
A FRAMEWORK FOR PROTECTING EJB APPLICATIONS
FROM MALICIOUS COMPONENTS

Hieu Dinh Vo and Masato Suzuki
School of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan

Keywords: J2EE, EJB, component-based, security, business functions.

Abstract: Enterprise JavaBeans (EJB) components in an EJB application can be obtained from various sources. These
components may be in-house developed or bought from other vendors. In the latter case, the source code of
the components is usually not available to application developers. The result is that the application may
contain malicious components. We propose a framework called BFSec that protects EJB applications from
vicious components. The framework examines bean methods invoked by each thread in applications and
compares them with pre-defined business functions to check whether the latest calls of threads are proper.
Unexpected calls, which are considered to be made by malicious components, will be blocked.

1 INTRODUCTION

Recently, large-scale information systems are built
based mainly on software component technology.
Besides the benefits such as reducing complexity,
time, and the development cost of systems, using
components in developing information systems may
introduce new security risks. The main source of
security issues in component-based systems is that
components used in a particular system may come
from various sources and that their source code may
not be available. This leads to difficulties in
assessing the security aspect of the used
components. The consequence is the possible
introduction of malicious components, which can
cause the whole system to be insecure.

EJB (Sun, 2005) is one of the leading
technologies for developing component-based
applications. In the current EJB applications, the
protection of system resources such as files,
memory, and network from malicious components is
mainly based on the Java protection mechanism
(Gong, 2002). In addition, with the use of the role-
based access control mechanism, beans are protected
from unauthorized users (Sun, 2005). However, in
the context of component-based software, we also
need another kind of protection: that is the
protection of beans from malicious beans.

In this paper, we present our work on building a
framework for protecting EJB applications from the
malicious beans. We utilize the concept of business

function (Vo and Suzuki, 2007) along with the
Intercepting Filter pattern (Alur et al., 2003) to
ensure that methods of beans are invoked not only
by the right person but also from the right places.

In the following section, we describe an example
that is used for discussion in later sections. Then, in
Section 3, we show that the current mechanism is
not sufficient to protect applications from malicious
beans. Our framework is described in Section 4.
Section 5 presents experimental results and
discusses points related to the approach used in the
framework. Works related to our research are
summarized in Section 6.

2 MOTIVATING EXAMPLE

Our example is the business tier of a virtual online
banking system named eBank. The system is
developed based on the J2EE platform. Customers
of the bank use the system (via Web browsers) to
transfer money between accounts. EJB components
used for this functionality are shown in Figure 1.

The process of transferring money is initiated by
invoking method transfer() of TxBean. This
method will first call CheckBean.check() to
assess conditions of making the transaction. If there
is no problem, TxBean.transfer() calls
DoTxBean.doTx(), in which the actual transaction
is done. Finally, method doTx() invokes

264
Dinh Vo H. and Suzuki M. (2008).
A FRAMEWORK FOR PROTECTING EJB APPLICATIONS FROM MALICIOUS COMPONENTS.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - DISI, pages 264-269
DOI: 10.5220/0001704502640269
Copyright c© SciTePress

LogBean.log() for recording information about
the transaction.

Figure 1: EJB components in the eBank system.

For the sake of simplicity, we only consider the
role customer of the system, and this role can
transfer money between accounts.

3 THE PROBLEMS

Current EJB applications use the configuration file
ejb-jar.xml to specify several aspects of the
applications, such as the dependencies between
beans, transactions, and security policy. The access
control policy of bean methods is declared within
the elements <method-permission> in this file.

<method-permission>
 <role-name>customer</role-name>
 <method>
 <ejb-name>DoTxBean</ejb-name>
 <method-name>doTx</method-name>
 </method>
</method-permission>

Listing 1: Access control policy for a method.

Listing 1 states that the role customer can
invoke method DoTxBean.doTx(). Note that if we
allow a role to execute a method m, unless we use
principal delegation, we must allow that role to
invoke all methods called by m. If not, the
invocation of m will not be completed.

In the current EJB access control, we only state
which role can execute which method. There is no
constraint about where a method might be invoked.
This, together with the fact that the source code of
beans is not always available to the application

developers, may lead to security issues. For
example, in our eBank system, we assume that the
source code of bean TxBean is not available. In
order to allow the role customer to transfer money,
we must allow this role to execute
TxBean.transfer(), DoTxBean.doTx(),
CheckBean.check(), and LogBean.log().
However, the policy does not point out where these
methods can be invoked from. If the TxBean is
malicious (e.g. the bean itself is malicious or it is
being controlled by a malicious person), it can
invoke LogBean.log() directly (on behalf of the
customer role) without going through
DoTxBean.doTx(). This is unexpected.

In addition, TxBean.transfer() is supposed
to execute CheckBean.check() before invoking
DoTxBean.doTx(). At runtime, we cannot ensure
that, in every case, TxBean will invoke
CheckBean.check() before invoking
DoTxBean.doTx().

The above analysis shows that, in the context of
component-based software development, we need a
stricter way of specifying and enforcing access
control policy than the current approach. In the next
sections, we describe our BFSec framework, which
aims at achieving this.

4 BFSEC FRAMEWORK

The core idea of the approach is, first, at design
time, to define call flows (i.e. series of interactions
between methods) that may happen in that
application. Then, at runtime, we check all method
invocations to ensure that they conform to the
defined call flows. A method invocation is allowed
only if the invocation belongs to at least one of the
defined call flows.

In our framework, we use the concept of
business functions (Vo and Suzuki, 2007) to define
the call flows (at design time). Meanwhile, at
runtime, a call flow is a series of methods invoked
by a thread. The framework ensures that, at any
point during the lifetime of a given thread, the thread
must conform to at least one of the defined business
functions. We enforce this policy by assigning a set
of potential business functions to each thread the
first time the thread invokes a method. This set is
then updated each time the thread invokes a method.
The framework blocks any thread having no
business function associated with it.

We equip beans with interceptors to update
business functions of threads. In addition, the
framework uses other modules for providing
information about defined business functions and

A FRAMEWORK FOR PROTECTING EJB APPLICATIONS FROM MALICIOUS COMPONENTS

265

call flow at runtime. Figure 2 shows the overall
architecture of the framework.

Figure 2: Architecture of BFSec framework.

The BFInfo module contains information of
business functions related to the corresponding bean.
This information is extracted from business
functions defined by application developers. The
CallFlow module manages information of all threads
in an EJB container. There are many threads in a
system, but the CallFlow module only concerns
threads that invoke at least one bean method. Only
one CallFlow module is used for an EJB container.
The BFControl modules are responsible for policy
enforcement. For each bean, we provide a
BFControl module. This module uses information
obtained from BFInfo (about business functions) and
from CallFlow (about threads) to update the set of
business functions associated with threads and to
decide whether calls are permitted or not. In our
system, we use two kinds of interceptor including
server-side interceptors and client-side interceptors.
The server-side interceptors are used by BFControl
to update business functions of threads. The client-
side interceptors are used when invoking methods
belonging to beans in different machines. In this
literature, if a stand-alone word “interceptors” is
used, we mean the server-side interceptors.

The next sections present the details of the
framework.

4.1 Business Functions

The concept of business function is introduced in the
work about a flexible approach for specifying access
control in EJB applications (Vo and Suzuki, 2007).
In this paper, we revise the description of business
function so that it is suitable for the BFSec
framework.

We use the XML format to describe business
functions. The Listing 2 is the Document Type
Definition (DTD) for a business function
description.
<?xml version= “1.0”?>

<!ELEMENT business-function (invoke)>
<!ALIST business-function name CDATA>
<!ELEMENT invoke (method, invoke*,
block*)>
<!ELEMENT method CDATA>
<!ELEMENT block (invoke*, block*)
<!ALIST block type (if | dowhile |
switch)

Listing 2: DTD of business function description

A description of a business function starts with
the element <business-function> and the name
of that business function, then followed by a
description of interactions between methods. A
method invocation is described by element
<invoke>, which includes the name of the
invoking method. An <invoke> element may
contain other <invoke> elements to describe a
method which calls other methods. The method
invoked first in a business function is the entry
method of that business function. We also use the
element <block> to group invocations and to
provide flow control. The execution of a block can
be modified by using the attribute type of the
<block> element. The values of this attribute
include “if”, “switch”, “dowhile”, whose
semantics are similar to that used in Java
programming language. In descriptions of business
functions, we do not consider the conditions that
control invocations. For example, if type=“if”, we
do not care about when the methods inside the
<block> will be executed. The reason for this is
that the condition is a part of the internal state of the
bean, so we should not take it into account.

4.2 Information Extracted from
Business Functions

From business function descriptions, we can extract
information that is used for updating business
functions associated with each thread at runtime.
The following variables and functions describe what
kind of information we extract from defined
business functions.

• R: set of roles. B: set of business functions of
the application. M: set of methods involving at
least one of the business functions in B. r: ∈R,
is the role of the principal who is making the
call. caller, callee, and preMethod: ∈M; caller
is the method making the call, callee is the
called method. preMethod is the method (if it
exists) invoked by caller before invoking
callee. bfs:⊂B, a set of business functions

ICEIS 2008 - International Conference on Enterprise Information Systems

266

associated with a certain thread. bf: ∈B, a
business function.

• allow(r,bf): returns true if users in role r are
allowed to invoke business function bf.
Otherwise, the function returns false.

• allow(caller, callee, bf): this function returns
true if in the business function bf, caller
invokes callee. Otherwise, the function returns
false.

• entry(bf): this function returns the entry method
of business function bf.

• preCall(caller, callee, bf): This function returns
a set of methods so that if m is an element of
this set then caller calls m before invoking
callee and the business function containing
these invocations is bf.

• initBf(r, callee): callee ∈ M is the called
method. This function returns a set of business
functions so that if bf is an element of this set
then entry(bf)==callee and allow(r,bf)==true.

• nextBf(bfs, caller, callee, preMethod): bfs ⊂ B,
is the set of business functions this thread may
involve. This function returns a subset of bfs so
that if bf is an element in this subset, then
allow(caller, caller, bf)==true and
preMethod∈preCall(caller, callee, bf).

In the BFSec framework, the above functions are
provided by the BFInfo module. The BFControl
module uses these functions to update the set of
business functions for each thread at runtime.
However, in order to use these functions, we need to
know callee, caller, and preMethod. The next
section describes how to obtain these values at
runtime.

4.3 Obtaining Runtime Information of
Threads

In this section we describe how to obtain
information that is used for updating sets of business
functions associated with threads. We also explain
the way in which this information is managed by the
CallFlow module.

Figure 3: The solution for determining the callers.

The information about a thread that we need to
know is the callee, the caller, and the previous called
method of the caller. For the callee, we can easily
acquire because at interceptors we know which
method we are invoking. However, determining the
caller and the previous method called by the caller is
quite difficult. The solution to this problem is to
equip a stack for each thread. Figure 3 illustrates our
solution. In the figure, the stack used for the thread
is cs. The operation on the stack includes peek():
returns the value on top of the stack; push(m):
pushes m onto the top of the stack; pop():
removes and returns the top value of the stack.

For each thread in an application, we need to
maintain: bfs: a set of business functions that is
associated with the thread, cs: a stack containing
methods the thread has been invoking, and
preMethod: the method last called by the method
on the top of the cs stack. In our framework, each
thread is provided an entry containing this
information and these entries are managed by the
CallFlow module.

In cases where the caller and the callee are
located in different machines that solution will not
work because we base it on threads. This is the
reason why we use client-side interceptors. The task
of these interceptors is to send information of
threads making the call (including the set of business
functions, the caller, and the previous called of the
caller) to the remote system. This means that when
checking permission of a remote call, instead of
obtaining information of threads from the CallFlow
module, the BFControl module will use information
sent by the client-side interceptors.

4.4 Business Function Enforcement

This section describes how the BFControl module
uses the BFInfor module and the CallFlow module
to update sets of business functions associated with
threads and to enforce call flows at runtime.

At the interceptors, the set of business functions
associated with a thread is updated as follows.

if(caller==null)
 bfs=initBf(r,callee)
else
 bfs=nextBf(bfs,caller,callee,
 preMethod)
if(bfs==null)
 return false;// invocation blocked
else
 return true;// invocation allwed

Listing 3: The update of business functions associated
with a thread.

A FRAMEWORK FOR PROTECTING EJB APPLICATIONS FROM MALICIOUS COMPONENTS

267

Table 1: The overhead introduced by the BFSec framework.

Business Functions
Without
BFSec
(ms)

With BFSec
(ms)

No. inter-
bean

invocations

% of time
consumed by

BFSec

Average time
per check

(ms)
Account History 2.778 2.842 58 2.3 0.0011
ATM Withdraw 0.352 0.386 19 9.7 0.0018
Transfer 0.413 0.432 9 4.5 0.0021
Create Customer 0.201 0.207 3 2.9 0.0019
Create Account 0.255 0.260 4 2.3 0.0012

In the above code segment, we depend on the

caller to determine bfs of a thread. caller==null
means that this is the first time the thread invokes a
method. In this case, bfs is initiated by
initBf(r,callee). This function returns a non
null set only if callee is the entry method of some
business functions and if role r is allowed to execute
these business functions.

When the caller is not null this means that the
thread has invoked methods before and the thread is
associated with at least one business function
(contained in bfs). bfs is updated by function
nextBf(bfs,caller,callee,preMethod).

In both cases (caller is null and not null),
bfs==null means that there is no business function
associated with the thread and the thread will then be
blocked.

5 EXPERIMENTAL RESULTS

We have implemented the BFSec framework for
JBoss AS 4.0. The application we used for testing is
Duke’s Bank application (Sun, 2006). The
application contains 7 EJB components. We defined
13 business functions such as ATM Withdraw,
Account History, and Create Customer. The test was
performed on a machine with 2 CPUs AMD
2.4GHz, 4 GB RAM, Fedora Linux 6.0 and Java 1.5.
The framework ensures that the security problems
described in section 3 cannot happen. In our
experiment with Duke’s Bank application, every
invocation that does not conform to any business
function was blocked.

However, the introduction of modules into the
original version of the application server should
cause overhead. Table 1 shows the results of our
experiment about overhead caused by BFSec
framework. The results show that the latency caused
by the framework is relatively minor and that the
time needed for each check is almost the same. This
means that for a given business function, the latency
caused by the framework increases linearly with the
number of inter-bean invocations.

0

500

1000

1500

2000

2500

3000

500 1000 1500 2000 2500
Number of threads

Pr
oc

es
si

ng
 t

im
e

(m
s)

with BFSec
without BFSec

Figure 4: The latency caused by the framework in cases of
multi-threaded applications.

In our architecture, there is only one CallFlow
module in an EJB container. The consequence is that
the module becomes a bottleneck when there is more
than one thread in the system. However, because the
only operations that needed synchronizing are the
adding and deleting an entry to CallFlow (i.e. when
a new thread enters the EJB container and when a
thread goes out of the EJB container) the latency
caused by the synchronization is not significant
(Figure 4). In this experiment, we tested the business
function Account History with 500 to 2500 threads
initiated at once.

6 RELATED WORK

Regardind the protection of EJB components from
illegal access, several papers focus on the static
analysis of bean code and security policies
associated with the applications. This direction
includes works of Naumovich and Centonze
(Naumovich and Centonze, 2004), Sreedhar
(Sreedhar, 2006), and Pistoia et al. (Pistoia et al.,
2007) These works either require source code of
beans or rely on call graphs produced by byte code
analysis tools (but they are not always accurate).

In the current approach of EJB, if a role tries to
invoke a method without permission, an exception
will be thrown. Evered (Evered, 2003) proposes the

ICEIS 2008 - International Conference on Enterprise Information Systems

268

idea that if a role does not have permission to
execute a method it should not be aware of the
existence of that method.

The above approaches focus on protecting beans
from illegal access made by unauthorized people.
They cannot protect applications from security
issues presented in Section 3 of this paper.

Clarke et al. (Clarke et al., 2003) propose an
approach for checking beans at deployment time to
make sure that, at runtime, beans are totally
controlled by application servers. Their approach
can protect beans from access that bypasses the
application servers but not the access from beans
inside the application servers. Therefore, again, the
approach cannot solve the problem presented in the
previous section.

7 CONCLUSIONS

In this literature, we have shown that the current
approach for protecting EJB applications is not
secure enough. We have presented our approach, the
BFSec framework, for strengthening security of EJB
applications. The idea of the approach is to use the
business function concept to define call flows that
may happen in an application. After that, at runtime,
by collecting information of threads in the
application and comparing with the defined business
functions, we ensure that threads conform to defined
call flows.

One of our future works is to extend the
framework so that it can handle threads created by
components and by the EJB container. In addition,
when the number of EJB components in an
application grows, the task of defining business
functions should become complicated. We intend to
provide a tool that can extract business functions
from design documents such as UML diagrams. Our
further aim is to build a multi-layer framework for
securing EJB applications.

REFERENCES

Alur, D., Malks, D., Crupi, J., Booch, G. & Fowler, M.
(2003) Core J2EE Patterns (Core Design Series): Best
Practices and Design Strategies, Sun Microsystems,
Inc.

Clarke, D., Richmond, M. & Noble, J. (2003) Saving the
world from bad beans: deployment-time confinement
checking. SIGPLAN Not., 38, 374-387.

Evered, M. (2003) Flexible enterprise access control with
object-oriented view specification. Proceedings of the
Australasian information security workshop

conference on ACSW frontiers 2003 - Volume 21.
Adelaide, Australia, Australian Computer Society.

Gong, L. (2002) Java 2 Platform Security Architecture
[online]. [Accessed Dec. 2007]. Available from
WWW: http://java.sun.com/javase/6/docs/technotes/
guides/security/spec/security-spec.doc.html.

Naumovich, G. & Centonze, P. (2004) Static analysis of
role-based access control in J2EE applications.
SIGSOFT Softw. Eng. Notes, 29, 1-10.

Pistoia, M., Fink, S. J., Flynn, R. J. & Yahav, E. (2007)
When Role Models Have Flaws: Static Validation of
Enterprise Security Policies. Software Engineering,
2007. ICSE 2007. 29th International Conference on.

Sreedhar, V. C. (2006) Data-centric security: role analysis
and role typestates. Proceedings of the eleventh ACM
symposium on Access control models and
technologies. Lake Tahoe, California, USA, ACM.

Sun (2005) Enterprise JavaBeans version 3.0 [online].
[Accessed: Dec. 2007]. Available from WWW:
http://java.sun.com/products/ejb/.

Sun (2006) The J2EE 1.4 Tutorial [online]. [Accessed:
Dec. 2007]. Available from WWW:
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/.

Vo, H. D. & Suzuki, M. (2007) An Approach for
Specifying Access Control Policy in J2EE
Applications. 14th Asia-Pacific Software Engineering
Conference. Japan, IEEE.

A FRAMEWORK FOR PROTECTING EJB APPLICATIONS FROM MALICIOUS COMPONENTS

269

