
TOWARDS A CLASSIFICATION SCHEME IN ORTHOGONAL
DIMENSIONS OF REUSABILITY

Markus Aulkemeier, Jürgen Heine, Emilio G. Roselló, Jacinto G. Dacosta
Departmento Informática, Edificio Fundición, Universidad de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain

J. Baltasar García Perez-Scholfield
Departamento de Informática, E.S.E.I., Universidad de Vigo, Campus As Lagoas, 32004 Ourense, Spain

Keywords: Classification, reuse, independence, contract, composition.

Abstract: The reuse of existing bits of code has emerged as a habitual practice in software engineering. Despite the
lively interest that has been directed towards this field, the major part of existent literature and publications
is based on concrete aspects and models of reuse what provides a fragmented and compartmentalized vision
of this domain. No holistic and unifying proposal exists that sorts the reuse domain as a conceptual software
characteristic in a comprehensive way. Related to this context, the present work contributes a three-
dimensional sorting model for reusable software artefacts. The three dimensions are independence, contract
specification and composition, identified as fundamental dimensions of reusable software artefacts.

1 INTRODUCTION

Code reuse appears, rather than architecture or
design reuse, reuse through evolution of
programming languages or any other type of reuse
like data reuse or code generators, as one of the
principle forms of reuse (Krueger, 1992; Prieto-
Díaz, 1993). This category implies the reuse of
software pieces or artefacts that contain some kind
of code, without changing their internal
implementation (e.g. the reuse of libraries of
functions, classes or components). Thus, this article
addresses the reuse of black-boxes, widely accepted
as the most important and efficient form of reuse
(Szyperski, 2002). We chose the term reusable
software artefact, or simply artefact, as concept to
designate in general any kind of software black-
boxes aimed to be reused.

Since the initial proposal of McIlroy (1968) that
anticipated the component based software
engineering (CBSE) (Heineman and Council, 2001),
the reuse of pre-existent code artefacts turned into a
common practice in software engineering. It aims to
facilitate the development of growing complexity
with higher efficiency, lower costs, in less time and
with better quality. Despite the high attention
attracted by this field, bibliography about software

reusability mainly bases on concrete aspects and
models of reuse, presenting thus a fragmented and
compartmentalized vision of this domain. Even
those works that propose a wider perspective (e.g.
Sametinger, 1997; Schäfer, Prieto-Díaz and
Matsumoto, 1994) lack a holistic and unified vision,
sorting the domain of reusability comprehensively as
a conceptual characteristic of software.

Due to the fact, that classification of a domain is
a fundamental step for its global understanding, for
the systematization of associated processes, and in
the development of evaluation and cataloguing
models, the interest in defining a global model of
software artefact reusability is evident. One of the
aspects that should be analyzed within this model is
the technological support since it is an indispensable
element to equip software artefacts with reusability,
attaining so a model for systematic reutilization that
produces real and quantifiable benefits. Aiming
towards this goal, this work proposes a model of
classification based on the separation of orthogonal
characteristics of reusable software artefacts from
the point of view of the underlying technological
support. Those orthogonal characteristics,
fundamental in the artefact categorization, are
presented like the three dimensions of the reusability

122
Aulkemeier M., Heine J., G. Roselló E., G. Dacosta J. and Baltasar García Perez-Scholfield J. (2008).
TOWARDS A CLASSIFICATION SCHEME IN ORTHOGONAL DIMENSIONS OF REUSABILITY.
In Proceedings of the Third International Conference on Software and Data Technologies - SE/GSDCA/MUSE, pages 122-126
DOI: 10.5220/0001875101220126
Copyright c© SciTePress

space, namely the independence, the contract
specification and composition.

In the remaining parts of the work the orthogonal
dimensions independence, contract and composition
are described respectively. Finally, the conclusions
are presented.

2 INDEPENDENCE DIMENSION

Before reusing an existing software artefact, it is
necessary to isolate it from its context and its
original environment, preferably by the support of
the underlying platform technology. This ranges
from the simple possibility to embed the code in a
function, class or module and this again in a
compiled library, to some further options like the
realization of remote system calls via a network.
Nevertheless, some dependencies generally remain
existent in the isolated artefact. Sametinger (1997)
calls them platform dependencies, using the term
platform in a very wide sense. He denotes, the less
the platform dependencies, the better the possibility
for reuse. The most important types of platform
independence that an artefact may exhibit are
exposed in the following subsections.

2.1 Application Independence

The application independence is the minimum level
of achievable independence, meaning that an artefact
can be used in some application different from the
one it was originally designed for, that is, the
minimum requirement to consider an artefact
reusable. Normally, application independence is
achieved by placing code within a library or a
module. The general difference between both is that
normally a module is used as a whole, whereas a
library may contain a collection of potentially
independent functions and classes from which
applications make just partial use.

In practice, various types of libraries have been
proposed which aim to provide this kind of
independence. We first point out the source code
libraries that may contain collections of definitions
of values, functions, classes, generic parts, etc. in
readable and editable source code form, sometimes
referred to as glass box type of reuse (Goldberg and
Rubin, 1995). The code is simply copied into the
new application thanks any kind of support
mechanism, like the include directive in C/C++. The
STL of C++ is an example for this kind of library.

A second type of library is the static library,
containing compiled code that can be reused by

including it into a new executable application
through a binder or linker. In Windows, those library
files normally have the ending .lib, or in Unix .a.

Dynamic libraries, as the third type of library,
also contain precompiled code that is, in contrast to
static libraries, connected with the executable
program during runtime. It is the loaders
responsibility to find the demanded library and load
it into the memory at the adequate time. This is the
case with Windows DLLs or shared objects in Unix.

2.2 Programming Language
Independence

The programming language independence can be
explained as the option to reuse a reusable artefact in
different programming languages and not only in the
one used to create it. In some cases, even existing
and precompiled binary files can be reused from a
language different from the one that was used to
create that file (for example an object file created in
C, reused by a program written in Smalltalk). This
represents a form of programming language
independent reuse, even though differences between
languages concerning their data types, procedures
calls and parameter passing often complicate its
application.

In order to obtain real language independence,
these problems have to be solved, normally by
establishing some language independent, binary
compatibility norm. The Component Object Model
(COM) (Box, 1997), for example, guarantees the
reusability of programming language independent
artefacts by describing their types and interfaces
with an independent interface definition language
(IDL) and the adoption of a specific format for
procedure calls and parameter passing. The
underlying platform cares for the calling process and
the type conversion via the so-called marshalling
process or later by the Common Type System (CTS)
that is used by all .Net compatible languages to
define their own set of types.

2.3 OS/Location Independence

This type of independence implies the possibility to
reuse a software artefact in different operating
systems and, in a further step, from different
locations in a network. The first case corresponds to
the portability of an artefact what may appear in
different ways: 1) The portability of source code,
which implies that compilers for different operating
systems are available to compile the same
programming language, often complemented by the
option to let the source code include instructions that

TOWARDS A CLASSIFICATION SCHEME IN ORTHOGONAL DIMENSIONS OF REUSABILITY

123

handle differences between different operating
systems, e.g. by processor directives in C/C++. 2)
Packages that contain different executable versions
for distinct operating systems, choosing
automatically the appropriate one. Examples are fat
binaries of programs like OpenStep, and fat or
universal binaries for different Mac OS versions. 3)
Virtual Machines that abstract the underlying
operating system, like the Java VM or CIL for .Net,
allowing source code to be executed on any system a
compatible virtual machine exists for.

The location independence goes beyond OS
independence by entering in the area of distributed
systems. It can be distinguished between a
homogeneous location independence where both the
origin and the target platform have to be identical,
e.g. DCOM, and a heterogeneous independence,
where the communication between different
components placed on different platforms and
machines is possible, e.g. CORBA, or Web Services
(WS). This level of independence can be achieved
through some kind of middleware or platform that
allows a remote call to a remotely installed artefact.

3 CONTRACT DIMENSION

An isolated reusable artefact needs to come with a
description about itself that is as precise as possible
in order to integrate it properly with another
application and avoid any unforeseen complications.
In fact, the description should not only explain what
the artefact exactly does, but rather guarantee its
functionality. Meyer (1992) called that a contract
between the client and the artefact.

Due to the focus on the technological dimension
of reusability, we do not refer to informal or human
readable contract but rather on some kind of explicit
and formal contract that can be automatically
verified. This concern is crucial for reuse, and
orthogonal to both independence and composition,
as it doesn’t specify how the artefact will be
integrated or connected with other ones, but only the
usable functionality or behaviour of this artefact. In
practice, the contract dimension can be broke down
in various levels of strictness, as exposed in the
following.

3.1 No Contract

In the most basic case, a reusable artefact does not
provide any contract at all. The artefact is not forced
to expose any information, not even parameters.
Examples for this are the Windows DLLs that

cannot contain contracts. Normally, if they are
dedicated to developers rather than to end-users,
they are delivered with some documentation or files
that contain all prototypes of the classes and
functions of the DLL, acting somehow as contract.
Other examples are applications for Unix shell. The
developer of shell scripts have to use help files or
test the output of the different shell commands to
correctly compose them, due to the missing formal
contract description that would allow for a automatic
verification.

3.2 Interface Signature

This contract level is about the most common format
of contracts. The basic and minimal information is a
formal syntactic description of the interface that can
be verified automatically, usually by a compiler. In
the case of functions and methods that description
normally consists of the name, the parameters and
the return values. Many technologies only use this
kind of contract description, e.g. COM, CORBA,
WS, as well as the most common programming
languages (Java, C#, C++, etc.) This eases that
reusable artefacts can be reused as black boxes on
those technologies.

3.3 Pre-, Post-Conditions and
Invariants

The pre-, post-conditions and invariants were
notably introduced with the programming language
Eiffel, at the same time when talking started about
more or less formal contracts between clients and
providers of a function. Pre-conditions, on the one
hand, are used to describe the required state of a
program or some other conditions which have to be
fulfilled to make use of the function. The post-
conditions, on the other hand, specify which
predicates must always be true just after the
execution of a function. Invariants describe
conditions that maintain stable and without change
throughout the whole interaction process with the
application. Some recent languages have adapted
this concept like for example ContractJ – an
implementation of Design by Contract Paradigm
based on Java 5 annotations –, AspectJ, plug-ins for
Eclipse or Spec# (Barnett et al., 2004), an
implementation of Design by Contract for C#.

3.4 Additional Implementation Details

One drawback of the previous contract model is its
limited expressiveness as also demonstrated by

ICSOFT 2008 - International Conference on Software and Data Technologies

124

Szyperski (2002) or Büchi and Weck (1999). One
example for that is the missing capacity to indicate
the existence of callbacks. Another problem is the
unnoticed violation of a contract that may occur
when implementation details of a base class change
that has dependency relation with subclasses. Then
some methods of the subclasses that had worked
before may fail if the contract won’t be adapted.

Furthermore it is difficult to express side effects
that a function may have with pre-, post-conditions
and invariants, e.g. adding changing variables or
member class variables to the function, changing
input parameters, creating new objects within the
function that outlast the working off of the function
or to release some objects within the function. Thus,
Büchi and Weck (1999) propose the idea of gray-
box reuse that exposes just some important
implementation details while others remain hidden.

Beside the information that refers to internal
implementation details, some other, non-functional
specifications might be important enough to form
part of the contract, e.g. execution speed, precision
of mathematical calculations, or behaviour in
concurrent environments, etc.

3.5 Semantic Descriptions

One problem that all methods and syntactic
description methods and languages share is their
lower expressiveness compared to their semantic
description. Therefore, the last level of the contract
scale is the semantic description. But because the
natural language is, due to its ambiguity, very
difficult to be read by a machine, the only possibility
to specify the semantic of an artefact is the use of
formal languages, as it is realized with Semantic
Web or Semantic WS.

Some existing approaches with better options to
express semantic are Kind Description Language
(KDL), Ontologies (Terzin and Nixon, 1999), Petri
Nets (Puder and Markwitz, 1995), or the usage of
agent languages like the Knowledge Interchange
Format (KIF) and the Knowledge Query
Manipulation Language (Terzin and Nixon, 1999).

4 COMPOSITION DIMENSION

In the context of software reuse, the term
composition is mentioned mainly in relation with
software components (Szyperski, 2002) and includes
various software engineering processes like
localization, understanding, modification and
component connection. As the presented work does

not limit software artefacts to components, but refers
furthermore to any kind of technological units in its
original form, the concept of composition will be
restricted to the most associative field of
composition, that is, to techniques that support the
connection between artefacts. Those techniques
differ between their strength of coupling.

In the following we present the identified levels
of composition.

4.1 Substitution

The strongest form of composition is realized
through text substitution of code fragments within
one application file. A sequence of code is provided
with placeholders at pre-defined positions. Usually
those indicators will be substituted at compile-time
through corresponding artefacts, sometimes even
later at run-time. Once, the substitution process has
been realized, it is not possible anymore to identify
the composed artefacts as single elements or
structures inside the resulting code. Examples for
substitution are macros used by assembler
languages.

4.2 Aggregation

A less tight level of coupling is aggregation. That is,
artefacts are combined and encapsulated into newer
and larger artefacts. Internally, artefacts may interact
directly between each other to provide a more
comprehensive functionality that can only be
accessed by external users through interfaces
provided by the encapsulating artefact. As the inner
architecture of the composed artefacts consists of
independent artefacts, later modifications or
enhancements are still possible. Some examples for
aggregation are nested functions from Algol, the
module encapsulation of Modula or Ada, or the
inheritance concept of object oriented programming
languages.

4.3 Cooperation

To attain a composition with even lesser coupling, a
model of cooperation can be used, where artefacts
remain conceptually and sometimes physically
independent, separated, identifiable and accessible
from outside. They may interact momentarily with
other artefacts without necessarily building new
coarse grained artefacts. An example for
mechanisms that allows for definition of cooperation
models are high-order functions in functional
programming languages. In that case, one function
uses other function without further strong

TOWARDS A CLASSIFICATION SCHEME IN ORTHOGONAL DIMENSIONS OF REUSABILITY

125

connection between both. The composition only
lasts as long as the process is active. Other examples
are mechanisms like the Unix pipe, composing two
or more applications, software components or WS.

4.4 Intermediation

While in the earlier described levels of composition
the artefacts are (in the latter case just temporarily)
compound directly with each other, intermediation
provides an indirect composition between two
artefacts realized via a mediator. From the client
point of view, this allows to a greater or lesser extent
for a transparent substitution of one artefact by
another. The basic form of intermediation is the
option to define interfaces, supported by different
programming languages, like Java or C#, which
allows the interface implementation to change in a
quite transparent form. A more sophisticated form of
intermediation is supported by a trader, e.g. CORBA
trader, that registers different implementations of a
service specification and chooses a concrete
implementation according to the requirements
demanded by the client that later calls this trader.

5 CONCLUSIONS

The systematic and efficient reusability of software
code is an activity that implies different aspects to be
supported by technology platforms. A detailed study
of those aspects should allow for achieving an
identification and ordination of implied dimensions
that later permits the construction of methods,
processes and tools for evaluation, measurement and
improvement of reusability. This kind of studies has
been realized so far in a more fragmented way,
focusing more on concrete reuse fields. To
contribute a more complete and global vision of this
field, it is necessary to tackle it from a wider and
more holistic perspective. This work provides a
contribution that wants to advance towards this aim,
proposing a structured classification of reusability in
three orthogonal dimensions, supported by the
technology that allows establishing an order of
increasing reusability grade. The increase of each
dimension also implies a higher level of abstraction.
Although this work is just a first introducing
exposition, we think that the theoretical interest is
obvious, contributing to the building of the general
conceptual fundaments of reusability.

REFERENCES

Barnett, M., Rustan, K., Leino, M., Schulte, W., 2004. The
spec# programming system: An overview, In CASSIS
2004 post-proceedings.

Biggerstaff, T.J., Richter, C., 1989. Reusability
framework, assessment, and directions. In Software
reusability: vol. 1, concepts and models. New York,
NY, USA: ACM.

Box, D., 1997. Essential COM. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc.

 Büchi, M., Weck, W., 1999. The greybox approach:
When blackbox specifications hide too much.
Technical report. Turku Centre for Computer Science.

Chang, H., Collet, P., 2007. Patterns for Integrating and
Exploiting Some Non-Functional Properties in
Hierarchical Software Components, In 14th Annual
IEEE International Conference and Workshops on the
ECBS '07, 83-92.

Goldberg, A., Rubin, K. S., 1995. Succeeding with
Objects: Decision Frameworks for Project
Management. Reading, Mass., USA: Addison-Wesley
Professionals.

Heineman, G.T., Councill, W.T., eds., 2001. Component-
based software engineering: putting the pieces
together. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc.

Kiniry, J.R., 1999. Leading to a kind description
language: Thoughts on component specification..
Technical report. Pasadena, CA, USA: California
Institute of Technology.

Krueger, C.W., 1992. Software reuse. ACM Computer
Survey, 24(2), 131-183.

McIlroy, D., 1968. Mass-produced software components.
In Proceedings of the 1st International Conference on
Software Engineering, Garmisch Pattenkirchen,
Germany, 88-98.

Meyer, B., 1992. Eiffel: the language. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc.

Nierstrasz, O., 1995. Research topics in software
composition. In Proceedings, Langages et Modèles à
Objets, Nancy, 193-204.

Prieto-Díaz, R., 1993. Status report: Software reusability.
IEEE Software, 10(3), 61-66.

Sametinger, J., 1997. Software engineering with reusable
components. New York, NY, USA : Springer-Verlag
New York, Inc.

Schäfer, W., Prieto-Díaz, R., Matsumoto, M., 1994.
Software reusability. Upper Saddle River, NJ, USA:
Ellis Horwood.

Szyperski, C., 2002. Component Software: Beyond Object-
Oriented Programming. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc.

Terzis, S., Nixon, P., 1999. Component trading: the basis
for a component-oriented development framework. In
Proceedings of the Workshop on Object-Oriented
Technology. London, UK: Springer-Verlag.

ICSOFT 2008 - International Conference on Software and Data Technologies

126

