
TESTING-BASED COMPONENT ASSESSMENT FOR
SUBSTITUTABILITY

Andres Flores1 and Macario Polo Usaola2

1GIISCo Group, Departamento de Ciencias de la Computación
Universidad Nacional del Comahue, Neuquen, Argentina

2Alarcos Group, Escuela Superior de Informática Universidad de Castilla-La Mancha, Ciudad Real, Spain

Keywords: Component-based Software Engineering, Substitutability, Upgrade, Black-Box Testing.

Abstract: Updating systems assembled from components demand a careful treatment due to stability risks. Replacement
components must be properly evaluated to identify the required similar behaviour. Our proposal complements
the regular compatibility analysis with black-box testing criteria to reinforce reliability. The aim is to analyze
functions of data transformation encapsulated on components, i.e. their behaviour. This complies with the
observabilitytesting metric. A Component Behaviour Test Suite is built concerning the integration level to
be later applied on candidate upgrades. The approach is supported through a tool developed on our group,
testooj, which is focused on Java components.

1 INTRODUCTION

Maintenance of systems assembled from components
(i.e. component systems) involves updates by replac-
ing existing pieces with upgrades or totally new com-
ponents. This entails a highly risky situation, where
functioning systems stability can be seriously un-
dermined (Heineman and Council, 2001; Warboys
et al., 2005; Cechich et al., 2003; Jaffar-Ur Rehman
et al., 2007). Any upgraded component must be care-
fully managed, even those acquired from the same
provider. Missing behaviour is usually the main con-
cern, but unexpected functions may certainly bring
side effects to the system.

Our main concern is to maintain the integrity
of a component system, with the assumption of the
usual unavailability of component internal aspects
(e.g. source code), and being interfaces the only
accessible information for the required compatibil-
ity analysis. Our approach is focused on Java com-
ponents, which includes introspection facilities. This
is used to syntactically compare interfaces from a
component and its upgrade in order to recognize ser-
vice correspondences and mismatch cases (Flores and
Polo, 2007). Such results become input for a subse-
quent phase, which complements the regular compati-
bility approach by means of black box testing criteria.
This enforcement is based on theobservabilitytest-
ing metric (Freedman, 1991; Jaffar-Ur Rehman et al.,

2007) which observes the component operational be-
havior according to its output, as a function of its in-
put. Analyzing the expected input and output data,
and how data is transformed into another, provides a
reliable way to compare behaviour from components
– i.e. to achieve semantic analysis.

Specific testing coverage criteria have been se-
lected in order to design an adequate Test Suite TS
as a representation of behavior for components, i.e. a
Component Behaviour Test Suite. Such TS is previ-
ously developed for each component of an enclosing
system, to be later exercised on candidate upgrades
to observe behavior equivalence. Generation of Test
Cases is achieved through a tool support,testooj (Polo
et al., 2007), which includes an effective and simpli-
fied Meta-Model based on the OMG’s UML Testing
Profile (OMG, 2005). The tool additionally integrates
well-known testing frameworks like JUnit and Mu-
Java. Few extensions to the tool have allowed to be
able to apply the Component Behaviour Test Suite on
upgrades for compatibility.

The reminder of the paper is organised as follows.
Section 2 presents an overview of the whole approach.
Section 3 describes aspects concerning the Compo-
nent Behaviour TS. Section 4 presents the Syntactic
Evaluation phase. Section 5 describes the Test-based
Semantic Evaluation. Section 6 presents some related
work. Conclusions and future work are presented af-
terwards.

386
Flores A. and Polo Usaola M. (2008).
TESTING-BASED COMPONENT ASSESSMENT FOR SUBSTITUTABILITY.
In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 386-393
DOI: 10.5220/0001714103860393
Copyright c© SciTePress

2 TEST-BASED COMPATIBILITY
ASSESSMENT

The observability testing metric (Freedman, 1991;
Jaffar-Ur Rehman et al., 2007) is focused on an-
alyzing data transformations from input to output,
which helps to understand the functional mapping
performed by a component and therefore its be-
haviour. This may be used to expose a potential
compatibility between components – as discussed
in (Alexander and Blackburn, 1999; Cechich and Pi-
attini, 2007).

Whilst exploring functional mappings could be
extensive, focusing on specific aspects and repre-
sentative data might effectively accomplish the goal,
which could be conveniently addressed through a spe-
cific selection of testing criteria.

Based on the previous discussions our proposal
implies three main phases to undertake component
assessment for substitutability. The approach is
depicted in Figure 1. BeingC an original component
and K a possible substitute component, the whole
process involves the following:

1st Phase. A test suite TS is generated as a be-
havioural representation of a componentC. This TS
complies with specific criteria which help describing
possible interactions ofC with other components
inside a software system. For each component into
a system its corresponding TS is built with the only
goal to represent behaviour, not finding faults. This
will be fully explained in Section 3.

2nd Phase. Interfaces offered byC and a replacement
K are compared syntactically. For this the set of
services fromK must contain the services offered
by C. At this stage, At this stage, there can be
compatibility even when services fromC andK have
different names, and parameter order. The outcome
of this phase is a Map list where each service from
C may have a correspondence with one or more
services fromK. Details of this phase are given in
Section 4.

3rd Phase. ComponentK which has passed the in-
terface compatibility must be evaluated at a semantic
level. The TS built forC in the first phase, is now
executed againstK in order to find the true service
correspondences from the Map list generated in the
second phase.For this, the list is processed to build
a set of wrappers (W) for K. The ultimate goal is to
find a wrapperwi to replaceC and allow currentC’s
clients to interact withK’s interface. To achieve this,
each wrapperwi ε W becomes the target class under

test by running the TS fromC. After the whole setW
has been tested, results are analysed to reveal if can be
concluded that a compatibility has been found. This
also implies that at least one wrapperwi ε W can be
suitable to allow tailoringK to be integrated into the
system as a replacement forC.

Select component C

Generate TS for C

:Test Suite :CTestResults
Select component K

Interface Compatibility

from C and K

Generate

Wrappers for K

:Interface

Matching List

:Wrappers

Run TS of C on

ithWrapper

Evaluate Results

:WTestResults

[Yes]

[No]

Select Wrapper
:selected

Wrapper

[until last wrapper]

3rd Phase

2nd Phase

1st Phase

Figure 1: Test-based Compatibility Approach.

Next sections provide detailed information on
each step. The application of the process is illustrated
by means of the following case study.

2.1 Case Study

The case study uses a Java calculator,JCalc, which
have been downloaded fromhttp://sourceforge.net,
whose main classes are shown in Figure 2(b).JCalc
has been mutated to create a component called
JCalculator, whose interface is shown in Fig-
ure 2(a). Let us considerJCalculator as the orig-
inal component, thereforeJCalc becomes its candi-
date upgrade.

A Component Behaviour TS has been created for
JCalculator which will be used for the semantic
evaluation. Following is explained how this step pro-
ceeds.

3 COMPONENT BEHAVIOR TS

In order to build a Test Suite TS as a behavioural rep-
resentation of components, specific coverage criteria

TESTING-BASED COMPONENT ASSESSMENT FOR SUBSTITUTABILITY

387

(a) JCalculator (b) JCalc

Figure 2: Original component (a), and replacement (b).

for component testing has been selected. The goal of
this TS is to check that a candidate componentK co-
incides on behaviour with a given original component
C. Therefore, each test case in TS consists of a set of
calls toC’s services, together with an Oracle which
determines its acceptance or refusal.

An overview of some relevant component cov-
erage notions is given as follows (Wu et al., 2001;
Jaffar-Ur Rehman et al., 2007). Beginning from a
lower coverage theall–interfacescriterion focuses on
individual services from each component interface,
which is calledall-methodsin (Gosh and Mathur,
2001). Thenall–eventsalso covers other not pub-
licly accessed events, thus coveringall-exceptions
described in (Gosh and Mathur, 2001; Wu et al.,
2000). Since different sequences of events may cause
distinct behaviours, each sequence should be tested
coveringall–context-dependence. Then similar to a
data flow strategy,all–content-dependencefocuses on
interfaces that may change values which affect be-
haviour of other(s). For this two cases apply:intra-
or inter-componentinterface dependence, where the
latter requires to design tests with a client and a
server component. Similarly for events in case ofall–
context-dependencecoverage (Wu et al., 2000).

Our Component Behaviour TS concernsintra-
component dependence, since this easy evaluating
components without extra requisites. In particular, we
implementall–context-dependencewhere regular ex-
pressions help describing events sequences – the al-
phabet is comprised of components services. Reg-
ular expressions describe a general pattern which is
referred to as the “protocol of use” for a component
interface. Since specific coverage criteria has been
proposed in (Mariani et al., 2004) for regular expres-
sions, we expose the relation with the previous com-
ponent coverage criteria, which explains why regular
expressions are an adequate implementation strategy
on our approach.

Considering the component service invocation,

i.e. all–interfacescriterion, a proper coverage is ad-
dressed by theall–alphabetscriterion for regular ex-
pressions. For example, the test suite{abc} satis-
fies the alphabets coverage for the regular expres-
sion a∗b(b|c). In addition, the set of operators
for regular expressions (e.g.‘|’, ‘∗’, etc) help de-
scribing every case of service sequences. Thus, the
so-calledall–operatorscriterion is almost equivalent
to all–context-dependence. However, it is required
to forceall–exceptionsto provide coverage forall–
events, which is explicitly done in our approach.

Events sequences can also be defined with Fi-
nite State Machines (Binder, 2000), which indeed can
be represented by regular expressions thus exhibit-
ing subsumes relations on criteria from both nota-
tions. For exampleall–transitionscriterion (called
all–edgesin (Mariani et al., 2004)) subsumesall–
alphabets. Howeverall–operatorsis a stronger crite-
rion thus subsumingall–transitions.

By means of thereflection mechanismelements
from Java component interfaces are collected to be
able to automate Test Case generation, since they
comprise the alphabet for regular expressions. Addi-
tionally, exceptions collected from services allow to
enforce the representation of components behaviour,
satisfying theall–exceptionscriterion. Thus, the reg-
ular expression based approach is properly comple-
mented to achieve theall–context-dependencecrite-
rion.

By means of the presented case study, is following
explained how the procedure to build the Component
Behaviour TS is carried out.

Select component C

Run TS on C

Evaluate Coverage
:CTest

Results

[coverage < threshold]

Set Test Data
Set Protocol of Use &

Generate Templates

:Test data

Files

:Test

Templates

Generate Test Files

[extend TS]

Set Constraints

:Constraints

Files

:TestSuite

Figure 3: Generation of Component Behaviour Test Suite.

3.1 Test Suite for JCalculator

In order to build a Component Behaviour TS for
JCalculator, we make use of thetestooj tool, which

ICEIS 2008 - International Conference on Enterprise Information Systems

388

involves some steps as can be seen on Figure 3. One
of the initial settings implies the protocol of use for
JCalculator, which could be as follows.

JCalculator putInBuffer [(setAdd | setSubtract |
setMultiply | setDivide) putInBuffer]+

setExpression evalExpression

Test templates describing service sequences are
generated according to the expected length of expres-
sions derived from the protocol of use. The minimum
length in this case would be 8, which derives 20 tem-
plates involving four expressions with only one math
service and sixteen others with an additional iteration
for the ‘+’ operator (to coverall–operators). Next
settings imply constraints, exceptions and test val-
ues. Figure 4 shows the test values (1,2,3) assigned
to putInBuffer service’s parameter, which will be
used in pairs according to the protocol of use – i.e. one
value before and after a call to a math service. Con-
straints which are edited the pre and postcode areas
(Fig. 4) are later inserted before and after the call
to a corresponding selected service. Some reserved
words are provided to manipulate some elements:ob-
tained for allocating the instance of the component
under test (CUT);argX references arguments for pa-
rameters – e.g.arg1 and arg2 for the two calls to
putInBuffer (Fig. 4).

Since the correct behaviour of a component may
require to throw some exceptions, they are collected
from services signatures to set when they should be
raised. For this, at the right bottom of Figure 4 is
shown how exceptions can be selected for each ser-
vice by setting that must be thrown upon a specific
test value. In this case study however no exceptions
were modeled forJCalculator.

In order to set the Oracle theAssertclass provides
some operations, which help to check the state of the
CUT. For the postcode ofevalExpression service
was usedassertTrue(Fig. 4). After this, test val-
ues can be combined with the 20 test templates (ser-
vices sequences) and constraints files (pre/postcode).
For this testooj provides four different algorithms:
each choice(Ammann and Offutt, 1994),antiran-
dom (Malaiya, 1995),pairwise (Czerwonka, 2006),
and all combinations(Grindal et al., 2005). Each
combination becomes a test case, in the form of
a testing method inside a test driver file which is
serialized and saved on a repository. In case of
JCalculator, 468 test methods have been generated
into a class calledTestJCalculator1, which repre-
sents the Component Behaviour TS - i.e. the goal for
this initial phase. In the following section is explained
the second phase of the process, which applies when a
candidate replacement component must be integrated
into the system.

Figure 4: Constraints, Exceptions and Test Values.

4 INTERFACE COMPATIBILITY

This second phase is focused on components inter-
faces, which are compared at a syntactic level. Its pro-
cedure has been updated from a previous model (Flo-
res and Polo, 2007). Concrete aspects related to Java
components are now considered, which mainly con-
cern facilities to access interfaces elements provided
by thereflection mechanism.

Four levels are defined for services when compar-
ing interfaces syntactically. (1)Exact Match: two
services under comparison must have identical sig-
nature. This includes service name, return type, and
for both parameters and exceptions: amount, type and
order. (2)Near-Exact Match: similar to previous,
though on parameters and exceptions it is relaxed the
order into the list, and also on service names it is ob-
served likely substrings equivalence. (3)Soft-Match:
two mutually exclusive cases are considered. First
one is similar to previous, though service name is ig-
nored and for exceptions it is relaxed to only iden-
tify the existence of any. Second one implies subtyp-
ing equivalence (Zaremski and Wing, 1997; Gosling
et al., 2005) for return and parameters, from where at
this level it is required, for service names: equality or
substring equivalence, and for exceptions: equality of
amount, type and order. (4)Near-Soft Match: similar
to the first case on the previous level, though consid-
ering subtyping equivalence for return and parameters
at this level.

The outcome of this step is a matching list charac-
terizing each correspondence according to the levels
above. Figure 5 shows algorithms for this step. As
can be seen, for each servicesC in C, it is saved a list
of compatible services fromK. For example, let beC
with three servicessCi, 1≤ i ≤ 3, andK with five ser-
vicessK j , 1≤ j ≤ 5. After the procedure the returning
matching list (HashMap) may be as follows:
{(sC1,{(n exact,sK1),(soft,sK2),(n soft,sK5)}),

TESTING-BASED COMPONENT ASSESSMENT FOR SUBSTITUTABILITY

389

(sC2,{(exact,sK2),(soft,sK4),(soft,sK5)}),(sC3,{(soft,sK3)})}

Since the number of services offered byC andK
may differ, every service ofC must have a correspon-
dence in the matching list. If a mismatch is found for
any original service, the process requires a decision
from an integrator. This could be either to provide
a manual service matching to continue with the pro-
cess or simply stop by concluding the incompatibility
of the candidate component. Algorithms on Figure 5
try to find matches initiating with strong constraints
and then following with the weaker ones (i.e. from
exact to near-soft). It is very important to identify
strong constrained matches because it reduces task in
the next phase.

In an object-oriented framework like Java, there
exists a set of methods that are inherited from theOb-
ject class (Gosling et al., 2005), which are always
present unless inheritance is not considered on the
evaluation. In some cases those methods may help
finding matching, however they usually do not give
interesting aspects for a comparison. Thus, the option
is to initially them, and when no match is found for a
given component service, suchObjectmethods could
then be included in the matching procedure.

4.1 JCalculator-JCalc Interface
Matching

Results from the Interface Matching between
JCalculator and JCalc, reveal for example that
service putInBuffer has a soft-match with two
services fromJCalc, and anear-exact–matchdue to
a substring equivalence, as shown in Figure 6. Four
other JCalculator services obtained asoft-match
with one service. Moreover, five other services
obtained 18soft-matches, two of them are actually
a near-exact–match, and a third one obtained fifteen
of them. Finally, the serviceclear obtained an
exact-matchand 17 soft-matches, as can be seen
on Figure 7. Soft-Matchesin this case study were
concerned only with ignoring the service name, since
no exceptions were found on neither both compo-
nents. The matching list obtained on this phase
gives the chance to discover a potential component
compatibility by providing information to build
wrappers for the test-based semantic compatibility.

5 BEHAVIOUR COMPATIBILITY

This phase does not only may give a differentiation
from syntactic similar services, but mainly assures
that syntactic correspondences also match at the se-
mantic level. This means the purpose is finding ser-

HashMap buildInterfaceCompatibility(Class C, Class K)

HashTable result= empty

foreach method_C in C.getMethods()

Array compatibles= empty;

result.put(method_C, compatibles);

loadCompatibleMethods(method_C, result, C, K)

endForeach

return result

end

void loadCompatibleMethods (Method method_C, HashMap result,

Class C, Class K)

foreach method_K in K.getMethods()

Array compatibles = result.get(method_C)

if exact_match(method_C, method_K)

compatibles.add("exact", method_K)

elseif near_exact_match(method_C, method_K, C, K)

compatibles.add("n_exact", method_K)

elseif soft_match(method_C, method_K, C, K)

compatibles.add("soft", method_K)

elseif near_soft_match(method_C, method_K, C, K)

compatibles.add("n_soft", method_K)

endIf

endForeach

end

Figure 5: Interface Matching Algorithms.

JCalc

void add(String s)

void addStringToList(String s)

JCalculator

void putInBuffer(String s)
1<<near-exact>>

void addToBuffer(String s)

<<soft>> 2

Figure 6: Near-Exact and Soft-Match forputInBuffer ser-
vice.

vices from a candidateK that expose a similar be-
haviour with respect to an original componentC. In
our approach this implies to exercise the Component
Behaviour TS on the componentK.

The automation of this phase is based on the syn-
tactic matching list, which is used to build a set of
wrappersW for componentK. Each wrapper will be
a class which can replace componentC, by includ-
ing the same interface. Wrappers thus act as adapters
(i.e. anadapter pattern(Gamma et al., 1995)) sim-
ply forwarding requests to componentK. The amount
of wrappers is set according to combinations from
the matching of services. Instead of simply making
a blind combination, we may get a reduced amount
through the previous syntactic evaluation.

The wrapping approach thus makes use of con-
cerns from interface mutation(Gosh and Mathur,
2001; Delamaro et al., 2001) by applying operators
to change service invocations and also to change pa-
rameter values. The former is done through the list
of matching services fromC to a K component. The
later, by varying arguments on parameters while call-
ing to aC service after setting one particular corre-

ICEIS 2008 - International Conference on Enterprise Information Systems

390

JCalculator JCalc

void clear()

void addPlus()

void addMinus()

void addMultiply()

void addDivide()

void addBufferToList()

void add0()

. . .

void add9()

void del()

void print()

1
void clear()

17

<<exact>>

<<soft>>

Figure 7: Exact and Soft-Match forclear service.

spondence from the matching list. For this, stronger
matching cases beginning fromexact–matchare con-
sidered to reduce the amount of wrappers. For exam-
ple theclear service from the case study, which re-
sulted with anexact-matchand the rest being initially
omitted. Whether no success is obtained, weaker
matching cases could then be considered to expand
possibilities.

After building wrappers, the testing step may pro-
ceed by taking eachwi ε W as the target testing com-
ponent and executing the Component Behaviour TS.
Test cases evaluation is done with the includedAssert
operation, which thus acts as the test oracle. Hence,
test cases produce a binary result: either success or
failure. The percentage of successful tests from each
wrapper determines its acceptance or refusal, i.e. ei-
ther killing the wrapper (as a mutation case) or allow-
ing it to survive. The greater the killed wrappers the
better, because it might facilitate making decisions on
compatibility for the component under evaluation.

5.1 Running JCalculator’s TS on
JCalc

In order to proceed with the semantic compatibil-
ity betweenJCalculator and JCalc it is required
to build the set of wrappers according to the syn-
tactic matching list, which in this case the would
be 286 in size. For this case study, however,
we have decided to initially follow a more con-
trolled experiment. Thus we have carefully ana-
lyzed specific cases ofinterface mutationto select
17 wrappers as follows: 1 wrapper with the true
services matching; 4 wrappers varying thesetAdd
service amongaddMinus, addBufferToList, add0
andadd9 – i.e. all with near-exact–match; 6 wrap-
pers varying thesetSubtract service- similar to
previous, but changing toaddPlus, and adding ser-
vices del and print; and 6 wrappers varying the
setExpression service - again similar to previous,
replacingaddBufferToList.

After that the Component Behaviour TS saved on
file TestJCalculator1 was executed against each

wrapper to check the semantic compatibility. For this
the tooltestooj launches the JUnit tool with the testing
file and iterating through the wrappers list. Figure 8
shows the results where only one wrapper passed suc-
cessfully the tests, therefore is the only that may sur-
vive (as a mutation case) which facilitates to make
decisions whether to accept of discard the candidate
replacement component.

Thus the survivor wrapper not only help discover-
ing compatibility but it also represents the artefact an
integrator requires when tailoring the candidate com-
ponent to be effectively assembled into the system.

50%

75%

77,78%

Amount of Wrappers % Success

100%

0,00%

2

5

11

8

Figure 8: Results of running JCalculator’s TS on JCalc.

5.2 Wrappers Set Reduction

The set of wrappers could grow quite high on size ac-
cording to matching cases identified on the Interface
compatibility phase. Though, most of them certainly
correspond to faulty versions. This means, many
wrappers into the set, in fact do not qualify as inter-
esting artefacts to be considered on an evaluation.

We have selected a second set of 29 wrappers that
representinterface mutationcases not considered on
the initial set. This means, weaker matching cases
were applied this time, though at leastsoft-matchis
considered since data types matching, which other-
wise do not pass the static type checking. The second
set of wrappers is based on the following: 2 wrap-
pers varyingputInBuffer service withsoft-matches
shown on Figure 6; 3 wrappers varying the math ser-
vices and based on the two previous wrappers plus
the wrapper with the true matching of the first set;
and 4 groups of 6 wrappers varyingsetExpression
service amongadd0, add9, del andprint; and also
taking the 3 previous groups.

Results can be seen on Figure 9, where one wrap-
per passed successfully the tests and the rest obtained
either zero or a very low percentage of success. This
means we have another wrapper which could actually
survive (as a mutation case), together with the first
wrapper of the first set. This second survivor wrap-
per is included into the first group of this second set,
where theadd(String s) service was taken (Fig. 6)
– it is in fact a true matching as well, though actually
inherited fromJCalc superclass.

TESTING-BASED COMPONENT ASSESSMENT FOR SUBSTITUTABILITY

391

2

9

1
17

8,33%

16,67%

100%

0,00%

Amount of Wrappers % Success

Figure 9: Results of 2nd Group of Wrappers.

This second survivor wrapper could pass unrec-
ognized in a normal process when only high match-
ing cases are considered. Nevertheless, the goal is
being able to properly recognize a semantic compati-
bility, which was perfectly achieved with the first set
of wrappers, that was even closer to find survivors on
most of their members. On the contrary, the second
set of wrappers besides the survivor was too far from
finding survivors. This means that the first set was
based on a stronger basis, which thus expose the im-
portance of the Interface Compatibility procedure.

6 RELATED WORK

Goals of the work in (Mariani et al., 2007) are very
similar to ours. It can dynamically build component
data and interaction models from where test suites can
be generated. A reduced prioritized test suite for com-
patibility purposes can be achieved thus becoming an
effective approach. Although our approach initially
requires to design a specific TS for compatibility pur-
poses, actually any previously developed TS could
perfectly be used. Even TS designed from specific
models could be applied by providing a Test driver
file enclosing the test cases in the form of methods,
which does not represent a complex task at all.

Other important related work is summarised
in (Jaffar-Ur Rehman et al., 2007) where approaches
concerning BIT (Built-in Testing), testable architec-
tures, metadata-based, and user’s specification-based
testing are properly covered. A main initial differ-
ence with those approaches concerns the underlying
purpose, which implies to assure a proper component
execution, which most them are based on strategies
to find faults. However, our approach has a com-
pletely different purpose, far from trying to find faults,
the process intends to observe a compatibility on be-
haviour. This is achieved through valid configurations
of test cases, i.e. those that do not fail during testing.
Even for exceptions the intent is to recognize their
presence at specific and controlled circumstances.

Regression testing is closely related to our goals,
which as explained in (Orso et al., 2007) generally try
to apply reduction strategies on a TS in order to im-

prove efficiency without losing safety, i.e. exposing
expected faults on targeted pieces. This is achieved
by identifying parts affected by changes on successive
versions and recognizing “dangerous” testing factors
- e.g. paths, transitions, branches, sentences, etc.
However, such reduction strategies are based on some
knowledge about the changed pieces, that is, source
code (white-box) or specifications (black-box). Our
approach, on the other hand, assumes no existence of
other information but the one accessible through the
reflection mechanism. Additionally, candidate com-
ponents are not assumed to be actual new versions
of an original component. Therefore, no identifica-
tion could be done of changed pieces, which thus ex-
pose the usefulness of our approach, which is trying to
distinguish behaviour compatibility between an origi-
nal component and an a priori unknown candidate re-
placement component.

7 CONCLUSIONS

Our work is focused on maintenance stage where
component-based systems must be updated by inte-
grating upgraded components. We propose an ap-
proach based on testing criteria to describe compo-
nents behaviour with the purpose of analyzing com-
patibility on candidate upgrades. The approach thus
integrates two aspects: compatibility evaluation and
testing tasks, which therefore reduces effort for com-
ponent integrators without missing concerns on relia-
bility. A tool support gives automation to several parts
of our approach,testooj, which is properly adjusted
on every improvement we are performing to our pro-
posal. This helps reducing time and effort and also
enforcing control over conditions of each phase in or-
der to achieve a rigorous approach. A next step will
be focused on changing the way test results are de-
scribed. This concerns exceptions related information
and the component state after executing testing files,
which will be saved on separated XML files. This
may improve decision making by quality information
from every execution on wrappers for candidate com-
ponents. Another aspect is related to test selection
for the Component Behaviour TS, where prioritisa-
tion strategies could help to structure a manageable
set of test cases, in order to easy understanding on
component behaviour, therefore facilitating explain-
ing levels of compatibility. In order to validate the ap-
proach, more experimentation is required which will
be achieved through components provided at the SIR
repository1, in order to get visibility on results for

1The SIR (Software-artifact Infrastructure Repository,
http://esquared.unl.edu/sir)

ICEIS 2008 - International Conference on Enterprise Information Systems

392

external analysis.

ACKNOWLEDGEMENTS

This work is financially supported by UCLM–Indra
Software Labs. (Mixed Center of Research and
Development) and projects: CyTED–CompetiSoft
(506AC0287), UNCo–ISUCSoft (04-E0XX), and
UCLM–ESFINGE (TIN2006-15175-C05-05).

REFERENCES

Alexander, R. and Blackburn, M. (1999). Component
Assessment Using Specification-Based Analysis and
Testing. Technical Report SPC-98095-CMC, Soft-
ware Productivity Consortium, Herndon, Virginia,
USA.

Ammann, P. and Offutt, A. (1994). Using Formal Methods
to derive Test Frames in Category-Partition Testing.
In 9th IEEE COMPASS, pages 69–80, Gaithersburg,
MD, USA.

Binder, R. (2000).Testing Object Oriented Systems - Mod-
els, Patterns and Tools. Addison-Wesley.

Cechich, A. and Piattini, M. (2007). Early detection of
COTS component functional suitability.Information
and Software Technology, 49(2):108–121.

Cechich, A., Piattini, M., and Vallecillo, A. (2003).
Component-based Software Quality: Methods and
Techniques, volume 2693 ofLNCS. Springer-Verlag.

Czerwonka, J. (2006). Pairwise Testing in Real World. In
24th PNSQC, pages 419–430, Portland, OR, US.

Delamaro, M., Maldonado, J., and Mathur, A. (2001). In-
terface Mutation: An Approach for Integration Test-
ing. IEEE Transactions on Software Engineering,
27(3):228–247.

Flores, A. and Polo, M. (2007). Software Component Sub-
stitutability through Black-Box Testing. In5th Intl
Workshop STV’07, during ICSSEA’07, Paris, France.

Freedman, R. S. (1991). Testability of Software Compo-
nents. IEEE Transactions on Software Engineering,
17(6):553–564.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Gosh, S. and Mathur, A. P. (2001). Interface Mutation.
Software Testing, Verification and Reliability, 11:227–
247. http://www.interscience.wiley.com.

Gosling, J., Joy, B., Steele, G., and Bracha, G. (2005).
JavaT M Language Specification. Sun Microsys-
tems, Inc. Addison-Wesley, US, 3rd. edition.
http://java.sun.com/docs/books/jls/thirdedition/html/
j3TOC.html.

Grindal, M., Offutt, A., and Andler, S. (2005). Com-
bination Testing Strategies: a survey.Software
Testing, Verification and Reliability, 15(3):167–199.
http://www.interscience.wiley.com.

Heineman, G. and Council, W. (2001).Component-Based
Software Engineering - Putting the Pieces Together.
Addison-Wesley.

Jaffar-Ur Rehman, M., Jabeen, F., Bertolino, A., and Polini,
A. (2007). Testing Software Components for Inte-
gration: a Survey of Issues and Techniques.Soft-
ware Testing, Verification and Reliability, 17(2):95–
133. http://www.interscience.wiley.com.

Malaiya, Y. (1995). Antirandom Testing: Getting the most
out of Black-box Testing. InIEEE ISSRE, pages 86–
95, Toulouse, France.

Mariani, L., Papagiannakis, S., and Pezzè (2007). Compat-
ibility and Regression Testing of COTS-component-
based software. InIEEE ICSE, pages 85–95, Min-
neapolis, USA.

Mariani, L., Pezze, M., and Willmor, D. (2004). Generation
of Integration Tests for Self-Testing Components. In
Workshop ITM-FORTE, LNCS 3236, pages 337–350,
Toledo, Spain. Springer-Verlag.

OMG (2005). UML Testing Profile - Version 1.0. Technical
Report formal/05-07-07, Object Management Group,
Inc. http://www.omg.org.

Orso, A., Do, H., Rothermel, G., Harrold, M. J., and
Rosenblum, D. (2007). Using Component Metadata
to Regression Test Component-based Software.Soft-
ware Testing, Verification and Reliability, 17:61–94.
http://www.interscience.wiley.com.

Polo, M., Tendero, S., and Piattini, M. (2007). Integrating
Techniques and Tools for Testing Automation.Soft-
ware Testing, Verification and Reliability, 16(1):1–37.
http://www.interscience.wiley.com.

Warboys, B., Snowdon, B., Greenwood, R., Seet, W.,
Robertson, I., Morrison, R., Balasubramaniam, D.,
Kirby, G., and Mickan, K. (2005). An Active-
Architecture Approach to COTS Integration.IEEE
Software, pages 20–27.

Wu, Y., Pan, D., and Chen, M.-H. (2000). Techniques of
Maintaining Evolving Component-based Software. In
16th IEEE ICSM, page 236, San Jose, CA, USA.

Wu, Y., Pan, D., and Chen, M.-H. (2001). Techniques
for Testing Component-based Software. In7th IEEE
ICECCS, pages 222–232, Skovde, Sweden.

Zaremski, A. M. and Wing, J. (1997). Specification Match-
ing of Software Components.ACM Transactions on
Software Engineering and Methodology, 6(4).

TESTING-BASED COMPONENT ASSESSMENT FOR SUBSTITUTABILITY

393

