EXTRACTING CLASS STRUCTURE BASED ON FISHBONE
DIAGRAMS

Makoto Shigemitsu and Yoshiyuki Shinkawa
Graduate School of Science, Technology, Ryukoku University, 1-5 Yokotani, Ooe, Seta, Ootsushi, Shiga, 520-2194, Japan

Keywords: Object orientation, non-routine applications, software development, fishbone diagrams, education assistance
software.

Abstract: Current software development methodologies usually assume the existence of definite rules and processes in
target problem domains. However, in the software development for non-routine applications, this assumption
might decrease the productivity, and makes it difficult to identify the optimal solutions. The paper proposes a
development method for such software development using fishbone diagrams in order to analyze the require-
ments of stake holders, which can finally derive UML diagrams from the cause-result structure defined by
the fishbone diagrams. The method could improve the productivity of the above development, creating high
quality software specifications. We also show a case study on developing education assistance software using
the proposed method.

1 INTRODUCTION marize them to define the requirements through the
analysis. They are effective for developing routine
Software development methodologies usually include applications such as enterprise information systems
such tasks as “requirement elicitation”, “requirement Or embedded software. However, when we attempt
analysis”, and “requirement definition”, in order to o apply them to non-routine applications, we often
identify requirementsnamely to determine what the ~are faced with several difficulties, since there are no
system to be developed should do for resolving the definite rules and processes in such applications.
problems in a target domain (lan Sommerville, 1992). A trial and error approach, e.g. prototyping, has
There are different approaches to these tasks dependusually been used in such non-routine application de-
ing on the methodologies they employed. For ex- velopment. However, it causes low productivity or
ample, in astructured analysis and designethodol- it makes it difficult to identify the optimal solutions,
ogy (Demarco, 1979), the requirements are obtainedbecause of the lack of well defined methodologies or
through functional decomposition, focusing on the guidelines.
data flows and data transformations within atargetdo- This paper proposes a comprehensive approach to
main. The requirements are finally expressed as a seextracting and defining requirements in non-routine
of data flow diagrams in this methodology. On the applications by focusing on cause and effect rela-
other hand, in object orientation (Booch, 1993)(et.al, tions that are represented in the form of fishbone dia-
2000), the requirements are obtained through moregrams(Sue, 1995), which are often used in QC (Qual-
multifaceted analysis, e.gusage analysisscenario ity Control)(Dailey, 2005) activities. In addition, a
analysis or Class - Responsibility - Collaborator systematic procedure is also presented, which can
(CRC) analysis These analyses provide us with the transform the results of analysis into UML diagrams.
objects with their attributes, operations, and behav- After the requirements are represented in the form of
ior, along with the interactions between objects. The UML diagrams, we can follow the traditional devel-
requirements are represented using UML (Unified opment methodologies for designing, programming,
Modeling Language) (Miles and Hamilton, 2006) di- testing, and maintaining systems.
agrams, or other object oriented notations. A programming assistance system was used as a
These methodologies assume definite rules andtypical non-routine application in order to evaluate
processes in the problem domain, and we only sum- this approach. In this example, we examine the causes

460

Shigemitsu M. and Shinkawa Y. (2008).

EXTRACTING CLASS STRUCTURE BASED ON FISHBONE DIAGRAMS.

In Proceedings of the Tenth International Conference on Enterprise Information Systems - ISAS, pages 460-465
DOI: 10.5220/0001726904600465

Copyright © SciTePress

EXTRACTING CLASS STRUCTURE BASED ON FISHBONE DIAGRAMS

of the problems in programming education, and ex- the system to be developed, and to create accurate
tract the requirements from these causes to transformfunctional specifications. In the requirement anal-
them into UML diagrams for designing and program- ysis of routine applications, we usually follow the
ming the system. five steps of “extraction”, “analysis”, “specification”,
The paper is organized as follows. In section 2, we “validation”, and “maintenance”, and there are estab-
discuss essential problems in developing non-routine lished methodologies for these steps. However, few
applications. Section 3 introduces fishbone diagramsmethodologies are established for requirement anal-
which are used to identify the requirements in such ysis and definition in non-routine software develop-
application domains. We also propose a procedure toment.
identify the requirements and to transform them into The situation we are put in non-routine applica-
UML diagrams in the section. Section 4 shows a case tion resembles that of quality improvement problems
study of the proposed approach. in QC (Quality Control) management. In quality im-
provement, okaizen which is originated in Japanese
manufacturing industries, many unrelated factors as-
sociated with the quality have to be organized into
2 POSSIBLE PROBLEMS IN THE well-defined and structuredause and resultela-
DEVELOPMENT OF tionships. Similarly in non-routine application de-
NON-ROUTINE APPLICATIONS velopment, we have to deal with many fragmented
problems, requirements, facts, and constraints, which
must be summarized into specifications.
In the next section, we present how QC techniques
are applied to non-routine applications.

In general, there are two different categories of ap-
plications, from which we extract the requirements
for the software systems to be developed. The first
category is for routine applications, in which pro-

cesses, rules, and usages of the system are definitely

defined, and the second is for non-routine applica-3 TRANSFORMING FDM BASED

tions, in which those are vaguely defined or not de- REQUIREMENT DEFINITIONS
fined. Requirement analyses in traditional software
development methodologies assume the target do- INTO UML DIAGRAMS

main to be for a routine application. In cases of a non-

routi?_e} aptpliclation,_ we lisu;ellly dextractbthe :jequirte— 3.1 Requirement Analysis and
ment iteratively, using a trial and error based proto- : :
typing method,yand p?esenting prototypes to cIiepnts in MOd?"“Q of Non'ROUtm?
each iteration for mutual agreements. Consequently, Applications based on Fishbone
it causes low productivity or it makes it difficult Diagrams

to identify the optimal solutions. The requirement

analyses and definitions are regarded as important_inFDM (Fishbone Driven Method) that this paper pro-
large-scale software developments for routine appli- poses can relieve above mentioned problems in re-

cations, however a non-routine application develop- quirement analysis and definition for non-routine ap-

me_lnt IS lthsuaIIy; smlall—scalia Onfﬁ a;d n suc)fz; Ca;’e’plications, in which no procedures or system usages
agile sofivare CEvglopment riploas, e.g. (EX- are previously defined. Requirements for non-routine

treme Progrgmmmg_), are mor(re] §u[[ta|iz)le. . Atsha rdesultl, applications are usually ambiguous and difficult to ex-
a source code centric approach is taken in this devel-go . | addition, even if we can extract the require-

opment, which make it difficult to reflect the require- o4 it s difficult to organize them into specifica-

ments from chents and markets. tions, since there are few explicit relationships be-
One of the important roles of software develop- yeen each requirement. This ambiguity decreases
ersis torealize exacfcly the behavior and functionality ¢ productivity of the development of non-routine
of the system that clients or users expect. The“?fore’applications. Therefore, if there is a systematic way
software developers have to recognize what clients g organize ambiguous requirement into specification,

or users expect. This requires the developers to per-ihe ahove productivity would be improved.
form requirement analysis and definition before cre- Following is a brief procedure of FDM.

ating the functional specifications and module spec-

ifications of the software to be developed. Even in 1. We first extract the factors that cause the prob-
small-scale software developments, it is important to lems, from which client requirements arise, then
define the requirements and expectations of clientsto organize them using fishbone diagram.

461

ICEIS 2008 - International Conference on Enterprise Information Systems

2. We examine possible solutions corresponding to
each factor, and then define the optimal solutions.

Office environment

Long distance
between offices
¢ wd warehouses Staffs are reluctant
totake acall
Insufficient Staffs don't know Who
communication clients call for
capability Staffs don't have enough
Too many intra- time to take acall
company calls Alabor shortage.
Staffs don't

No staff available Few staffs cooperate

4. We divide the diagram into multiple parts that g T it it v —

compose sources of classes, based on a deter Tomdyts | sisrpacor I ol

. . . . inwork
mined criterion discussed later.

Inexperienced staffs

Few staffs on call processes

3. We design functional units of software, e.g. meth- ™
ods in JAVA, from the defined solutions. And we ™ | |l
replace each of the factors of fishbone diagrams offe

Two simultaneous|

Wlth the above methOdS. telephone calls

Staffs don't have confidence
in response

Staffs don't know jargons

Staffs don't know how
to operate a phone

There are no manuals
Staffs relay on other

Staffs are reluctant
totake a call

Difficult operations | Staffs cannot find Frantic Staffs camot hear wel

5. We derive UML diagrams using the above parts o gerstonms e clledprsin
and methods. Staffs don'tknow

how to forward a
call

As a typical example of non-routine applications, mmmmm{m
we pick up programming education support. The iy
clients of this application can enumerate the problems ..
with which they are faced, even though they do not
understand the requirements and specifications to be B i L
implemented.

For example, clients can state “we need a software

roduct that helps the students to understand pro- 4 : .

Sramming more gxactly", even though they do not Sn— Figure 2geexdigple gig¥ishbone diagram.
derstand the explicit requirements. The above state-)
ment implies the problems of “the students do not un- there is a problem, there must be some factors be-
derstand programming exactly”. Once we identify the hind it, and these factors alsq h_a_ve their factors behind
problem, we can find out the factors of it by analyz- them, unless they are not primitive ones. Such cause-
ing the problem, to which we think up the solutions. result relationships can be represented as hierarchical
Through these solutions, we can define the specifica-Structures. . . . _
tions for the software to be developed. Since these so- A fishbone diagram depicts these hierarchical
lutions can resolve the client’s problems implied, and Structures. For example, if there is a sales office
can be transformed into system specifications, which Showing low customer satisfaction with telephone re-
satisfy the system behavior that the clients anticipate, SPONSes, we can express this problem using the fish-
The transformed specifications are derived from prob- Pone diagram in Figure 1. In a fishbone diagram,
lem factors, and they reflect the optimal solutions. @n original problem is written at the right of the di-
Therefore they could be more excellent than those that@dram at the end of the main “bone”.The main possi-
created by prototyping. ble factors of this problem are written down in rect-

In this approach, it is important to analyze each angles at top or the bottom of the diagram at the end

problem factors and there relationships. FDM uses ©f the large bones off of the main bone. The factors
fishbone diagrams for this analysis. of the above each factor are drawn off of the above

large bone, which compose smaller bones. These fac-
. . . tors are decomposed iteratively in the same way un-
3.2 A_ Brief Introduction to Fishbone til the final factors are found out. As a result, cause
Diagrams and effect relationships of the problem are systemat-
ically expressed in this diagram. This diagram rep-
Quality Control (QC) often deals with vague require- resents the factors more understandable than enumer-
ments, e.g. “quick delivery to customers”, “decrease ated ones. In addition, all the possible factors can be
the defect ratio”, or “increase customer satisfaction”, found out through an exhaustive approach in fishbone
and in such cases, we have to obtain necessary in-diagram creation.
formation for quality improvement from verbal data.
This technique can be applicable to requirement def- 3.3 Mapping Solutions to Specifications
initions in non-routine applications, which include
many vague requirements. In this section, we briefly In order to examine whether fishbone diagrams can
introduce fishbone diagrams used in QC. be applied to requirement analysis of the software for
A fishbone diagram provides us with a systematic non-routine applications, we try to apply it to devel-
way to find out all the factors behind a problem. If opment of a programming education support system.

Customers don't
tell their names

Staffs take
long to
forward Staffs jump to conclusions

Indistinct speech
It is hard to hear
Customers know only
the pilot number
Customers know only the
pilot number

Nobody receives the Misunder
forwarded call standings
‘Wrong speech
Staffs don't
exactly Multiple
understand the calls at once
talk.

‘Too many requirements in a call

SI9ME} ||EO UO UOROEBISHES ISUOISND MO

‘They do not know an
item number

Too many inquiries Incomprehensible

Wrong listening style

462

EXTRACTING CLASS STRUCTURE BASED ON FISHBONE DIAGRAMS

As an example, we pick up such ambiguous require- can determine the class structure by deriving require-
ment as “we need a software product that helps the ment structure diagrams from fishbone diagrams of
students to understand programming more exactly”, the original requirements.
then analyze using a fishbone diagram. The above
client requirementimplies a background problemthat 3.4 Transforming a Requirement
can be expressed as “students do not understand pro- Structure Diagram into UML
gramming”. Therefore, the client requires the solu-
tion of this background problem.

This background problem is analyzed using a fish- . . .
bone diagram. Each factor that occurs in the fishbone !N 3:3, we discussed a way to derive class diagrams

diagram causes the problem directly or indirectly, and ;r_om f|shbo|ne (rj]l_agram_s using requwemhent ?_trﬁgture
the solution for it satisfies a part of the customer re- diagrams. In this section, we present how fishbone

quirement. For example, if a factor “dynamic algo- g!agrams _ar'e:érans%_fﬁrr?eltlj |n_to rehquwemen;[s_tructure
risms in a textbook are difficult to understand” occurs 929rams in - The following three translation ta-

in the diagram, there could be a solution “explanation PI€S aré used for the above translation.

using motion pictures”. This solution can be regarded e Assign a unique number for each factor in a fish-
as a part of the software function that the clients an- bone diagram, and then note these numbers in the
ticipate. Therefore, we can define the software spec- translation tablel.

ifications that the clients anticipate, by analyzing the o Foreach factor in the translation table 1, define the

programs behind the client requirements, and then by solution for it, in order to complete theanslation
designing a corresponding solution to each factor in table2.

the fishbone diagram, succeeded by expressing it as
the specifications. We call a fishbone diagram that . : . o
includes the corresponding solutions to factors as a :gr(?oa:rr]]dIggglghk:;]r?s\flgtri:ﬁ?;)g;ged with it, in order
“requirement structure diagram”. Each solution in a P . ')
requirement structure diagram represents a functionBY the translation table 2, we can analyze the detailed
to be implemented in the software specification, and réquirements which we can not obtain trough hear-
the solutions are categorized based on the factors ofind, and can define the solutions for each requirement.
the original problem. The most detailed level solu- Based on the agreement on the translation table 2 be-
tions are implemented as methods or functions, which tween the clients and the developers, the actors and
CompOSe the C|aSSeS Of the Software to be deve'oped‘the”’ behaYIor are def|ned, Wh.|Ch a.l’e aSSOC|a.ted W|th
This approach can be generalized as follows. Let each solutlon._ The above deflped items are |den§|cal
R be a client requirement, and R be a software specifi- 10 Use cases in UML. A “requirement structure dia-
cation that cannot be implemented by the client him- 9ram” is a fishbone diagram, each factor of which
self. We define generalized factors and solutions iter- Fepresents the solution that corresponds to the origi-

Diagrams

e For each solution in translation table 2, define ac-

atively in the following way. nalfactor. .
_ _ d In object orientation, class diagrams are most es-
1. A solution for the factoQy is denoted as)y, sential diagrams to develop software. A class is a set

wherep represents a series of natural numbers. of data and associated operations, which can be cat-
egorized based on its role or purpose. Each method
in a requirement structure diagram is classified based
on the purposes, and this classification is similar to
3. The highest level factors are denoted Qg that of the classes. A bone to which a method is at-
(n=1,2,...). tached directly represents the factor to be resolved by
the method, and the factor is regarded as a purpose.

h . di he original brob This purpose is also a solution for another purpose if
the requirement structure diagram, the original prob- 4 is qecomposed from another factor. A set of all the

lem Qy is considered to be resolved, and they satisfy ,o1hods can resolve all the factors reside in a fishbone
a part of the original requirement, that@,_n SR gijagram. Even though we can categorize the methods
holds. Consequentli}’ C UQ’; holds.Q; is asolu- jy any granularity based on the bone structure which
tion that the clients did not notice, and the one that is represents the relationship between purposes and so-
derived from the requirement structure diagram. The |utions, all the requirement structure diagrams always
most detailed level solutionfQ;} are regarded as have three major bone types, that is “main bones”,
methods or functions, and these are organized into“large bones”, and “small bones”, and other lower
classes. We can define ambiguous requirements, andevel bones might not included.

2. If a factorQ— has farther factors that cau
these factors are denoted@g_,, (n=1,2,...).

If we can implement the squtio@’_p, that occurin

463

ICEIS 2008 - International Conference on Enterprise Information Systems

Therefore, we define initial class categories based For each factor derived from the original factor “stu-
on the small bones, which any requirement structure dents do not understand programming”, define the so-
diagrams include. The modeling procedure is sum- lution for it and write it down to the appropriate place
marized as follows. in the diagram, and through the above mentioned
three translation tables, we can create the requirement
structure diagram shown in Figure 3. In this figure,
we consolidate duplicate solutions or methods into
one. From this requirement structure diagram, the use
2. Examine the background factors of the require- case diagrams, activity diagrams, sequence diagrams

ment to define the essential problem. are created. Through this example, we learned the
following lessons.

Firstly, we found that each method derive from
the translation table 3 represents the solution to the
4. Assign a unique number to each factor and tran- requirement from the clients, which are identified by

scribe them onto a table which is referred to as the fishbone diagram, and the set of these methods

a “transformation table 1". This table is used to reflect the original factor or problem in the fishbone

transform the fishbone diagram to a requirement diagram, that is, the original clients requirement.

structure diagram. Secondly, we found all the factors that are iden-

5. For each factor in the transformation table 1, find tified by the fishbone diagram are mapped into the
out the solution and its effects, then note it down Solutions in the translation table 2, and therefore all
to the table to create a “transformation table 2”. the identified problems can be thought to be resolved.

.) The specifications for these solutions satisfy all the

6. _Conﬂrm the customers wh(_ather each solution and gjients requirements. By FDM, we can define the
its effects satisfy their requirements. clients requirements explicitly to define the specifi-

7. Identify the actors and their activities which are cations.
associated the solutions in the transformation ta- Thirdly, we found we can define the specifica-
ble 2, then note them down to the table to create a tions in the early stage in the development, since we
“transformation table 3. can create the requirement structure diagram from the
fishbone diagram swiftly. Since all the specifications
are defined in the early stage of the development, we
can reduce the risk to fail the development because of
incomplete specifications.
Lastly, we found the classes are derived usually
9. Integrate the duplicate methods or classes into sin-from small bones, however in some cases, they are
gle ones through the requirement structure dia- derived from other bone types. For example, the
gram. factor “inconvenient lecture environment” in Figure
2 is mapped to the class name “assistance charac-
"er”in Figure 2 through translation tables. One of
the detailed factor “cannot see the instructor well”
11. Derive use cases from the actors and their activ-is mapped to the lowest class “assistance character”.
ities defined in the transformation table 3, and This lowest class includes the actual methods “dis-
then deploy them into activity diagrams and se- play the character”, “display speaking motion”, and
guence diagrams according to usual object ori- “display blinking motion”. As shown above, a class
ented methodologies. that is mapped from one of the most detailed factors
includes methods. This example represents the whole
procedure of FDM.

1. Determine the most important customer require-
ment from client statements and software usage
conditions through hearing.

3. Create a fishbone diagram for the problem with
the clients.

8. Replace each factor in the fishbone diagram with
the corresponding activity in the transformation
table 3 in order to create a requirement structure
diagram.

10. Define class diagrams based on the small bonesii
the requirement structure diagram.

4 A CASE STUDY

As stated in section 3.2, we assume a client claims 5 CONCLUSIONS

“we need a software product that helps the students

to understand programming more exactly”. If the In this paper, we proposed FDM (Fishbone Driven
factor of this requirement is defined as “students do Method) which can identify the non-routine require-
not understand programming”, the fishbone diagrams ments in such applications that no predefined pro-
from this factor can be depicted as shown in Figure 2. cedures or system usage are known. Using FDM,

464

EXTRACTING CLASS STRUCTURE BASED ON FISHBONE DIAGRAMS

Self study How to teach

\ 11-Few communications
\ between teachers and

1 3-Students can i § 15-Students cannot question
Physiological———rp) %, - not question K] 3
problems K A-There are not occasions to question| A-There are not occasions of questions

K B-Teaching materials are olt 16-Each teacher has

\ AThereisnosystemto 12-Bad

\queslinn teaching 3

itabjeMaterials N A-Teachers do not communicate

AThereis notwh A-Problems are not suitable' ATeachingmaterilsare ot \ eachother .

expound * \ suitable to requirements of user A-Studying classes s not enough
p \

13-Teaching materials i 17-Students are not
are not studied interested in programming

‘ different class style
ASleepiness

4A
y _ workbook s
), not suitable

2dtis difficult to

study by oneself AcThere are notinteresting

BThebisno * ", C'Students drop by teaching materials \an 3 18-Bad class styles
Voice comment + \ ¢, the wayside ATeachers do not support students %)
clow \ Bis difficult to understand 3 ATeachers keep having a
compramnsion xdynlnic algorism 14-absent ! > & same style if a reaim changes
A-Sleepy Adtis difficulttoseea Bdtis difficult to
K blackboard look at ateacher
5-Physiological Problems 4 '. '. 9-Bad class
6-Bad manner of Students ﬁ.p [+B-Bad lecture environment
H C-Students ABad voices» system of
AsStudents do not actvity stidy | cannothear systems voice
exponent voice 9-1-Bad mike

FTeachorsdonot mprave clsssyes |)

A-Teachers do not record a condition of aclass Adtis difficult to explain B-There o ot

e dynamic dealing for the sort explanations by motions
A-Teachers do not iteratively expound . .
C-Teachers do not understand parts that students hope vas ' ;

$adspeedofacass 4 . - [s :|n jorisms is. mn' a :nok
D-itis difficult to keep asuitable class speed=* P_- B 9 by
B ing rates are various C-Students cannot
look auto variables
Lectures

Figure 2: A fishbone diagram.

Exercise

Communication

4-r Input L e
\ § § Input
Character image 1 Receivig ~ Displajing N
Displaying a character «« ' KeyInput Answer record messages messages ,-' p—
Galculation of mouse motion « ; Aversion <—Lr Questions
Calculation of blink motion *» Check "-_

Sending

EAplaration chart s ., Calculation of explanation
Calculation of motion Improvement the

Calculation of.
subtitle strings **

voice . Displaying of explanation ™ Display
Playback of _ f Displaying v+ motion Input
voice M subtitie strings 4+ Determination whether
answers are right or not 41+ Sending
voice subtitie Setting questions questionnaire

urepy

f Voice character

Backing the lecture « Playback v+ Displaying character
K «++ Calculation of mouse motion
Controlling the Iwmm—‘J—; «Calculation of wwax Calculation of blink motion
o Voice date

Explanation character

+++Calculating subtitle strings
=+ Displaying subtitle strings

Advancing the lecture

SAVE s
[l subtite
time of key input, Tt oolculation of Motion Calculation of
numbers of times esthe sort *** the motion —
Key input +ux Displaying ofthe [gsus DN ofthe
. sort Chasctr dspy
|npm4.> Py

=+ Calculztion of the auto variable

«»+ Displaying the auto variable
Lecture

and code
Auto variable

Figure 3: A requirement structure diagram.

BupuuresBoid Apn3s o3 paey 131

diagrams, and class diagrams to complete require-
ment models. By applying FDM to the develop-
ment of a programming education support system,
we showed we could define appropriate class struc-
tures with methods from a single ambiguous client re-
quirement. In FDM, clients and developers can share
the translation tables which describe the requirements
and solutions explicitly, and as a result, we can easily
modify or add the functionality in the tables, without
any misunderstanding.

FDM assumes small scale development, since it
derive the solutions directly from requirements in
translation table 2. On the other hand, in large scale
software development, the requirements must be de-
composed in more detailed way than FDM. However,
FDM can deal with ambiguous requirements in non-
routine applications, in which no detailed require-
ments are predefined and no determined processes ex-
ist.

By applying FDM, we make it possible to de-
fine and analyze the ambiguous requirements in non-
routine applications, which are difficult to be dealt
with traditional methodologies. In addition, the func-
tionality of the system can be described systemati-
cally in translation tables and requirement structure
diagrams, and we can easily determine class struc-
tures. Therefore, FDM can increase the productivity
of small scale software developments in non-routine
applications.

REFERENCES

Booch, G. (1993). Object-Oriented Analysis and Design
with Applications Addison-Wesley Professional.

Dailey, K. W. (2005). The Kaizen Pocket HandbaolowW
Publishing Co.

Demarco, T. (1979)Structured Analysis and System Spec-
ification. Prentice Hall PTR.

et.al, I. J. (2000).0bject-Oriented Software Engineering
ADDISON-WESLEY.

lan Sommerville, P. S. (1992Requirements Engineering:
A Good Practice GuideWiley.

Miles, R. and Hamilton, K. (2006).Learning UML 2.0
O'REILLY.

we can reflect these requirements to the specifica-Sue; E. R. (1995). Cause-and-Effect DiagramsORIEL

tions. FDM adopts fishbone diagrams often used
in QC (Quality Control) management and examine
cause and effect relationships between the factors by
these diagrams. Through these examinations, we can
organize the procedures in order to analyze and de-
fine the non-routine requirements. From the defined
methods and requirement structure diagrams, we de-
rive use case diagrams, activity diagrams, sequence

465

