complex 
network of signs, and every level contains 
aspects that can be treated semiotically.” 

Andersen further believes that semiotics is a 
global perspective on computer systems. He points 
to the different views in which computers can be 
treated; on the one hand one can focus on the 
mechanical aspect, in which case “semiotics has 
little to offer”, on the other hand on the 
interpretational aspect, which latter is the semiotic 
approach. Andersen seems here to consider a 
computer system as a black box whose properties it 
is the aim to reveal and it is in this process semiotics 
comes in. 

Another view of computational semiotics is the 
idea that a computer in itself can be a semiotic 
system involving its own understanding. This view 
is put forth not at least by Gudwin [Web]: 

“Computational Semiotics refers to the attempt 
of emulating the semiosis cycle within a digital 
computer. Among other things, this is done 
aiming for the construction of autonomous 
intelligent systems able to perform intelligent 
behavior, what includes perception, world 
modeling, value judgment and behavior 
generation. […] Within Computational 
Semiotics, we try to depict the basic elements 
composing an intelligent system, in terms of its 
semiotic understanding.” 

As Andersen points out, thinking of computers as 
physical machines does not relate computers to an 
interpretative view but seeing a computer as an 
interpreter of a program, (sentences) makes it a 
linguistic system, qualitatively connected to our own 
linguistic cerebral system, the foundational aspects 
of which is logic.  

A linguistic system has both a description 
(sentences) and an interpretation of the description. 
Were it possible for a computer to be a semiotic 
system, as Gudwin assumes, it would, by itself, be 
able to describe its own interpretation. However, this 
is not possible due to a complementarity in 
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language. The domain of the validity of a description 
is of a higher type than the description itself.  In that 
sense a computer will never be a semiotic system but 
semiotics could be of value for studying computers 
as linguistic systems.  Such a study needs a 
metalanguage for which purpose semiotics may 
serve. 

2 SEMIOTICS 

Its origin can be traced back to the Swiss 
philosopher Ferdinand de Saussure and the USA 
philosopher Charles Saunders Peirce. Saussure 
(1966) explained semiotics as “the science of the life 
of signs within society”. (Saussure, 1983):  

“It is... possible to conceive of a science which 
studies the role of signs as part of social life. It 
would form part of social psychology, and hence 
of general psychology. We shall call it 
semiology (from the Greek semeîon, 'sign'). It 
would investigate the nature of signs and the 
laws governing them. Since it does not yet exist, 
one cannot say for certain that it will exist. But 
it has a right to exist, a place ready for it in 
advance. Linguistics is only one branch of this 
general science. The laws which semiology will 
discover will be laws applicable in linguistics, 
and linguistics will thus be assigned to a clearly 
defined place in the field of human knowledge.” 

Peirce [1992] makes the following explanation of 
what he called semiosis:  

 “[B]y ‘semiosis’ I mean […] an action, or 
influence, which is, or involves, a cooperation of 
three subjects, such as a sign, its object, and its 
interpretatant, this tri-relative influence not 
being in any way resolvable into actions 
between pairs. “ 

From his understanding of Peirce, Morris 
proposed that semiotics embraces syntax, the 
morphology, semantics, what the words and signs 
stand for, and pragmatism, the relation of signs to 
the interpreter.  

Syntax and semantics are well known parts while 
the third part, pragmatism, is what Bar-Hillel (1970) 
characterized as the “waste-basket”, i.e., a place to 
put everything that is “difficult”. Sonesson (2002) is 
concerned about the absence of explanatory power 
of pragmatism: 

“[…]’pragmatic’ approaches often leaves as a 
complete mystery how meaning is conveyed”. 

Computational semiotics is thought of as a way 
“to synthesize artificial systems able to perform 
some sort of semiosis” (Gomes et al., Web). They 
further submit that according to Peirce, any 
description of semiosis involves a relation of three 
terms: 

“A sign is anything which is related to a Second 
thing, its Object, in respect to a Quality, in such 
a way as to bring a Third thing, its Interpretant, 
into relation to the same Object, and that in such 
a way as to bring a Fourth into relation to that 
Object in the same form, ad infinitum.” 

In order to simulate, as they said, semiotic 
systems, they try to devise a suitable formalism. As 
will be shown, a new formalism is still a formalism 
and will not make a system semiotic in itself.  

Andersen, on his part, discusses three different 
kinds of semiotic and linguistic theories: the 
generative paradigm, the logical paradigm and the 
European structuralist paradigm of which he reject 
the two first. However, Andersen cannot reject the 
logical paradigm since a computer, as a linguistic 
system, is a logical system and cannot be differently 
considered. 

3 FORMAL SYSTEM 

Formal system (logic) “is concerned with the 
analysis of sentences or of propositions and of proof 
with attention to the form in abstraction from the 
matter.” (Church, 1956, p. 1) 

This total abstraction from meaning is expressed 
by Kleene (1952, p. 61) as follows:  

“To Hilbert is due now, first, the emphasis that 
strict formalization of a theory involves the total 
abstraction from meaning, the result being 
called a formal system […]” 

Thus, the whole idea with a formal system is to 
serve as a proof system; a system whose only aim is 
to produce proofs. In accomplishing this, everything 
except form must be rejected. It is like a play with 
pieces that does not in itself have meaning. von 
Neumann (1931) explicates the game idea in the 
following sense: 

“[C]lassical mathematics involves an internally 
closed procedure which operates according to 
fixed rules known to all mathematicians and 
which consists basically in constructing 
successively certain combinations of primitive 
symbols which are considered “correct” or 
“proved”. […] [W]e should investigate, not 
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statements, but methods of proof. We must 
regard classical mathematics as a combinatorial 
game played with the primitive symbols.” 
(italics, BE) 

Hence, a formal system is constructed to be free of 
semantics. 

The first step in setting up a formal system 
(logical system) is to list the formal symbols. Here, 
any symbol will do; no one is preferable for the 
system but possibly for the user of the system. For 
example, in a formal system for arithmetic we can 
choose the symbol Ŋ to stand for the number one. 
However, it is normally better to use the symbol 1  
because it immediately gives the user the intended 
interpretation.  

From the symbols the formal expressions are 
derived. The next step is to introduce the formation 
rules which can be considered as analogous to the 
rules of syntax in grammar. The third step is to 
define transformation rules. The transformation 
rules, or inference rules, give the formal system the 
structure of a deductive system or deductive theory. 

What is stated above is the same for all formal 
systems. What distinguish different formal systems 
are the postulates (axioms) that turn a formal system 
into a theory. For example, for number theory the 
following are two postulates: 
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where S is interpreted as the successor function, with 
the meaning that S(x) is the next number coming 
after the number symbolized by x. The first sentence 
is then interpreted as “if the successors of two 
numbers are the same, the numbers are the same”. 
The second axiom says that “zero is the least 
number”.  As will be seen, there are other possible 
interpretations. 

The relation of formal system to computers1 is 
clearly expressed by Gödel (1964) in a postscriptum, 
prepared to Martin Davis: 

    “In consequence of later advances […] due to 
A. M. Turing’s work, a precise and 
unquestionably adequate definition of the 
general concept of formal system can now be 
given [,…] A formal system can simply be 
defined to be any mechanical procedure for 
producing formulas, called provable formulas. 
For any formal system in this sense there exists 

                                                 
1 In this paper I will not distinguish between formal 
system, computer and Turing machine.  

one in the sense of page 41 above2 that has the 
same provable formulas (and likewise vice 
versa), provided the term “finite procedure” 
occurring on page 41 is understood to mean 
“mechanical procedure”. This meaning, 
however, is required by the concept of formal 
system, whose essence it is that reasoning is 
completely replaced by mechanical operations 
on formulas.” 

A formal system, used to develop formal 
theories, is a system that utilizes processes, which 
cannot themselves be completely described by some 
theory in the system in question.  

4 THE USE OF MODEL IN 
NATURAL SCIENCES 

There is no doubt that the term model is used in 
many different ways, not only in everyday life but 
also in science. Frequently the term is used in a 
manner that makes its meaning diffuse, and also 
there is a common tendency to confuse, or to 
amalgamate, the terms model and theory. Even in 
science those terms are often used interchangeably 
as being synonymous.    

Andersen (Web) argues that semiotics and 
natural science are different in perspective. The 
reason he states is that “natural science focuses on 
the mechanical aspects of a system – those aspects 
that can be treated as an automaton – semiotics 
focuses of the interpretative aspects”. For Andersen 
it seems as computer systems are sign systems 
whose interpretations have to be wormed out.  

However, there is a huge difference between a 
computer system and a natural system. When 
studying physics the system is unknown and starts 
with observations with the aim to reveal a physical 
structure. That is, we try to get an idea of the nature. 
With computer systems it is the other way around. 
Like all other artificial systems, the interpretation 
(idea) is already known; it is the starting point. No 
surprises are to be expected.  For example, no one 
constructs a gear box and then ask for its behavior. 

We characterize the nature in such a way that it 
can be grasped and, hopefully, visualized. This 
visualization is a model like a model ship or model 
plane. It is not the equations, the theory, that 
constitutes a model. For example, in the 1920s and 
1930s, the Friedman-Robertson-Walker 
cosmological model was introduced as the simplest 

                                                 
2 Refers to p. 41 in Davis, 1965. 
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solution of the equations of Einstein’s general theory 
of relativity. This cosmological model was a way of 
thinking of the Universe in a way that satisfied our 
understanding of the Universe while at the same 
time keeping Einstein’s equations. This model was 
non-rotating. However, Gödel was the first to 
consider a model that was rotating. The curious 
property of this model was that in it, it was possible 
to travel into the past. The equations, that is, the 
theory, were not altered but the interpretation was 
quite new and much unexpected. 

The interpretation aspect is everywhere present 
in natural sciences. For example, Niels Bohr 
struggled all his life with the question of the 
interpretation of quantum theory and still today there 
is no good interpretation of quantum phenomena. 
Penrose has explained the difficulties as follows: 
(Web) 

“It must play its role when magnifying 
something from a quantum level to a classical 
level, which is what is involved in measurement. 
The way to treat this, in standard quantum 
theory, is to introduce randomness. Since 
randomness comes in, quantum theory is called 
a probabilistic theory. But randomness only 
comes in when we go from the quantum to the 
classical level. If we stay down at the quantum 
level, there is no randomness. It is only when we 
magnify something up, and make a 
measurement. This consists of taking a small-
scale quantum effect and magnifying it out to a 
level where we can see it. It is only in that 
process of magnification that probabilities come 
in.” 

What Bohr wanted and Penrose wants is to find a 
model of the quantum phenomena. 

The confusing usage between model and theory 
is harmless so long as we stay intradisciplinary but 
when it comes to the explanation of systems that we 
think of as having a cognitive ability, and 
particularly systems which are furnished with 
language, it is of importance to use the term model 
in its linguistic sense otherwise it is easy to ascribe 
properties to such systems that they never will 
achieve. 

5 MODELS IN LOGIC 

Formal systems have “mathematical models” which 
is a well defined concept. It is of no use to construct 
a formal system without giving it a definite model, 
i.e., giving the key of interpretation.  

A model of a formal system is a (mathematical) 
structure that consists of a non-empty set, called 
domain, a set of functions, a set of relations and a set 
of constants. In mathematical notation it is described 
as 

kmn cccRRRfffA ,...,,,...,,,,...,,, 212121  

where A is the domain, the fs are functions, the Rs 
are relations and the cs are constants.  

As an example we may consider a graph.  A 
graph is a set V (of vertices) and a set E (of edges), 
where each edge is a set of two distinct vertices. An 
edge {v,w} is said to join the two vertices v and w. 
For example, a subway system constitutes a graph in 
the sense above where the stations are the nodes and 
the connections between the stations are the edges.  

There is a natural way to make a graph V into a 
structure G. The elements of G are the vertices. 
There is one binary relation R. The ordered pair 

wv,  lies in R if and only if there is an edge 
joining v to w.  

Now, every natural structure, that can be 
described in detail, can be turned into a 
mathematical structure and if then a sentence is true 
in the mathematical structure it is also true in the 
natural structure and we may call the natural 
structure a model of the sentence. 

By way of example (fig. 5.1), we may consider a 
sphere falling from a tower. This is the natural 
(physical) model which can be turned into a function 
which constitutes the mathematical model. The 
program then is the theory of the model but does not 
in itself say anything of what is computed.  

  
 

 
Figure 5.1: The equation for a freely falling sphere. 

A program can have many different models and 
no one is pointed out by the program. For example, 
the first sentence, in the postulates mentioned above 
for arithmetic, can be given the interpretation that “if 
two people have the same security number, then it is 
one and the same person”. Another interpretation 
could be the DNA-sequence of a person. Then the 
axiom could state that “if a murder and a decent 

ghv 2=
Program  
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person have the same DNA, then the decent person 
is the murder”. In this interpretation the second 
axiom could be thought of as meaning that “there is 
no person that not has a DNA”.  

The things to consider are that the interpretation 
is not part of the formal system and there is no way, 
from the point of view of the system, to know the 
meaning of the sentences.  

6 THE CONCEPTION OF 
LANGUAGE 

In, for example, physics, language is not defined and 
is considered as being outside the domain of the 
discipline. Even in logic, language is considered 
outside the domain of the discipline. Shoenfield 
(1967, p.4) characterize language in the following 
way: 

“We consider a language to be completely 
specified when its symbols and formulas are 
specified. This makes a language a purely 
syntactical object. Of course most of our 
languages will have a meaning (or several 
meanings); but the meaning is not considered to 
be part of the language.” 

This is a completely fragmentable view of 
language in which the interpretation part and the 
description part is outside the language. It is a 
distorted approach which, however, has its origin in 
the need of separating syntax from semantics in 
order to make the concept of proof unambiguous. 
For a proof it is of course important not to rely on 
our beliefs. However, this view makes language 
stunted and we may ask from where the 
interpretation comes. The answer is that this process 
is a non-fragmentable part of the language itself. A 
full language, like a natural language, consists of 
description, interpretation, an interpretation process 
and a description process. In a full fledge language, 
the parts are indivisible. In this holistic view, 
language is a wholeness that can not be broken into 
parts without being distorted. This is the holistic 
view of language as formulated by Löfgren (1991): 

“In no language, its interpretation process can be 
completely described in the language itself.” 

Unlike classical physics, language is impossible 
to completely objectify in itself. Understanding of a 
language is understanding of both form and meaning 
in a complementary conception in which 
fragmentation into parts does not succeed. When we 

say that language is holistically considered or we say 
that interpretations are non-linguistic entities or even 
extra-linguistic entities, the result is the same, 
namely that the interpretation of sentences does not 
belong to the realm of sentences: a complete 
epistemological description of a language L cannot 
be given in the same language L, because the 
concept of truth of sentences of L cannot be defined 
in L. 

The interpretation of a language makes the 
concepts and the concepts we perceive give the 
language. That is why we cannot objectify language 
as is possible with objects in (classical) physics. We 
cannot go outside the language but have to stay 
within it; we are imprisoned in our own language.  

As soon as we are trying to describe a language, 
fragmentation is a necessity. Depending upon 
whether an attempted fragmentation is thought of in 
ontological and semantic terms or in epistemological 
and descriptive terms, different complementarity 
views results. According to Löfgren (1992), “the 
fragmentation types are not independent, and an 
autological closure onto language, in its ultimate 
wholistic conception, will yield a general type of 
complementarity, to which other can be reduces”.  

7 COMPUTERS AS 
INTERPRETERS 

Two things are essential for a computer to be a 
formal system. Firstly, every formula should be 
possible to be coded in numbers. Secondly, the 
mechanical procedure, referred to above, should be 
recursive. Gödel (1951) explains it as follows:  

“This concept [formal system] is equivalent to 
the concept of “computable function of integers” 
[…] The procedures to be considered do not 
operate on integers but on formulas, but because 
of the enumeration of the formulas in question, 
they can always be reduced to procedures 
operating on integers.” 

By way of an example, let ),( 21
2

1 xxA  be the 
first two-place predicate symbol (in a list), then one 
way of coding it is to the number 
29933521771129135. (Mendelson, 1964, p. 191) 

It is the mechanical characteristics of inference 
rules that make a computer a formal system. With an 
inference rule is attached an action (interpretation), 
namely a new sentence that is produced from the old 
sentences. As an action it cannot fully be described 
in terms of axioms (sentences) alone. Without such a 
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complementary action, a theory3, with an infinite set 
of theorems could not be finitely represented and 
thus not communicated. This is in complete accord 
with Gödel’s answer to a question of Burks 
(Neumann, 1966, p. 55) “The complete description 
of its [Turing machine, BE] behaviour is infinite 
because, in view of the non-existence of a decision 
procedure predicting its behavior, the complete 
description could be given only by an enumeration 
of all instances.” 

8 CONCLUSIONS 

The action of a computer is an act of interpretation 
operating on numbers representing sentences. This 
action cannot itself be reduced to sentences (axioms) 
in the given logical language. There must always be 
a production of new sentences from others. It is in 
this sense that a computer is a linguistic system: a 
behavior of a computer system is an interpretation of 
its description.  

Since the interpretation process is outside the 
description (program), no computer will ever 
simulate, in an acceptable way, a semiotic system. 
This is prohibited by the complementarity view of 
language, because if the linguistic complementarity 
would be possible to invalidate, then the holistic 
language phenomenon would not exist. 
Interpretation should disappear and communication 
would be completely syntactic. Uncomputability 
would be a for ever unknown concept for such 
beings.  

Computer systems should be seen as the 
linguistic systems they are with a well defined 
model. It is the model, preceding the construction of 
a program, that should be well communicated and 
may very well benefit from semiotic methods.  
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