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Abstract: We have seen a variety of frameworks and methodologies aimed at dealing with non-conformance in 
processes presented in the literature. These methodologies seek to find discrepancies between process 
reference models and data returned from instances of process enactments.  These range from methodologies 
aimed at preventing deviations and inconsistencies involved in workflow and process support systems to the 
mining and comparison of observed and recorded process data. What has not been presented in the literature 
thus far is a methodology for explicitly discerning the severity of instances of non-conformance once they 
are detected. Knowing how severe an instance of non-conformance might be, and therefore an awareness of 
the possible consequences this may have on the process outcome can be helpful in maintaining and 
protecting the process quality. Subsequently, a mechanism for using this information to provide some kind 
of recommendation or suggested remedial actions relating to the non-conformance for process improvement 
has also not been explored. In this paper we present a framework to address both these issues. A case study 
is also presented to evaluate the feasibility of this framework. 

1 INTRODUCTION 

Although research has been conducted in detecting 
deviations in processes in the past, very little 
research has been conducted in determining the 
severity of the non-conformance detected.  Knowing 
the severity of detected instances of non-
conformance is useful because it provides an 
indication of its possible implications.  Therefore a 
severity indicator can aid in the provision of 
recommendation information to the administrators of 
the process – another area in process improvement 
in which little work has been presented.  In this 
paper, we seek to provide a framework on how the 
severity of deviations and inconsistencies in 
processes may be ascertained and show how this 
information can be used to provide effective 
recommendations to process administrators. 

In order to be successful in detecting non-
conformance and ascertaining its severity, the 
process model must be defined and implemented in 
a formal and robust way.  Informal process 
definitions result in an array of problems with 
process control, transfer of process knowledge and 
adaptation to change (Rombach 1990). 

There have been a number of different approaches 
presented in the literature with the goal of detecting 
process deviations. These include an approach 
presented by Huo, Zhang, Jeffery (2006) based on 
process discovery, where they compare a discovered 
process model to a pre-determined reference model 
to find discrepancies.  Process discovery is a 
technique described in (Cook, Wolf 1998) where 
process data is mined in order to discover the 
process model from its enacted values.  A fuzzy 
logic approach such as in (Cîmpan, Oquendo 2000) 
was also presented, where again the idea is to 
compare a monitored process enactment to a 
reference model and take test for conformance.  Our 
own research presented in (Thompson, Torabi, Joshi 
2007) is also aimed at detecting inconsistencies and 
deviations where specific values are defined for 
process activity attributes and activity transitions 
which are tested against reference values as they are 
being recorded. 

In this research, we consider a “process” to be a 
set of one or more activities being smaller, simpler 
units or tasks which may be carried out sequentially, 
concurrently, simultaneously, overlapping or in 
parallel (Huo, Zhang, Jeffery 2006), (Rezgui et al. 
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1997). We also assume these activities are assigned 
to actors who are responsible for their enactment 
(Dowson, Nejmeh, Riddle 1990). 

The concepts of deviation and inconsistency we 
adopt from (Cugola et al. 1996) where the authors 
distinguish between the two. We consider the values 
that hold for a given state or activity within a 
process to relate to inconsistencies whereas the 
conditions that define the rules of transition between 
activities/states relate to deviations.  These 
assertions also hold in our previous research 
presented in (Thompson, Torabi, Joshi 2007) which 
is the test system we have implemented this research 
extension into.  When we use these terms, we are 
referring to the concept of “non-conformance” 
between a process prescription and an instantiation 
of its enactment. 

When a “deviation” or “inconsistency” is 
detected, we are measuring the difference between 
an actual system or process variable and its expected 
value (Reese, Leveson 1997). The magnitude of this 
distance and its likely implications is very useful 
knowledge to a process administrator.  If we are 
fortunate, a deviation may be considered to have 
only trivial consequences to the process goal or 
conversely even positive consequences.  If however, 
the consequences are dire, knowing this promptly 
can be useful knowledge to have in curtailing the 
possible damage. 

If we know how severe an instance of non-
conformance is, we can use this information to 
provide useful feedback to the appropriate person.  If 
the degree of non-conformance is minor, perhaps the 
responsible actor should be informed incidentally.  If 
it is critical, a manager in the process or organization 
may need to be informed along with possible 
remedies urgently. 

Predictably, processes which are executed more 
frequently are easier to define better boundary 
values for.  These processes are therefore conducive 
to the application of Statistical Process Control 
(SPC) in order to implement better constraints and 
boundaries upon the process activities, as SPC 
requires a large sample of data before SPC can be 
adequately applied (Wang et al. 2006). The success 
of Statistical Process Control in quality control in 
production lines and manufacturing (Card, 1994) 
saw its expansion into other areas, such as food, 
packaging, electronics and software development 
(Cangussu, DeCarlo, Mathur 2003). Back in 1990 
Lantzy argued that there was bias toward the 
application of SPC to manufacturing processes 
which are inherently different to the dynamic nature 
and changing parameters involved in the software 

process (Lantzy 1992). Nevertheless, SPC has since 
been successfully applied to the software process 
and has been applied in many worldwide high CMM 
level (4 and 5) organizations (Radice 2000). 

The three sigma gap from the mean used in 
Statistical Process Control provides an excellent 
mechanism for detecting out of control values while 
triggering very few false alarms (Florac, Carleton 
1999; Jalote, Saxena 2002; Florac, Carleton, Barnard 
2000).  It is also possible when observing out of 
control values as deviations, to determine exactly 
how far the value has deviated from the control 
limit, which gives us an idea of the deviations 
severity.  The further the value from the control 
limit, the higher the severity. 

Jalote et al (2002) argues that the key problem of 
SPC is to determine the uncommon causes of 
variation in a process such that the performance of 
the process can otherwise be predicted.  The types of 
control charts used in processes may vary depending 
upon how frequent data points are in the process. 
Processes like software processes have infrequent 
data points and so a XmR or U chart is more 
appropriate than for processes used in manufacturing 
where data points are more frequent. 

Another methodology to measure the process is 
the “six-sigma” methodology aimed at reducing 
defects in a given process such that it becomes as 
near perfect as possible.  A process with six-sigma 
quality is a process with no more than 3.4 defects 
per 1 million opportunities, where an opportunity is 
a chance for the process to not conform (VanHilst, 
Garg, Lo 2005; Ferrin, Miller, Muthler 2005). 
Investment in improving a process beyond six-sigma 
is thought not to be cost-effective (VanHilst, Garg, 
Lo 2005). 

The approach presented in this paper has two 
distinct goals.  Firstly, we provide a framework for 
how severity may be measured in process 
inconsistencies and deviations both for numeric and 
non-numeric data types, which appears in section 2.  
Secondly in section 3, we show how this information 
can be useful in providing appropriate feedback 
which can be useful for process administrators.  
Section 4 provides an evaluation and conclusion for 
this paper. 

2 SEVERITY 

The notion of “severity” in this research is related to 
the effect non-conformance may have on a process.  
Therefore, we are concerned with not only the 
magnitude of difference between an actual value and 
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its expected value, but also the consequences this 
anomaly may have on a) its associated activity (if 
applicable) and b) the process as a whole. We tackle 
this problem by first calculating the margin of 
difference in its own right, and then applying 
modifiers to the initial severity depending on the 
importance of the underlying values within the 
process, which is explained in section 2.3. 

Given the distinction between the concepts 
“inconsistency” and “deviation” cited in (Cugola et 
al. 1996), determining severity in each is handled 
slightly differently.  The initial severity rating of 
numeric and non-numeric data must be determined 
differently given the nature of the data.  The major 
problem here is calculating the severity of both data 
types in such a way that the resulting severity ratings 
are relative to one another within the scope of the 
process. Also, as we explained in (Thompson, 
Torabi, Joshi 2007), deviation data is always related 
to the transition of process activities and therefore 
always “non-numeric” in nature.  Inconsistency data 
however may be numeric in nature and also can 
related to the process as a whole, not just specific 
activities.  Examples of process wide inconsistency 
types from (Thompson, Torabi, Joshi 2007) include 
instances such as “too many exceptions” or “illegal 
activity count”. 

In the interests of simplicity, every deviation and 
inconsistency detected may be given a simple rating 
when first detected, according to the scale portrayed 
in figure 1: 

 
Figure 1: Severity Scale. 

If for some reason, a deviation or inconsistency is 
detected but the severity is indeterminable, we rate it 
“NA”.  Otherwise we rate it according to the scale 
shown in figure 1 with a default rating of “Average”.  
The method used in calculating these severity ratings 
for both numeric and non numeric data types is 
explained in sections 2.1 and 2.2.  This first step 
differentiates our model from any similar approach 
such as in (Cîmpan, Oquendo 2000) where the fuzzy 
gap between the instantiated process and the model 
is apparent but not explicitly recognized. 

2.1 Numeric Data Severity 

For numeric oriented data types, it is a simple matter 
of placing boundaries and calculating whether or not 
an actual value is within them and if not, how far it 
is outside. If a large amount of data is available, 
Statistical Process Control is an excellent method in 
both placing the boundaries and calculating how far 
outside actual values might be (Florac, Carleton 
1999). If there is not enough data available, we must 
set our own boundaries as best we can. 

If there is enough data for SPC to be adequately 
applied, ascertaining severity of the deviation 
becomes a simple matter of measuring how many 
standard deviations the actual value returned is from 
the boundary.  We can then apply an appropriate 
severity value based on the scale shown in 
previously in figure 1.  If there is not an adequate 
amount of data to apply SPC, we need to calculate 
the level of severity of the out-of-bounds value by 
comparing the difference between the actual value 
and the boundary. 

Care must be taken however, when deciding 
whether there is enough data present or not to rely 
on boundary values supplied by an SPC calculation.  
Our research presented in (Thompson, Torabi 2007) 
showed that rather a large amount of data was 
necessary before SPC may be adequately applied, 
and the point at which this threshold is reached is 
not always clear and always dependent on the nature 
of the particular process. 

2.2 Non-Numeric Data Severity 

In (Thompson, Torabi, Joshi 2007), in order to 
determine if an inconsistency had taken place with 
non-numeric data, we compared the actual value 
against a list of accepted values.  If the actual value 
did not match any of the values represented in the 
accepted values list, an inconsistency was flagged.  
To expand on this, for non-numeric list types we 
introduce another list of unacceptable return values 
and an appropriate severity value for each.  An 
example of this concept is illustrated in figure 2, 
where we are checking for activity actor type 
inconsistencies. 

 
Figure 2: Value Lists. 
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If a value is returned which is not in either the 
“Acceptable” or “Unacceptable” list, a deviation will 
still be flagged but with an initial (before modifiers) 
severity rating of NA.  We can therefore ease the 
workload involved in second guessing all 
possibilities of unacceptable return values.  Any 
unexpected “unacceptable” values returned that 
initially have the NA severity rating can easily be re-
rated later at the whim of the process administrator. 

In (Thompson, Torabi, Joshi 2007) conditions 
were specified by SQL checks on a relational 
database to test whether or not a condition holds.  
Deviations were recorded when either a condition 
was expected to hold but did not, or a condition was 
expected not to hold, but did.  These conditions were 
sorted into related “condition sets” which specify the 
conditions in which a process activity can legally 
begin and terminate.  An example of a condition set 
for the activity of a bank teller approving a bank 
deposit is illustrated below in figure 3 (taken from 
(Thompson, Torabi, Joshi 2007)). 

 
Figure 3: Condition Set Example. 

In terms of severity, a severity rating is simply 
included with each condition set.  If a deviation 
occurs because of one or more condition sets failing 
in an activity, then the severity of the deviation 
becomes the severity value of the condition set with 
the associated highest severity rating. 

2.3 Modifiers 

Once we have determined the severity of a deviation 
or inconsistency in its own right, we must then 
determine a) the severity of the impact this may have 
on its associated activity and b) the impact this may 
have on the process as a whole. 

For deviations and inconsistencies relating to 
process activities, the illustration shown in figure 4 
shows how we can set the importance activities may 
hold in the process and how this can modify the 

overall severity of the detected deviation or 
inconsistency:  

 
Figure 4: Activity Importance Modifiers. 

For inconsistency types that hold for the entire 
process and are not related to any specific activity, 
the Activity Importance Modifier shown in figure 4 
may be applied to the inconsistency data to give an 
importance rating with respect to the process, as 
though it was an activity in itself. 

3 RECOMMENDATION 

Once we have sufficient information about a 
deviation or inconsistency including a) that it has 
actually occurred (been detected), b) what part of the 
process it occurred in, c) when it occurred and d) the 
severity in relation to the process, we can feed this 
information to a simple type of “recommender 
system” to provide useful feedback to the 
administrator(s) or people involved in the enactment 
of the process.  The actual implemented algorithm 
for the recommender system here may be susceptible 
to change, as some algorithms will perform better 
for different data sets (Herlocker et al. 2004) and 
different processes will return different sets of data. 

Our approach incorporates a non-conformance 
log which records deviations and inconsistencies and 
which serves several purposes.  If a process is 
enacted and a deviation/inconsistency is detected, 
we can record all relevant data in a history log which 
is related to a resolutions table which records 
information on its resolution.  The table is structured 
as shown in figure 5: 

 
Figure 5: Non-Conformance Logs. 
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This non-conformance log provides several benefits 
to the process administrator.  Firstly, we can query a 
list of unresolved deviations/inconsistencies from 
the table for any given process ranked by their 
severity for the process administrator to address.  
The Resolutions log also provides the capacity to 
enter data on how past entries were resolved, who 
resolved them and how successful the resolution 
was.  Using the data in both tables we can 
extrapolate possible effective solutions to unresolved 
deviations and inconsistencies by matching them 
with similar resolved cases which had a high success 
rating, an important concept in recommender 
systems (McNee, Riedl, Konstan 2006).  Lastly, 
because all instances of non-conformance are 
logged, it makes it easy to tell if one particular type 
of non-conformance or even specific activity or 
whole process seems to be experiencing more than 
its fair share of entries in the non-conformance table.  

In the literature presented so far in this area of 
research, a recommendation system of any kind 
resulting from detection of an instance of non-
conformance has not been published.  Therefore, 
comparison with related works in regard to post non-
conformance recommendations is somewhat limited 
in this instance. 

4 EVALUATION 

To evaluate this methodology we have developed an 
extension to the implementation used to evaluate the 
framework for non-conformance detection presented 
in (Thompson, Torabi, Joshi 2007).  To test the 
compatibility of our two deviation systems, we have 
simulated numerous instances of the bank deposit 
process also presented in (Thompson, Torabi, Joshi 
2007). 

4.1 The Test Process 

The process we have used to evaluate this model is 
the same as we described in (Thompson, Torabi, 
Joshi 2007).  We have simulated a simple process of 
how a person may deposit an arbitrary amount of 
cash in their bank account via a bank teller.  A run 
down of the process is illustrated below in figure 6 
which is incidentally also taken from (Thompson, 
Torabi, Joshi 2007).  This straightforward process is 
used to test the methodologies and techniques 
described in this paper in a simple setting where the 
return data can be easily understood and evaluated in 
comparison to our expected results. 

 
Figure 6: The Bank Deposit Process. 

The implementation used to simulate and test this 
process was developed using a C# .NET engine 
which was built to cater for the simulation of generic 
processes with generic activities.  The example 
process was prescribed and constrained in a manner 
consistent with our methodology using this engine 
and all process data was contained in a relational 
database.  Although a single database was used, the 
related tables within it are structured in three tiers – 
one to contain the prescribed reference constraints, 
rules and boundaries, another to structure recorded 
instances of enacted process data and lastly a log to 
record detected instances of non-conformance along 
with their severity.  Since all relevant data was 
stored in a relational database, all comparisons 
between reference and actual data were made via 
SQL queries. The inter-related tables within the 
database are illustrated in figure 7 which depicts the 
three tiers of data tables (image is partially modified 
from (Thompson, Torabi, Joshi 2007)): 

 
Figure 7: Framework Structure. 
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4.2 Results 

In terms of the non-numeric data, the return of 
expected results is easily identifiable because the 
methodology is simply a comparison of actual data 
to a list and each entry in the list has a severity value 
attached to it.  The algorithm implemented was to 
check the accepted values list first and look for an 
entry identical to the actual return value.  If the value 
was not found, it then checks the unacceptable 
values list.  If the actual return value was found in 
this list, it returns the associated severity rating and 
if not, an inconsistency is still recorded along with a 
severity rating of “NA”.  This is easily verifiable in 
the framework and we succeeded in identifying 
examples of both cases. 
To simulate numeric data severity instances, such as 
time duration values, instead of attaching one 
min/max range to the data we attached three range 
sets. Further from our discovery reported in 
(Thompson, Torabi 2007) of just how large a dataset 
is required to adequately apply SPC ranges, each 
boundary value in each of the three ranges is user 
defined and applied in a manner consistent with 
what is shown in figure 8: 

 
Figure 8: Numeric Ranges. 

The implemented framework only has to check the 
actual numeric return value against the boundary 
constraint values specified.  If the actual value falls 
into a range that is not “acceptable” then it receives 
the applicable severity rating and an instance of non-
conformance is recorded.  For example, as part of 
the simulation twenty runs of the “Fill Out Deposit 
Form” were conducted and the time taken to 
complete the activity compared against the specified 
severity constraints.  This data is illustrated in figure 
9 below: 

 
Figure 9: Example Simulated Data. 

The recommendation engine proved the most 
difficult to implement and at present the mining of 
the recorded data still needs improvement in our 
future work.  However, given the structure of the 
non-conformance and resolutions log, the simplest 
way to find the most effective resolution for an 
instance of non conformance is to list all records in 
the non-conformance table with the same 
ActivityID, ProcessID and DeviationType as the 
record we are attempting to find a resolution for.  
Then, we match these records against those in the 
resolutions table where the resolution success rating 
is highest.  At present we are rating the success of 
resolutions out of 10 in the implementation, so the 
recommendations system implemented so far is 
limited to a simple query which returns the most 
successful related resolution for a given deviation. 

4.3 Future Work 

The methodology presented here is relatively simple 
to implement and test, so the results we wanted and 
expected were easy to achieve simulating the test 
process.  Our immediate future work in this area will 
be predominantly in 2 areas: dynamic severity 
boundaries and better data mining for the 
recommender system.  

We would like to examine further the 
development of dynamic severity thresholds to the 
boundary values of both numeric and non-numeric 
data types.  This would aid the process administrator 
in automatically calculating severity thresholds so he 
or she does not have to set them manually.  Also, we 
believe that given better querying and data mining 
methods, the data we are storing in the resolutions 
and non-conformance log could lead to better 
recommendations being generated when instances of 
non-conformance are detected. 

5 CONCLUSIONS 

In this paper we have presented a practical 
framework to ascertain severity in generic processes 
along with a basis for providing recommendations 
based on the resulting severities and process history.  
This framework is aimed at extending the research 
presented in detecting process non-conformance and 
is implemented as such.  This body of work shows 
promise in its application to processes across 
different domains such as business, software or 
manufacturing processes – as long as the process is 
structured and there is ample opportunity for 
observing the relevant data.  With this in mind, it is 

ICSOFT 2008 - International Conference on Software and Data Technologies

132



difficult for any kind of process improvement 
mechanism to be employed if the process in question 
cannot be properly observed.  As stated in section 4, 
our future research in this field will entail an 
improved and more comprehensive mechanism for 
recommendation provision and also a 
mathematically formal model for severity 
determination. 
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