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Abstract: In the process of searching classification rules for multivariate categorical data, it is crucial to find a quick 
start to locate the combination of levels of input and response variables which can contribute to the most 
correct classification rate for the response variable. Fisher’s linear discriminant function is proposed to 
select some important input-variable candidates; then, correspondence analysis is used to ascertain that the 
level of candidates is closely related to the appropriate level of response variable. The closest linkage 
between input variable and response variables is chosen as the rule for each input-variable candidate. The 
algorithm is applied to the hospital data of patients whose CT scan diagnosis awaits a decision. The result 
shows that my algorithm is not only quicker than an exhaustive search but the result is also identical to the 
optimum solution by exhaustive search in terms of the correct classification rate. The correct classification 
rate is about 80%. Finally, two parallel coordinate plots of the 20% mistakenly classified data and the 
corresponding correctly classified data are compared, showing their mutual confounding and explaining 
why the correct classification rate cannot be further improved.  

1 INTRODUCTION 

Patients sent to the emergency unit of a hospital 
need immediate care to save their life. To attend to 
patients in an appropriate manner, correct treatment 
is crucial, leading to the issue of making a correct 
diagnosis. In this investigation a data set on 959 
patients sent to a local hospital within a certain 
period of time for emergency care is collected. The 
on duty physicians face the decision whether the 
patients need head-computed tomography (HCT), 
more commonly known as computed axial 
tomography (CAT or CT scan). Since each patient 
differs, a rule based on the physical characteristics 
(such as blood pressure, breath, mental status, and 
triage level, etc.) of the patient should be formulated 
to help the physician make an appropriate decision 
on the need for HCT. The first 80% (767) of the 
original data is used as a training set to establish the 
rule; whereas, the second 20% (192) is used as test 
data to demonstrate the effectiveness of the rule. 

The data set contains seven independent 
variables, A1-A7 (such as sex, age, triage level, 

mental status, breathing rate, diastolic blood 
pressure and pulse rate) and one response variable, 
HCT (D). The medical data are further classified by 
the physician as in the contingency table shown in 
Table 1 in  Appendix A. Note that D has two 
meanings: (1) the response variable of the HCT, 
being the highest standard determined by the on-
duty physician, and (2) the result determined by the 
classification rule. At first the double meaning might 
be somewhat confusing, but it eliminates the need to 
define another variable, as should be clear from the 
context as this report proceeds. 

A simple and direct way to solve the problem is 
enumeration, an exhaustive method. In the single-
variable rule search, there will be 2 p  ways to 
classifiy a categorical input variable with p levels 
into a response variable of 2 levels . For example, to 
find the best rule for variable A3 (with three levels) 
which will provide the most correct classification via 
HCT (with two levels), the correct rate for the 
following six rules must be computed: (A3=1, D=1), 
(A3=1, D=2), (A3=2, D=1), (A3=2, D=2), (A3=3, 
D=1), (A3=3, D=2). Since there are seven 
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independent variables and each is classified as 2, 5, 
3, 4, 3, 3 and 4 levels, 2*(2+5+3+4+3+3+4)=48 
rules need to be evaulated. The classification rule 
(A3=1, D=1) means that if the patient’s triage level 
is 1, he/she needs to have the HCT. This decision is 
applied to the training data; however, it may be 
incorrect according to the criterion of response 
variable D. Thus, a correct rate can be calculated, 
and the highest correct rate chosen. In this case, 
when dealing with only one independent variable, 
the obtained rule is applied to the test data set to 
determine whether this rule can render a similar 
correct classification rate. This type of selection 
procedure can be applied to the two independent 
variables. When variable 1x  has 1l  levels and 

variable 2x  has 2l  levels, then there are 2 1 2l l  
rules to be evaluated. In this case study, there will be 
2*(2*5+2*3+2*4+2*3+2*3+2*4+5*3+5*4 
+5*3+5*3+5*4+4*3+4*3+4*4+3*3+3*4+3*4)= 404 
rules altogether. Clearly, evaluating each in 
succession is very time consuming; therefore, a 
faster, more reliable method should be sought. For 
this purpose, two multivariate techniques are used to 
solve the problem in sequence. First, Fisher’s linear 
discriminant function is built and important input 
variables selected. By following the correspondence 
analysis, the level from the input variable closest to 
the level of the response variable can be selected as 
the classification rule. For example, variable triage 
(A3) is considered to be one of the most important 
of the seven independent variables. Then, a 
Euclidean distance can be derived between the level 
of independent variable  A3 and the level of decision 
variable D. The shortest distance between them is 
chosen as the classification rule for input variable 
A3. By extending the aforementioned procedure for 
a single variable to two variables, a combination of 
composite rules to determine the optimum correct 
classification rate can be established, in this case 
about 80%. Finally, two parallel coordinate plots of 
the 20% mistakenly classified data and the 
corresponding correctly classified data are compared, 
showing their mutual confounding and explaining 
why the correct classification rate cannot be further 
improved. Although Fisher’s linear discriminant 
function and correspondence analysis are two well 
known techniques in multivariate analysis, using 
them together to find the classification rule for 
multivariate categorical data is unusual. Fisher’s 
function is mostly used to classify multivariate 
continuous data into various categories. In the 
literature, one can find its application to face 
detection (Yang, Kriegman and Ahuja, 2001) and its 

combination with linear programming (Lam and Moy, 
2003). Used to detect the root of two categorical 
variables. Correspondence analysis can be used in 
the ecological study of animal populations (Allombert, 
Gaston and Martin, 2005).  

2 FISHER’S LINEAR 
DISCRIMINAT FUNCTION 

Suppose that there is a sample data set X  of 
multivariate variable x  composed of samples jX  

with sample size of jn , 1, 2, ,j J= L , from J  
populations. To obtain the optimum classification 
rule for multivariate sample X , Fisher suggests 
finding the linear combination of Ta x  which 
maximizes the ratio of between-group-sum of 
squares to the within-group-sum of squares (Hardle 
and Simar, 2003),  

T

T

a Ba
a Wa

,                            (1) 

where B  is the between-group-sum of squares, 
defined as (Johnson and Wichern, 2003) 
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whereas, W  is the within-group-sum of squares, 
defined as 

( )( )
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inJ T
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i j

W x x x x
= =

= − −∑∑ .       (3) 

Note that ijx  represents the thj  sample from 

population i ; ix , the sample mean of population i ; 
x , the grand average of the total samples. The 
solution of vector a  is found in Theorem 1 (Hardle 
and Simar, 2003). 
 
Theorem 1. The vector a  that maximizes (1) is the 
eigenvector of 1W B−  corresponding to the largest 
eigenvalue. 
 
Now, the pertinent discrimination rule is as follows: 
Classify x  into group j  where T

ja x  is closest to 
Ta x . When J =2 is grouped, the discriminant rule 

is computed as follows: The corresponding 
eigenvector in Theorem 1 is 1

1 2( )a W x x−= − . 
The corresponding discriminant rule is 
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where iΠ  represents population i . 

Note that all the data are not assumed to be normal; 
the only assumption is that they are real numbers. 

After this short introduction to Fisher’s linear 
discriminant function, the focus is now directed 
toward its application to the hospital data. To sketch 
the eight variables of 767 data set, parallel 
coordinate plots are used. The result is shown in 
Appendix B. Since variable A1 is nominal and the 
analysis in Appendix B indicates that variable A1 
has no strong correlation with variable D. Fisher’s 
linear discriminant function with input variables 
(A2-A7) is found. Vector a  is [0.00023445, -
0.00079367, 0.00062467, 0.0020182, -2.9766e-06, -
0.00035162]T; the grand average x  is [3.4433, 
1.7901, 1.1917, 1.9974, 2.9126, 2.3051], the values 
in a  and x  corresponding to variables A2-A7. 
Then, the number of individuals coming from jΠ , 

which have been classified into iΠ  by ijn , are  
denoted. By applying the discriminant rule in Eq. (1) 
to the test data set, one has 12n =0 and 21n =48, the 
correct classification rate being 0.75. By examining 
the magnitude of the coefficients in a , it is clear 
that the three most important variables are A5 
(breathing), A3 (triage) and A4 (mental state); 
whereas, the least important is A6 (blood pressure). 
Thus, the correlation between the level of these 
variables and the CT level is investigated and the 
closest relationship between them in terms of the 
Euclidean distance searched. The closest is chosen 
as the rule to classify the patients who need HCT. A 
detailed explanation follows. 

3 CORRESPONDENCE 
ANALYSIS 

The aim of correspondence analysis is to develop 
simple indices showing relationships between the 
rows and columns of a contingency table, wherein 
row and column represents one category of the 
corresponding variables. The entry ijx in table Χ  
(with dimension (nxp)) represents the number of 
observations in a sample which simultaneously fall 
in the ith row category and the jth column category, 
for 1, 2, ,i n= L  and 1, 2, ,j p= L . Then the 

association between the row and column categories 
can be measured by an 2χ -test statistic defined as 

( )22

1 1
/  ,

pn

ij ij ij
i j

x E Eχ
= =

= −∑∑           (5) 

where . .

..

i j
ij
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x
=  with .ix  represents the sum in 

the ith row; . jx , the sum in the jth column; and 

.. .
1

n

i
i

x x
=

= ∑ , the grand total. Under the hypothesis of 

independence, 2χ  has an 2
( 1)( 1)n pχ − −  distribution. If 

the test statistic 2χ  is significant at the 5% level, 
investigating the special reasons for the departure 
from independence is worthwhile. To extract the 
elements of dependence, the principle of 
correspondence analysis (CorrAna) is brought into 
play. The CorrAna procedure first determines the 
SVD (singular value decomposition) of matrix C  
(nxp) with elements (Hardle and Simar, 2003) 

( ) 1/ 2/ij ij ij ijc x E E= − .               (6) 

When assuming that the rank of C  is R , the SVD 
of C  yields 

TC = ΓΛΔ ,                           (7) 
where Γ  contains the eigenvectors kγ (nx1) of 

TCC , Δ  the eigenvectors kδ  (px1) of TC C  

where k = 1,2,…,R and ( )1/2 1/ 2
1diag , , Rλ λΛ = L  

(where diag represents the diagonal matrix) with 

1 2 Rλ λ λ≥ ≥ ≥L  (the eigenvalues of TCC ). By 

defining the matrices A  (nxn) and B  (pxp) as 

( ) ( ). .diag  and diagi jA x B x= = ,    (8) 

one can calculate kr  (nx1) and ks  (px1), 

1, 2, ,k R= L  as 
1/ 2

1/ 2

,

,
k k k

k k k

r A
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−

−

=

=
                          (9) 

where point vectors [ 1r , 2r ] and  [ 1s , 2s ] are 
plotted onto a two-dimensional graph, called biplot, 
with n points in point vector [ 1r , 2r ] representing 

the n rows and p points in  [ 1s , 2s ] representing the 
p columns. Thus, the entire contingency table can be 
simplified as n+p points on the 2D graph. The 
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relationship between n points [ 1r , 2r ] and  p points 

[ 1s , 2s ] explains why rows and columns are not 
independent. 
Now, the correspondence analysis (CorrAna) is 
applied to the contingency table of variables A5 and 
D as an illustration, shown in Table 1. 

Table 1: Contingency table of variables A5 and D for 767 
Data. 

 HCT (D) 
1 2 

Breath 
(A5) 

<10/min 1 4 
10~24/min 249 510 
>24/min 3 0 

 
The corresponding R  of C for Table 1 is 1; 
moreover, vector 1r =[-0.2762, -0.0038143, 1.4253] 

and vector 1s =[0.13109, -0.064523]. Since R =1, 

there are no 2r  and 2s . A zero vector is substituted 

for 2r  and 2s  to make a 2D biplot, shown in Fig. 1. 
 

 
Figure 1: Biplot of variables A5 and D. 

Note that the two levels of response variable D 
(CTYes corresponding to HCT [D=1] and CTNo, 
HCT [D=2]), are close to the second level of 
independent variable A5. Examining the value of 1r  

(representing A5) and 1s (representing D), one may 
clearly observe that HCT (D=2) is closer to (A5=2) 
than HCT (D=1). The value of HCT (D=2) in Figure 
1 is -0.064523, being the second value in 1s ; the 
value of (A5=2), -0.0038143, being the second value 
in 1r ; the value of HCT (D=1), 0.13109, being the 

first value in 1s . The rule is then derived as if 
(A5=2); therefore, HCT should not be administered. 
Thus when the breathing level is normal, the patient 
does not need HCT. By applying this rule to the 
remaining test data, one has 12n =0 and 21n =47, the 
correct rate being 0.75521. Table 1 clearly indicates 
that the rule is optimum; hence, any other rule will 
yield a worse correct rate. The effectiveness of 
applying this rule to the test data can be clearly 
observed by scrutinizing the contingency table of 
variables A5 and D for the test data set, shown in 
Table 2. 

Table 2: Contingency table of variables A5 and D for 192 
Data. 

 HCT (D) 
1 2 

Breath 
(A5) 

<10/min 1 0 
10~24/min 47 144 
>24/min 0 0 

 
The rule can be applied to Table 2 to obtain Figure 2, 
where the correct result from the main rule （ if 

[A5=2] then do not administer HCT） is marked in 
red; whereas, the correct result from the congruent 
rule （if [A5≠ 2] then administer HCT） is marked 
in blue. The correct rate is (1+0+144)/192=0.75521. 
No other classification rule will result in a better 
correct rate. 
 

 
Figure 2: Classification rule with contingency table. 

By applying the same procedure to the contingency 
tables of variables A3 and D, and A4 and D, the 
correct rates of 0.70312 and 0.72396, respectively, 
are obtained. The rules derived are if (A3=1), then 
HCT (D=1); and if (A4=2), then HCT (D=1), 
respectively. These values indicate that when the 
triage level is 1, the patient needs HCT; and when 
the mental status is ‘to call’, HCT, respectively. The 
corresponding biplots are shown in Figures 3 and 4. 
For the sake of analytical completeness, the 
contingency tables of variables A1-A7 vs D for both 
the training and the test data sets are listed in 
Appendix C. 

M

281

MULTIVARIATE TECHNIQUE FOR CLASSIFICATION RULE SEARCHING - Exemplieied by CT Data of Patient



 

 

 
Figure 3: Biplot of variables A3 and D. 

 
Figure 4: Biplot of variables A4 and D. 

From the data reported in Appendix C and previous 
results, one may assert that analysis by Fisher’s 
linear discriminant function and CorrAna provides a 
quick start for identifying the important input 
variables for searching the classification rule. In this 
case the important input variables are A3, A4 and 
A5, being in agreement with the Chi-squares test on 
the contingency table shown in Appendix C. 
Furthermore, the rule provided by CorrAna is in 
very strong agreement with the exhaustive search, 
with only a small difference in the rule for A4. The 
rules by CorrAna for each important variable are: if 
A3=1 then D=1; if A4=2, then D=1; if A5=2 then 
D=2. These rules differ from the ones obtained by 
exhaustive search only in variable A4, where if 
A4=1 then D=2; however, there is no difference in 
the correct classification rate. 

The optimum correct classification rate by the 
single-variable classification rule is 0.75521, 
provided by the rule of input variable A5, where if 
(A5=2) then D=2. Further research is needed to find 

composite classification rules for two variables 
which, perhaps, would render a higher correct rate. 
The result of two-variable classification is explained 
below and listed in the combination of composite 
rules. 

4 OPTIMUM RULE OF 
COMBINATION FOR TWO 
VARIABLES 

Following the previous arguments, the combination 
rule for two variables is straightforward. For the 
sake of simplicity, only the procedure for finding the 
optimum correct rate is illustrated. Variables A3 and 
A4 are used to form a new variable, A9, where 

A9=(A3-1)*4+A4.                (10) 
Here A9, A3 and A4, in addition to designating 

the composite variable name, triage and mental 
status, also represent the level of the corresponding 
variables. Since the level of variable A3 is three and 
that of A4 is 4, the level of A9 indicates the 
combination level of A3 and A4, as shown in 
equation (10). For example, when A9=9 the equation 
denotes that A3=3 and A4=1. Theoretically, the total 
level of A9 is 12; however, in this case study it is 
only 10 because levels 11 and 12 of A9 are missing. 
Therefore, the frequencies of (A3=3 and A4=3) and 
(A3=3 and A4=4) are zero with regard to both levels 
of HCT response variable (D). Applying CorrAna to 
A9 with regard to response D, the biplot shown in 
Figure 5 is obtained. 

For a clearer display, the labels of the levels of 
response D are changed from ‘CTYes’ and ‘CTNo’ 
to ‘Y’ and ‘N’. It is clear from Figure 5 that levels 8, 
3, 4 and 2 are located to the left of ‘Y’ and levels 10 
and 9 to the right of ‘N’; whereas, the other levels 
remain between ‘Y’ and ‘N.’ Thus, it can be said 
that when (A3=2 and A4=4) or (A3=1 and A4=3 or 
4 or 2), then one should judge D=1; whereas, when 
(A3=3 and A4=2) or (A3=3 and A4=1), then D=2. 
Therefore, when the triage level is 2 and the mental 
status level is a coma, or when the triage level is 1 
and the mental status is unclear, one should judge 
HCT to be necessary. In such cases, the patients are 
in serious conditions; thus, administering HCT is 
appropriate and useful in diagnosing the root 
problem. However, when patient is in a level 3 triage 
and the mental status is clear or one capable of 
responding to a verbal stimulus, HCT is unnecessary. 
Note that in these two cases, the patients are in better 
condition, but that many patients do not fall into 
either of these stated categories. To overcome this 
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problem, the single rule of （ if A5=2, D=2） is 
applied to the remainder. 

It is worth noting that the single variable rule, the 
shortest Euclidean distance between the levels of the 
independent and the response variables is chosen as 
the classification rule; whereas, in the two-variable 
rule, the levels of the composite formed by the two 
variables on each side of the response variable is 
chosen as the composite rule. These principles are 
true because in the single-variable case, once the 
main classification rule has been set, its complement 
(congruent) is automatically determined. For 
example, in the case of A5 and D, as shown in 
Figure 2, once the main rule, if (A5=2) then D=2, is 
set, its complement, if (A5 ≠ 2) then D=1, is 

automatically determined. Note that (A5≠ 2) means 
that (A5=1 or 3). Therefore, once the destiny of 
(A5=2) is determined as D=2, the other choices of 
A5 have a pre-determined result. Thus, a reasonable 
choice for the classification rule can be based on the 
shortest linkage between the levels from the 
independent and the response variables. 

If the same argument is followed in the two-
variable case, then there is only one level in the 
composite variable A9 which can be associated with 
one of the two levels of D. The other values of A9 
will be assigned with the alternative value of D, a 
procedure which does not make good sense since the 
other values are not necessarily exclusive with the 
chosen value in the main rule. To clarify this point, 
an illustrative example is given as follows. If the 
shortest distance between level 5 of A9 and level 2 
of D is chosen as the classification rule, then by the 
same argument in single-variable, level 5 of A9 
should be associated with level 2 of D and other 
values (these include level 9, of course) of A9 
should be with level 1 of D. However, Figure 5 
clearly shows that level 9 of A9 should be associated 
with level 2 of D since it is closely associated with 
level 2 of D by the interpretation of correspondence 
analysis (Hardle and Simar, 2003). Thus, the only 
reasonable classification rule is to divide the levels 
of the composite variable into three regions with the 
levels of D as the demarcation points. With the 
levels in the middle region undecided, the levels in 
the left region are associated with the left 
demarcation point; whereas, the levels in the right 
region are assigned to the right extremity. Note also 
that the levels in the middle region can be classified 
later by the rule derived from the single variable. 
The optimum correct classification rate by these 
two-variable classification rules in addition to the 

single rule is 0.76562, with 12n =2 and 21n =43. A 
slightly better result is achieved than from the single 
variable rule where the correct classification rate is 
0.75521, with 12n =0 and 21n =47. 

 
Figure 5: Biplot of variables A9 and D. 

By examining the two misclassifications of 12n , 

one finds an additional rule to eliminate 12n : When 
(A3=1, A4>=3, A6=3) then D=2. This means that 
when the triage level is 1, the mental status is ‘to 
pain’ or ‘coma’, and the diastolic blood pressure is 
above 110 mm Hg (very serious high blood 
pressure), the patient should not be administered 
HCT because the situation is probably too dangerous. 
This is a special provision under the rule of stating 
that when (A3=1, A4>=3) then D=1, thereby 
indicating the importance of abnormally high 
diastolic blood pressure, a strong indicator to 
overrule the HCT decision under serious health 
conditions. 

At this point, the correct classification rate is 
0.77604, with 12n =0 and 21n =43. Note that 21n  
means the number of misclassified members, 
thereby these members are treated as not 
administering HCT (D=2) when in fact they need for 
administering HCT (D=1). Misclassifying D=1 as 
D=2 is more serious than that of D=2 as D=1 since 
the penalty for the former error is life or death; 
whereas, the consequence of the latter is merely a 
waste of CT resource utilization. Note that of 192 
patients only 48 patients were classified as D=1; 
moreover, of these 48, the classification was correct 
only five times. Since correct classification rate for 
the 48 patients was very low, it is worthwhile to 
investigate why 21n  cannot be reduced. By 

examining the sorted data of 21n =43, one notices 
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that the age factor has been overlooked. When 
considering the age factor (A2), a new rule is 
formulated to reduce 21n : when (A2=5, A3=1, 
A6=3) then D=1. This means that when the patient’s 
age is above 65 years, the triage level is 1, and the 
diastolic blood pressure is above 110 mm Hg, the 
patient should be administered HCT. When this rule 
is applied in addition to the previous composite rules, 
the correct classification rate is increased to 0.79167, 
with 12n =1 and 21n =39. The result of 12n =1 is an 
exception to the previous rule. Apparently, nothing 
can be done to further reduce the 21n . The parallel 
coordinate plot (PCP) of seven variables (A1-A7) 
for the data of 21n =39 is shown in Figure 6. 

 
Figure 6: Parallel coordinate plots of 39 hospital data. 

Several points are noteworthy. First, in comparison 
with Figure B1, Figure 6 has only one colour (black) 
since the data of 21n =39 are members of D=1 only. 
Second, there is no connection between variables A3 
through A6, thereby, indicating that the levels of A4 
and A5 are of single value. Indeed, A4=1 and A5=2, 
thus indicating that patients having a clear mental 
status and a normal breathing rate are easily 
misclassified as not needing HCT, an understandable 
error. Third, there are four age levels (2-5) instead of 
the five in the original setting. Each age level is 
connected with two triage levels except for age level 
2 of which is connected to only triage level 2. In 
comparison with the PCP in Figure B1, the pattern 
in Figure 6 is quite different, wherein each age level 
is connected to almost every triage level. Fourth, the 
diastolic blood pressure is shown only for levels 2 
and 3, thereby indicating that none of the patients 
has normal blood pressure. Moreover, the pulse 
levels are at 1-3, thus indicating that none of the 
patients has an unusually high pulse rate (greater 

than 120/min). Furthermore, there is no connection 
between A6=2 and A7=1, thereby indicating that no 
patient has blood pressure in the range of 80 to 110 
mm Hg and a pulse rate lower than 60/min. 

After a close examination of the sorted 39 data 
sets, another rule is discovered: if (A2=5, A3=1, 
A4=1) then (D=1). This rule indicates that when the 
patient is very old (more than 65 years) and has a 
triage level of 1 and a clear mental status, HCT 
should be administered. This rule will reduce one 
mistake in 21n , thereby rendering the correct 

classification rate of 0.79688 with 12n =1 and 

21n =38, the optimum discoverable solution. The 

PCP of the 21n =38 data set is shown in Figure 7. 
When comparing Figures 6 and 7, one notices that 
the line connecting the normalized value of A2=1 to 
A3=0 in Figure 6 has been deleted from Figure 7. 

There is no observable distinction between D=1 
from 38 patients and D=2 from 122 patients, 
extracted from 144 data sets, wherein D=2 in the test 
data has the response variable D=2 with A2>1 and 
A4=1 and A5=2 and A6>1 and A7<4. The 
aforementioned conditions set for D=2 are exactly 
the same as for the 38 sets except for D=1. The PCP 
of the 122 sets is shown in Figure 8. When 
comparing Figures 7 and 8, it is clear that if the line 
segments in each Figure are treated as elements in a 
set, then Figure 7 can be regarded as contained in 
Figure 8 in terms of the set concept, thereby 
demonstrating that since the 38 sets are prominently 
involved with the corresponding 122 sets, the two 
cannot be separated by any rule. For the sake of 
completeness, part of the XploRe (Hardle, Klinke 
and Muller, 2000) code is listed to illustrate the 
formulation of the composite rule in Appendix D. 
The self-explanatory code is similar to the c code.  

 
Figure 7: Parallel coordinate plots of 38 hospital data. 
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Figure 8: Parallel coordinate plots of 122 hospital data. 

5 CONCLUSIONS 

Two multivariate techniques have been proposed to 
clarify patients sent to an emergency room to wait 
for a decision on the administration of HCT. The 
959 data set were segmented into two portions, a 
767 training data set and a 192 test data set, after 
which Fisher’s linear discriminant function was used 
to find linear rule vector a . Since classification 
using rule vector a  in equation (4) is not practical 
for on-duty physicians, three important variables, 
such as triage (A3), mental status (A4) and breathing 
rate (A5), were chosen on the basis of the magnitude 
of the coefficients of a . Next, correspondence 
analysis was used to determine the simple 
classification rule most suitable for each variable to 
classify the need for administering HCT. The simple 
classification rule has the format of （if A5=x then 

D=y）where x and y are the levels of the input  (A5) 
and output (D) variables, respectively. The selection 
of the rule is based on the shortest Euclidean 
distance between the levels of the input variable 
(e.g., A5) and response variable D located on the x-
axis of a biplot. The case study demonstrated that 
output from the joint effort of the multivariate 
technique coincided with the exhaustive search, a 
promising result. The optimum correct rate is only 
0.75521 with 12n =0 and 21n =47 for the rule of (if 
A5=2 the D=2), meaning that if the patient’s 
breathing rate lies within the normal range of 
10~24/min, HCT is not needed.  

The extension of a single-variable classification 
rule to a two-variable one is straightforward, yet 
requiring a small modification for choosing the rule. 
First, a composite variable (e.g., A9) is formed by a 

linear combination of the two variables based on 
equation (10) so that each combination of the levels 
from the two maps into an integer level of the 
composite variable. Then typical CorrAna is applied 
to the contingency table formed by variables A9 and 
D, wherein a biplot is produced with points 
representing both the levels of the composite 
variable and response variable D. By taking the two 
points of the levels of D as the demarcation points, 
the x-axis can be cut into three regions: one to the 
left of the left extremity, the second between the 
demarcations, and the third to the right of the right 
extremity. Moreover, the levels in the left regions 
are assigned to the level of D at the left demarcation 
point, the levels in the right regions to the level of D 
at the right demarcation point, and the levels of the 
composite variable between to the level of D on the 
basis of the optimum classification rule from the 
single variable. The two variables selected are triage 
(A3) and mental status (A4), which render the 
highest correct classification rate among all 
combinations of two variables. The rules state that 
when (A3=2 and A4=4) or (A3=1 and A4=3 or 4 or 
2) D=1; whereas, when (A3=3 and A4=2) or (A3=3 
and A4=1), D=2. Thus, the correct classification rate 
is 0.76562 with 12n =2 and 21n =43. 

The correct classification rate can be further 
increased by examining the structure of the sorted 
but misclassified items in the test data set. The 
formulation of the composite rule for the case study 
is listed in Appendix D, with the correct 
classification rate of 0.79688 with 12n =1 and 

21n =38. The composite rules may be generally 
summarized as (1) when the triage level is 2 and the 
mental status is a coma, or when the triage level is 1 
and the mental status is unclear, HCT should be 
administered, and (2) when the patient is in level 3 
of triage and the mental status is one capable of 
responding to a verbal stimulus, HCT is unnecessary. 
Exceptional rules should be applied to patients older 
than 65 years (A2) and those with high diastolic 
blood pressure (A6). For example, (1) when the 
triage level is 1, the mental status is ‘to pain’ or 
‘coma’, and the diastolic blood pressure is above 
110 mm Hg (seriously high), the patient should not 
be administered HCT; (2) when the patient’s age is 
older than 65 years, the triage level is 1, and the 
diastolic blood pressure is above 110 mm Hg, the 
patient must be administered HCT. It is noteworthy 
that the variables of sex (A1) and pulse rate (A7) are 
not considered in the composite rules. 
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To show why the correct classification rate cannot 
be increased, two parallel coordinate plots of 
the 21n =38 data set being in D=1 and the 
corresponding 122 data set being in D=2 were 
compared. The two data sets had the same domains 
for variables A1-A7. The comparison indicated that 
since both are prominently involved (highly similar), 
they cannot be separated by any rule. Thus, no 
improvement can be made in the correct 
classification rate. 

ACKNOWLEDGEMENTS 

I grateful thank my colleague Prof. Paul Chen for 
both encouraging me to pursue this research and 
generally sharing his hospital data. I also express 
appreciation to Dr. Cheryl Rutlede, Department of 
English, DaYeh University, for her editorial 
assistance. 

REFERENCES 

Yang, M., Kriegman, D and Ahuja, N., 2001, Face 
Detection Using Multimodal Density Models, 
Computer Vision and Image Understanding 84, 264–
284. 

Lam, K. and Moy, J., 2003, A piecewise linear 
programming approach to the two-group discriminant 
problem –  an adaptation to Fisher’s linear 
discriminant function model, European Journal of 
Operational Research 145, 471– 481. 

Allombert, S., Gaston, A. and Martin, J., 2005, A natural 
experiment on the impact of overabundant deer on 
songbird populations, Biological Conservation 126, 
1– 13. 

Hardle, W. and Simar L., 2003. Applied Multivariate 
Statistical Analysis, Springer. Berlin. 

Johnson R. and Wichern D., 2002, Applied Multivariate 
Statistical Analysis, Prentice Hall. 5th, NJ, USA. 

Hardle, W., Klinke, S. and Muller M., 2000. XploRe 
Learning Guide, Springer. Berlin. 

ICEIS 2008 - International Conference on Enterprise Information Systems

286


