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Abstract: The concept of a Configuration Fragment is adopted to help address the challenge of managing the different 
kinds of dependencies that exist during the evolution of component-based and service-oriented systems. 
Based upon a model of Architectural Change and an example of an application-specific context, 
Configuration Fragments are defined in order to express and reconcile change properties with respect to 
existing system properties. During system evolution, Configuration Fragments enable the configuration of 
Service and Service Protocol, Operation and Provided Service, Operation and Required Service, Operation 
and Operation, Operation and State Element, Operation and Composite Component, Component and 
Component, and Required Service and Provided Service dependencies. This occurs through configuration 
leading to association, disassociation, or refinement of these system elements. 

1 INTRODUCTION 

As deployed software-intensive systems become 
increasingly prevalent and interdependent within 
application specific contexts, managing change as 
these systems evolve is becoming increasingly 
critical. Since applications are rarely introduced, 
reconfigured, or decommissioned in complete 
isolation, a major problem is the management of 
system dependencies. 

To enable a systematic response to the problem 
of dependency management, this paper identifies 
different kinds of configuration information and 
presents a technique for applying this information 
that is illustrated using a application specific context 
which demonstrates the generality of the approach. 

To do this, a system model is adopted that is 
composed of system elements which support the 
component-based and service-oriented computing 
paradigm. The system elements are used to define 
different kinds of behavioural and structural 
dependencies which must be managed when desired 
system properties change over time. Specific kinds 
of configuration information are defined based upon 
these different kinds of dependencies. The approach 
for applying this information is based upon a model 
of architectural change of software-intensive 
systems (Walsh et al 2007 and Walsh et al 2008). 

The following are representative examples of 
related research. 

(Crevantes et al 2003) investigates implementing 
dynamic availability within a service-oriented 
component model. By adopting the Open Services 
Gateway Initiative (OSGi 2007) as an 
implementation platform, they investigate 
component-to-service and service-to-service system 
dependencies. Separately noted, based on these 
dependencies, the Spring Framework (Spring 2007) 
can be adopted to augment any OSGi-based 
implementation when a Spring application context 
injects behaviour to further configure OSGi 
provisioned services (deployed as bundles). By 
identifying a more complete set of system 
dependencies, this paper is effectively a super-set of 
this approach; it also specifies a model of 
architectural change that unifies the application of 
change types. 

(Felfernig et al 2007) address the complexity of 
dependency management through the formulation of 
a domain model that enables the construction of 
complex software configurations for executable 
configuration, for example through generative 
constraint satisfaction (Fleischanderl et al 1998). 
Research on the dynamic constraint satisfaction 
problem (CSP) is viewed to provide more precise 
semantics for the model of architectural change 
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presented in this paper when global and local change 
properties are reconciled with existing system 
properties. 

(Lestideau et al 2002) specify a model of the 
software deployment process and unifies this with a 
component model towards the automated 
configuration and deployment of software-intensive 
systems. Using a more refined model of components 
that implement services, this paper links the 
deployment process to relevant system elements 
based upon different kinds of system dependencies 
that apply with respect to the refined model. 

(Sangal et al 2005) define a process for 
managing dependencies based on a Dependency 
Structure Matrix (DSM) that is directly extracted 
from the implementation of a software-intensive 
system. As an underlying model of dependency 
(represented as a partitioned adjacency matrix), the 
DSM approach is viewed as a useful technique for 
partially representing existing system properties and 
their reconciliation with contemplated change 
properties. This paper presents more refined notions 
of dependence and the role they play based on a 
general model of architectural change and the 
different dependency categories that cover 
architectural change. 

Informed by related research, this paper relates 
specific kinds of configuration information with 
desired system properties (called change properties) 
and then augments configuration information that is 
associated with existing system properties. A major 
implication is that  informal expressions of desired 
change can be decomposed as fragments of 
configuration information that are defined in terms 
of system model elements. Depending on the 
application-specific context, the fragments of 
configuration information may potentially be shared 
when decomposing the expression of more than one 
change property. 

Using a motivating example that provides an 
application-specific context, the paper provides a 
description of Configuration Fragments and 
illustrates their role during the evolution of a 
software-intensive system using the application-
specific context. 

2 MOTIVATING EXAMPLE 

The following is a review of a financial analysis 
system case study more fully reported on in (Walsh 
et al 2007). The case study is an application-specific 
example of changing global and local properties 
leading to comprehensive change. The example 
describes the components and the dynamic 
interoperation of two initially decoupled financial 

systems that specialize in maintaining knowledge 
and providing predictions about a particular sector of 
the economy. System A’s clients are concerned with 
shorter-term predictions. System B’s clients are 
concerned with longer-term predictions. 

Figure 1 shows the original control style of 
System A. Use Case Maps (UCMs) (Buhr and 
Casselman 1996) are used to illustrate the causal 
flow that is required of System A’ s components to 
provide shorter-term predictions. For example, for 
reason of timeliness, cash flow projections and 
valuation assessment are done on-line. 

Figure 1: Original Control Style of System A. 

System A’s responsibilities are: (a1) generate on-
line financial conditions, (a2) provide cash flow 
projections, (a3) provide valuation assessment, (a4) 
update on-line financial conditions and update 
knowledge information about market sector, (a5) 
determine current market knowledge, (a6) current 
financial conditions and market knowledge, (a7) 
update preferred stock and common stock value 
predictions, (a8) provide knowledge information 
about market sector, and (a9) update knowledge 
information about market sector. 

Figure 2 shows the original control style of 
System B. UCMs are used to illustrate the causal 
flow that is required of System B’ s components to 
provide longer-term predictions. For example, for 
reason of accuracy, cash flow projections and 
valuation assessment are done off-line on demand. 

System B’s responsibilities are: (b1) generate on-
line financial conditions, (b2) update on-line 
financial conditions and update knowledge 
information about market sector, (b3) determine 
current knowledge about market, (b4) provide 
current financial conditions and knowledge about 
market, (b5) determine cash flow projections, (b6) 
provide cash flow projections, (b7) determine 
valuation assessment, (b8) provide valuation 
assessment, (b9) update preferred stock and bond 
value predictions, (b10) provide knowledge 
information about market sector, and (b11) update 
knowledge information about market sector. 

The following are examples of global system 
properties: 
• (GP1) The control style of each system (as 
depicted by use case maps ); 
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Figure 2: Original Control Style of System B. 

• (GP2) The operations of different components 
provide needed behaviour within limited time 
constraints (scenario analysis must not be 
invalidated by current financial conditions); and 
• (GP3) The state elements of different 
components are updated in a synchronized fashion 
(present value analysis, cash flow projection, and 
scenario analysis reference data is synchronized). 

The following are examples of local system 
properties: 
• (LP1) A component has an upper bound on the 
number of threads that may be spawned in response 
to remote service requests; 
• (LP2) A provided service has at most one 
required service bound to it and vice versa; and 
• (LP3) The values of certain state elements may 
not change (Scenario Analysis reference data, once 
synchronized, remains immutable). 

The systems are dynamically reconfigured so that 
System A can leverage System B’s preferred stock 
predictions. To do this, each system’s architectural 
constraints are reconciled and changes are 
constrained to be backward compatible. System A is 
then able to provide improved analytic results for its 
clients based upon the new information that is 
available from System B. 

In this example, an Architectural Change means 
the Scenario Analysis components of each system 
dynamically evolve in order to inter-operate. This is 
represented as a change to GP1 as shown by Figure 
3. Global and local consistency management must 
ensure the integrity of GP1 to GP3 and LP1 to LP3, 
respectively, to maintain the consistency of each 
system in the face of change. 

Figure 3 shows the new control style of System 
A. A new UCM represents the causal flow linking 
the Scenario Analysis component of System A to the 
Scenario Analysis component of System B. This 
enables System A to use System B’s longer-term 
predictions to validate its shorter-term predictions. 

The new responsibilities are: (a10) Determine 
Long-Term Predicted Values, (a11) Provide Long-
Term Predicted Values, and (a12) Validate Short-
Term Predictions using Long-Term Predictions. 
 

Figure 3: New Control Style of System A. 

With change localized to the scenario analysis 
components of both systems, system evolution 
happens as follows: 
• A communication path is established between 
the scenario analysis components; 
• System A’s external interactions evolve to 
support a new required service; 
• System B’s external interactions evolve to 
support a new provided service; 
• Internal behaviour of System A’s scenario 
analysis component evolves to process the new 
information that is provided by System B; and 
• Internal behaviour of System B’s scenario 
analysis component evolves to provide the new 
information to System A. 

3 CONFIGURATION FRAGMENT 

Consider any kind of dependency which configures 
system element A with respect to system element B, 
with the kinds of system elements possible defined 
by the computing paradigm that is adopted. In 
general, a Configuration Fragment (CF) associates A 
with B, disassociates A from B, or refines an 
existing association between A and B. This is 
referred to as configuration leading to association, 
configuration leading to disassociation, or 
configuration leading to refinement respectively. 

When associating A with B, in addition to A 
becoming dependent upon B, A, B, or both A and B 
may not yet exist. During configuration leading to 
association, any system model element that does not 
yet exist is instantiated when its CF is activated. 
Instantiation occurs when a system’s signature is 
regenerated. In addition, any system model element 
that does exist may be realigned. This also occurs 
when a system’s signature is regenerated. 

When disassociating A from B, in addition to A 
no longer being dependent upon B, A, B, or both A 
and B may no longer be needed and therefore may 
be deactivated from the system as a whole. In 
addition, during configuration leading to 
disassociation, any system element that is not 
deactivated may be realigned. Deactivation or 
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realignment occurs when a system’s signature is 
regenerated. 

When refining an existing association between A 
and B, in addition to A remaining dependent upon B, 
A, B, or both A and B may be realigned. During 
configuration leading to refinement, both system 
elements already exist and one or both elements are 
realigned when a system’s signature is regenerated. 

A CF is effectively a fragment of the signature of 
a system that is associated with a particular global or 
local property. The context and related 
characteristics of the activation, realignment, or 
deactivation of a system element are set by the 
system or change property which the CF partially 
represents as configuration information. If a 
particular CF is compatible with and can be 
reconciled among more than one global or local 
property it may be shared among those properties, 
otherwise the CF is not shared and therefore unique 
to a particular property. Shared CFs are viewed to be 
more primitive units of configuration information 
that are used as building blocks of more complex 
CFs that in turn conform to the context of particular 
system or change properties. 

The kinds of CFs are based upon the kinds of 
dependencies that can determine a system’s 
behavioural or structural configuration. What 
follows is a description of each kind of configuration 
and the particular system elements that are activated, 
realigned, or deactivated when that kind of 
configuration happens. The next section provides an 
application-specific example of CFs for the case 
study presented in Section 2. 

A Behavioural Configuration Fragment (BCF) is 
information pertaining to:  
• Service and Service Protocol Configuration 
when Service and Service Protocol system elements 
dependencies change; 
• Operation and Required Service 
Configuration when Operation and Required Service 
system elements dependencies change; 
• Operation and Provided Service 
Configuration when Operation and Provided Service 
system elements dependencies change; 
• Operation and Operation Configuration 
when Operation system elements dependencies 
change; 
• Operation and State Element Configuration 
when Operation and State Element system elements 
dependencies change; or 
• Operation and Composite Component 
Configuration, when Operation and Composite 
Component system elements dependencies change. 

A Structural Configuration Fragment (SCF) is 
information pertaining to: 
• Component and Component Configuration 
when Component system elements dependencies 
change; or 
• Required Service and Provided Service 
Configuration when Required Service and Provided 
Service system elements dependencies change. 

4 CONFIGURATION 
FRAGMENTS AND SYSTEM 
EVOLUTION 

What follows is a description of the role of CFs 
during Architectural Change as described in (Walsh 
et al 2007). Figure 3 shows a new UCM linking the 
Scenario Analysis component of System A with the 
Scenario Analysis component of System B, which 
sets the specific context for this section.  

Because this is an example of configuration 
leading to association, system elements are either 
activated or realigned. Extending the example to 
remove the UCM after System A interacts with 
System B would be a way to demonstrate 
configuration leading to disassociation and therefore 
deactivation. 

In this example, system evolution is manifested 
as a change property that augments the control style 
of each system. It will be referred to as Augmented-
GP-1. The outcome is a change to the current control 
style of each system represented by an update to GP-
1 through GP-1's reconciliation with Augmented-
GP-1. The process of Architectural Change is 
manifested as follows: 

4.1 Emergent Change Property 

Augmented-GP-1 represents an emergent change 
property which informally stated is "Augment the 
control styles of each system so that System A can 
leverage System B’s preferred stock predictions". 
Figure 4 shows the CFs that defines the specific 
configuration information of Augmented-GP-1. 

CF1 is required to satisfy all new 
responsibilities; CF2 is required to satisfy 
responsibilities (a10) and (a11); CF3 is required to 
satisfy responsibility (a10); CF4 is required to 
satisfy responsibility (a11); CF5 is required to 
satisfy responsibilities (a10) and (a12); CF6 is 
required to satisfy responsibility (a11); and CF7 is 
required to satisfy responsibility (a11). 
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CF1 (Component to Component Configuration)

CF2 (Required Service to Provided Service Configuration)

CF3 (Service to Service Protocol Configuration)

CF4 (Service to Service Protocol Configuration)

CF5 (Operation to Required Service Configuration)
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Figure 4: Augmented-GP-1. 

4.2 Updated Systems Properties 

Table 1 shows the effect of Architectural Change 
when systems properties are updated. The existing 
CFs of GP-1 for Systems A and B, which by 
definition satisfy the existing control configurations 
shown in Figures 1 and 2, are updated with the CFs 
of Augmented-GP-1. CF1 and CF2 are added to the 
GP-1 definitions for both systems and are therefore 
shared between those definitions. CF3 and CF5 are 
added to the GP-1 definition for System A. CF4, 
CF6, and CF7 are added to the GP-1 definition for 
System B. 

When the respective GP-1 definitions are 
updated, global consistency management ensures the 
integrity of global properties. To ensure GP-2, 
especially for System B, the new systems interaction 
must not violate end-to-end performance constraints. 
To ensure GP-3, no action is required because the 
dependencies associated with the synchronization of 

present value analysis, cash flow projection, and 
scenario analysis reference data are not affected. 

Local consistency management ensures the 
integrity of local properties. To ensure LP-1, the 
upper bound on the number of threads that may be 
spawned in response to remote service requests for 
the Scenario Analysis component of System B must 
be respected. To ensure LP-2, there is just one 
service binding linking System A and B. To ensure 
LP-3, no action is required because the dependencies 
associated with the immutability of Scenario 
Analysis reference data are not affected. 

Table 1: How Systems Properties are Updated. 

 System A System B 
GP-1 CF1, CF2, CF3, & 

CF5 are added 
CF1, CF2, CF4, CF6, 
& CF7 are added 

GP-2 Global Consistency 
Check 

Global Consistency 
Check 

GP-3 Not Affected Not Affected 
LP-1 Not Affected Local Consistency 

Check 
LP-2 Local Consistency 

Check 
Local Consistency 
Check 

LP-3 Not Affected Not Affected 

4.3 Regenerated Systems Signatures 

The process of Architectural Change is completed 
when the system signatures of both systems are 
regenerated. A regenerated system signature 
manifests itself through follow-on types of change 
that evolve the external interactions and internal 
behavior of system components, which is described 
in (Walsh et al 2007 and Walsh et al 2008). Table 2 
shows the change effect of each CF when this 
happens. 

Table 2: Outcome of Regenerated Systems Signatures. 

CF CF Action CF Change Effect 
CF1 activates connection linking components 
CF1 realigns Scenario Analysis System A  
CF1 realigns Scenario Analysis System B 
CF2 activates  short-term predictions for long-

term predictions service protocol 
CF2 realigns connection linking components 
CF3 activates short-term predictions service 
CF3 realigns short-term predictions for long-

term predictions service protocol 
CF4 activates long-term predictions service 
CF4 realigns short-term predictions for long-

term predictions service protocol 
CF5 realigns generateShortTermPredictions() 

operation 
CF5 realigns short-term predictions service 
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Table 2: Outcome of Regenerated Systems Signatures 
(cont.). 

CF CF Action CF Change Effect 
CF6 activates longTermPredictions() operation  
CF6 realigns long-term predictions service 
CF7 realigns longTermPredictions() operation  
CF7 realigns LongTermPreferredStockValues 

state element 

5 SUMMARY AND FUTURE 
WORK 

This paper defines a CF to be a fragment of the 
signature of a system that is associated with global 
or local properties. The following kinds of CFs are 
defined: Service and Service Protocol, Operation 
and Required Service, Operation and Provided 
Service, Operation and Operation, Operation and 
State Element, Operation and Composite 
Component, Component and Component, and 
Required Service and Provided Service 
configuration. 
 For each kind of CF, relevant system model 
elements are activated, realigned, or deactivated 
during configuration leading to association, 
disassociation, or refinement when the CFs of 
system properties are regenerated from the CFs of 
change properties. 

Future work will investigate: 
• specific criteria that distinguish primitive 
(building block) CFs from more complex CFs and 
that distinguish reconciliation policies that apply 
between change and system properties, including the 
linkage among system or change property 
expressions and global and local consistency 
management; 
• general composition (Clarke 2001) and 
customized composition patterns when regenerating 
a system’s signature; and 
• satisfiability solvers to compute the 
reconciliation of change and system properties 
(Jackson 2002), including predicting the impact of 
updated system properties prior to regenerating a 
system’s signature. 
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