RELAXING CORRECTNESS CRITERIA IN DATABASE
REPLICATION WITH SI REPLICAS

J. E. Armendarizfigo, J. R. Gonzalez de Mendivil, J. R. Garitagoitia, J. R. Juarez-Rodriguez
Universidad Plblica de Navarra, 31006 Pamplona, Spain

F. D. Munoz-Escoi, L. Irin-Briz
Instituto Tecnologico de Informatica, 46022 Valencia, Spain

Keywords: Database replication, distributed databases, snapshot isolation, read one write all, correctness criteria, formal
proofs.

Abstract: The concept of Generalized Snapshot Isolation (GSI) has been recently proposed as a suitable extension of
conventional Snapshot Isolation (SI) for replicated databases. In GSI, transactions may use older snapshots
instead of the latest snapshot required in Sl, being able to provide better performance without significantly
increasing the abortion rate when write/write conflicts among transactions are low. We study and formally
proof a sufficient condition that replication protocols with Sl replicas following the deferred update technique
must obey to achieve GSI. They must provide global atomicity and commit update transactions in the very
same order at all sites. However, as this is a sufficient condition, it is possible to obtain GSI by relaxing certain
assumptions about the commit ordering of certain update transactions.

1 INTRODUCTION ability since they have to provide continuous ser-
vice to their users. This also implies to replicate

Snapshot Isolatiorsy) is the isolation level provided the information being used,; i.e., to manage replicated
by several commercial database systems, such as Ordatabases. The concept of Generalized Snapshot Iso-
acle,PostgresQL, Microsoft SQL Server orinteBase. lation (GSI, concurrently to this a sm_ular Qef|n|t|on
Transactions executed underallows to read from denoted as 1-copgt was proposed in (Lin et al,
the last committed snapshot and, hence, read oper-2005))_ has been recently proposed (Elnikety et al.,
ations are never blocked nor conflict with any other 2005) in order to provide a suitable extension of con-
update transaction. In order to prevent the lost updateVentionalS for replicated databases based on mul-
phenomenon (Berenson et al., 1995), concurrent up-tiversion concurrency control. @S|, transactions
date transactions (read-only transactions are alwaysMay use older snapshots instead of the latest snap-
committed) modifying the same data item apply the Shot required irsi (setting up the latest snapshot in
first-committer-winsrule: only the first transaction @ distributed setting is not trivial). Actually, authors
that commits is allowed to proceed the remainder are ©f (EInikety et al., 2005) outline an impossibility re-
aborted. This turns out into a nice feature because it SUlt which justifies the use @slin database replica-
provides sufficient data consistency (though not seri- fion: “there is no non-blocking implementation of Si
alizable (Fekete et al., 2005; Elnikety et al., 2005)) in an asynchronous system, even if databases never
for non-critical applications while it maintains a good fail” which has been formally justified in (Gonzalez
performance, since read-only transactions are neitherd® Mendivil et al., 2007).
delayed, blocked nor aborted and they never cause The deferred update technique (Pedone, 1999)
update transactions to block or abort. This behavior consists in executing transactions at their delegate
is important for workloads dominated by read-only replicas (obtaining their corresponding snapshot) and
transactions, such as those resulting from dynamicsetting up a commit ordering for update transac-
content Web servers (Plattner et al., 2008). tions which is mainly done thanks to the total or-
Many enterprise applications demand high avail- der broadcast (Chockler et al., 2001). When a trans-

45

E. Armendériz-iﬁigo J., R. Gonzalez de Mendivil J., R. Garitagoitia J., R. Juarez-Rodriguez J., D. Mufioz-Escoi F. and Irin-Briz L. (2008).
RELAXING CORRECTNESS CRITERIA IN DATABASE REPLICATION WITH SI REPLICAS.

In Proceedings of the Third International Conference on Software and Data Technologies - ISDM/ABF, pages 45-53

DOI: 10.5220/0001877700450053

Copyright © SciTePress

ICSOFT 2008 - International Conference on Software and Data Technologies

action requests its commitment (read-only transac- how to relax this last contribution, which is actually
tions are committed right away) its updates are col- too strong, for deployin@SInon-blocking protocols.
lected and broadcast (using the total order primitive) The rest of the work is organized as folldwSec-

to the rest of replicas. Upon its delivery at replicas tion 2 introduces the concept of multiversion histories
a validation test (i.e. to detect conflicts with other based on (Bernstein et al., 1987). Sections 3 and 4
concurrent transactions in the system) is performed; give the concepts dfl andGSI respectively. In Sec-
namely a certification test (Wiesmann and Schiper, tion 5, the structure of deferred update replication pro-
2005) that performs the distributed first-committer- tocols is introduced. Conditions fordepy-GSilis in-
wins rule (Elnikety et al., 2005; Lin et al., 2005) in the troduced in 6. We take a look at how to relax con-
same way at al replicas and ensures the same order oflitions for 1-.Copy-GSlin Section 7. Finally, conclu-
the commit process of transactions. The main advan-sions end the paper.

tage of these replication protocols is that transactions

can start at any time without restriction or delay.

In this paper, we formalize the requirements for 2 MULTIVERSION HISTORIES

achieving GSI over SI replicas usingnon-blocking

protocols. Thus, the criteria for implementigs| In the following, we define the concept of multiver-
are: (i) Each submitted transaction to the system ei- sion history for committed transactions using the the-
ther commits or aborts at all siteatomicity); (ii) All ory provided in (Bernstein et al., 1987). The prop-

update transactions are committed in the same totalerties studied in our paper only require to deal with
order at every sitetgtal order of committed trans- committed transactions. To this end, we first define
actiong. Total order ensures that all replicas see the basic building blocks for our formalizations, and
the same sequence of transactions, being thus ableghen the different definitions and properties will be
to provide the same shapshots to transactions, inde-shown.
pendently of their starting replica; i.e. giving the A database @B) is a collection of data items,
logical vision of a one copy scheduler Cbpy-GSI). which may be concurrently accessed by transactions.
Whereas atomicity guarantees that all replicas take A history represents amverall partial orderingof the
the same actions regarding each transaction, so theidifferent operations concurrently executed within the
states should be consistent, once each transaction hasontextof their corresponding transactions. Thus, a
been terminated. multiversion history generalizes a history where the
One can think that these assumptions are ratherdatabase items are vers_|qr_1ed. .
intuitive but they constitute the milestone for our con- . To formalize this (_jeflnltlon, each transaction TC’Ub_
mitted to the system is denoted oy A transaction is

tribution of the paper. It consists in somehow relax- . ;
ing the assumption of the total order of committed a sequence of read and write operations on database

transactions. If a protocol is not careful about that, items ended_ byacc_)mm|t_ordabortoperat|ork EHGQ
those transactions without write/write conflicts might write operation on '.tendx IS enotedWX.—). r:ea
be applied in different orders in different replicas. So, operation on itenX is denotecRi(X;) stating thatr

transactions would be able to read different versions rt_e:ads the \;]er?on of m_stallgd EyTi' Finally, C; and
in different replicas. However, this optimization is /¥ denote thei’s commit and abort operation respec-

important since processing messages serially as Sup_t|vely. We assume that a transaction does not read an

posed for replication protocols deployed over a group item X after it has written it, and each item is read and

communication system (Chockler et al., 2001) would writte_n_ at most once. Ayoiding redundant ope_ratic_ms
result in significantly lower throughput rates. A re- simplifies the presentation. The results for this kind

laxing assumption has been already presented in (LinOf transactions are seamlessly extensible tq more gen-
etal., 2005), still using the total order broadcast, it lets eral models. In any case, redundant operations can be

validated transactions to apply (and commit) transac- removec_i using IOC"?‘I _/a_rlables in the program of the
tions concurrently as long as their respective updatestransaCtIon (P_apad|m|tr|ou, 1.986)' . .

do notintersect. However, this protocol needsltick Each Version of a data iter contalne_d in the
the execution of the first operation of any starting database is def“"e.d W_ yvhere the subscript stands
transaction until the concurrent application of trans- for the transaction identifier thatlnstalled that version
actions finishes. Thus, it is easy to see that there are!” the DB. Thergadsetandwnteset(denote(_j byRS
multiple approaches to obta®s! at the price of im- andW s respectively) express the sets of items read

posing certain restrictions, in particular, the need to 1p,e 1o space constraints, the reader is referred
block the start of transactions to obtain a global con- to (Gonzalez de Mendivil et al., 2007) for a thorough ex-
sistent snapshot. Finally, we take a look and discussplanation of the correctness proof.

46

RELAXING CORRECTNESS CRITERIA IN DATABASE REPLICATION WITH SI REPLICAS

(written) by a transactiofi;. Thus,T; is aread-only committed before the transaction started its first oper-
transaction ifw S = 0 and it is anupdateone, other- ation. The results of its writes are installed when the
wise. transaction commits. However, a transactipmvill

Let T = {Ty,...,Tn} be a set ocommittedtrans- successfully commit if and only if there is not a con-
actions, where the operations @f are ordered by current transactiof that has already committed and
<t1. The last operation of a transaction is the com- some of the written items by are also written byr;.
mit operation. To process operations from a trans- From our point of view, histories generated by a given
actionT; € T, a multiversion scheduler must translate concurrency control providingl may be interpreted
Ti's operations on data items into operations on spe- as multiversion histories with time restrictions.
cific versions of those data items. That is, there is a pefinition 2. Let(H, <) be a history and: H — R+ a

functionh that maps eact (X) intoW (X), and each mapping such that it assigns to each operatipr H
Ri(X) into R (X;) for someT; € T. its real time occurrence(op) € R™. The schedulél

Definition 1. A Complete Committed Multiversion Of the history(H, <) verifies:
(CCMV) history H overT is a partial order with or- (1) If op,op € H andop < op thent(op) < t(op).

der relation< such that: (2) Ift(op) =t(op) andop,op € H thenop=op..

(1) H = h(Urger Ti) for some translation functioh The mapping () totally orders all operations of
(2) <2Urer <71 (H,=). Condition (1) states that the total orderis
(3) IfR(Xj) e H,i#], thenw; (X)) € H andC;j < Ri(X;). compatible with the partial order. Condition (2) es-

In the previous Definition 1 condition (1) indi- tablishes, for sake of simplicity, the assumption that
cates that each operation submitted by a transactiondifferent operations will have different times. We are
is mapped into an appropriate multiversion operation. interested in operating W_lth schedules since it facili-
Condition (2) states that theCMV history preserves ~ tates thg work, but only with the ones thatderlv_e from
all orderings stipulated by transactions. Condition (3) CCMV histories over a concrete set of transactions
establishes that if a transaction reads a concrete ver-One can note that an arbitrary time labeled sequence

sion of a data item, it was written by a transaction that Of versioned operations, e.g(R(Xj),t1), (W (X),t2)
committed before the item was read. and so on, is not necessarily a schedule of a history.

Definition 1 is more specific than the one stated Thus, we need to put some restrictions to make sure
in (Bernstein et al., 1987), since the former only in- that we work really with schedules corresponding to
cludes committed transactions and explicitly indicates POSsible histories.
that a new version may not be read until the transac- Property 1. LetS be atime labeled sequence of ver-
tion that installed the new version has committed. In sioned operations over a set of transactians is a
the rest of the paper, we use the following conven- schedule of a history over if and only if it verifies
tions: (i) T ={Ty,..., T} is the set of committed trans- the following conditions:
actions for every defined history; an@) any history (1) item there exists a mapping such thatsS =
H is a CCMV history overT. Note that these con- h(U;c1 Th).
ventions will be also applicable when a superscriptis (2) if op,op € T, andop <1 op thent(op) < t(op) in
used to denote the site of the database where the hissg.

tory is generated. (3) if R(X;) € Sandi # j thenw;(X;) € Sandt(C;) <
In general, two historiegH, <) and (H’,<’) over t(Ri(X))).
the same set of transactions ai@wv equivalentBern- (4) ift(op) =t(op) andop,op € Sthenop=op'.

stein et al., 1987), denoted Hs= H’ if they contain
the same operations, have the sawmds-fromrela-
tions, and produce the same final writes. The notion
of equivalence o€CMV histories reduces to the sim-
ple conditionH = H’, if the following reads-fromre-
lation is used:T; readsX from T; in a CCMV history
(H,=), ifand only if Ri(X;) € H.

The proof of this fact can be inferred trivially. In
the following, we use an additional conventioii:) (A
scheduled; is a schedule of a histofH, <). Note that
every schedulél; may be represented by writing the
operations in the total ordek] induced byt(). We
define the “commit time” ¢) and “begin time” ;)
for each transaction € T in a schedulél asc; =t(C;)
andb; = t(first operation ofT;), holdingh; < ¢; by def-
inition of t() and <y, In the following, we formalize
3 SNAPSHOT ISOLATION the concept of snapshot of the database. Intuitively, it
comprises the latest version of each data item. Firstly,

In sl reading from a snapshot means that a transac-"V€ Will see an example of this:

tion T; sees all the updates done by transactions thatExample 1. Let us consider the following transac-

47

ICSOFT 2008 - International Conference on Software and Data Technologies

tions T, T, and Ts: Ty = {Ry(X), Wa(X),c1}, To = 4 THE GSILEVEL

{RZ(Z)>R2(X)7\NZ(Y)>C_2}1 T3 = {Rg(Y),V\é(X),Cg}. A

sample of a possible schedule of these transac-The concept of Generalized Snapshot Isolation (or
tions might be the following onemn Ry(Xo) Wi (Xa) €1 Gs|, for short) was firstly applied to database repli-
bz Ra(Zo) b3 Rs(Y0) Wa(X3) c3Ra(X1)Wa(Y2) c2. AS this cation in (Elnikety et al., 2005). A hypothetical con-
example shows, each transaction is able to include cyrrency control algorithm could have stored some
in its snapshot (and read from it) the latest committed past snapshots. A transaction may receive a snapshot
version of each existing item at the time such transac- that happened in the system before the time of its first
tion was started. Thug, has read versiorl of item gperation (instead of its current snapshot as @i a

X sinceT, has generated such version and it has al- ¢oncurrency control algorithm). The algorithm may
ready committed whe, started. But it only reads commit the transaction if no other transaction impacts
version0 of itemZ since no update of such ittm is ity it from that past snapshot. Thus, a transaction

seen byr,. This is true despite transactiofizand T;
are concurrent and; updates< beforeT, reads such
item, because the snapshot takenTois previous to
the commit offs.

This example provides the basis for defining what

a snapshot is. For that purpose, we need to define

first the set of installed versions of a data it¥nn a
scheduleH;, as the se¥er(X,H) = {Xj: W;(X;) e H}U
Xo, beingX, its initial version.

Definition 3. The snapshot of the databageB

at time t € R for a scheduleH;, is defined as:
SnapshotDB, Ht,T) = UxcpglatestVetX,Hi, 1) where
the latest version of each iteiic DB at timet is

the set: latestVetX, H;, 1) = {Xp € Ver(X,H): (A% €

Ver(X,H): cp <cx <T1)}

From the previous definition, it is easy to show

can observe an older snapshot of biebut the write
operations of the transaction are still valid update op-
erations for theDB at commit time. These previous
ideas define the concept GBI

Definition 5. A schedule+; is a GSkschedule if and
only if for eachT, € T there exists a valug € R such
thats < b; and:

(1) if R(Xj) € H thenX; € SnapshaDB, Ht,s); and,

(2) for eachTj € T: —=(Tj impactsT; ats).

Condition (1) states that every item read by a
transaction belongs to the same (possible past) snap-
shot. Condition (2) also establishes that the time in-
tervals[s,ci] and[sj,cj] do not overlap for any pair of
write/write conflicting transactioris andT;. If for all
T € T, conditions (1) and (2) hold fay = bj thenH; is
aSl-schedule. Thus, Definition 5 includes as a partic-

that a snapshot is modified each time an update trans|ar case the Definition 4. Another observation of the

action commits. Ift = ¢y and Xy € Ver(X,H), then
latestVe(X, Hi, cm) = {Xm}. In order to formalize the
concept ofSl-schedule, we utilize a slight variation
of the predicatémpactsfor update transactions pre-
sented in (Elnikety et al., 2005). Two transactidns
Ti € T impact at timer € R in a scheduleét;, denoted
Tj impactsT; at 1, if the following predicate holds:
WSNWS#DAT<Cj<C.

Definition 4. A scheduleH; is a Skschedule if and
only if for eachT; € T

(1) if R (Xj) € H thenX; € SnapshdDB, Ht, b;); and,
(2) for eachTj € T: —(T; impactsT; athy).

definition concludes that if there exists a transaction
Ti € T such that conditions (1) and (2) are only veri-
fied for a values < b; then there is an iterk € RS for
which latestvVe(X, Hi,s) # latestVe(X, Hi,b;). That is,
the transactiofT; has not seen the latest versionof

at the begin timéy. There was a transactiai with

W (Xk) € H such thaty < ¢, < bj. This can be best seen
in the next example.

Example 2. The following is an example of @st
schedule:b; Rl(Xo)Wl(Xl) c1bp Rz()(o) Rz(ZO) b3 Rg(Yo)
W5(X3)csWa(Y2) e In this schedule, transaction
T, reads Xy after the commit off; appears. This

Condition (1) states that all the versions read by a would not be correct for aSkschedule (since

transactionT; are obtained frongnapshaDB, H:,b;);

that is, versions are obtained from the snapshot of theit is perfectly valid for a GSkschedule,

databas®B at the time the transaction starts its first

operation. Condition (2) states that any pair of trans-

actionsT; and T, writing over some common data
items, can not overlap their time intervals, c¢;] and
[bj,cj]. In other words, they have to be executed in
a serial way. Other equivalent definitions Sifhave

been provided in the literature (Berenson et al., 1995;

Kemme, 2000; Lin et al., 2005; Fekete et al., 2005;
Elnikety et al., 2005).

48

the read version ofX is not the latest one), but
taken
the time point of the snapshot provided ®
(i.e. sp) previous to the commit @f;, as it is shown:

b1 Ry (Xo) $2Wi (X1) €1 b2 Ro(X0) Rz (Zo) b3 Rs(Yo) Wa(X3) €3

W5 (Y2) cp. The intuition under this schedule in a dis-
tributed system is that the message containing the
modifications ofT; (the write operation orx) would
have not yet arrived to the site at the time transaction
T, began. This may be the reason firto see this
previous version of iterd. The fact thatGSIcaptures

RELAXING CORRECTNESS CRITERIA IN DATABASE REPLICATION WITH SI REPLICAS

these delays into schedules makes attractive its usageEach sitek runs an instance of the database manage-
on distributed environments. ment system and maintains a copy of the datab&se
The values in Definition 5 plays the same role as Ve Will assume that each database copy, denbBéd

b in Definition 4. Thus, it is possible to think that if ~With k& Im, providess (Berenson et al., 1995).

the operations in theSkschedule obtained from the We use the transaction model of Section 2. Let

historyH had been ‘on time’ then the schedule would T = {Ti: i € In} be the set of transactions submitted to

have been sl-schedule. the system; wherg = {1..n} is the set of transaction
identifiers.

Example 3. Let us use Example 2 to show how a
GStschedule can be transformed intasaschedule. - . K.
Thus, to turn thatGSkschedule into &kschedule, it _transgctloﬁr. c T the set of transactlger(\i{?} ' k_E I_m}

is just needed to move the beginningTefback to N Which there is only one, denoted"®”, verifying

s;, and consequently, the resulting schedule will be RS = R andws"" = ws; for the rest of the

a Skschedule:b; Ry(Xg) ba Wa(X1) €1 Ra(Xo) Ra(Zo) transactionsT¥, k # site(i), R$ = 0 andw& = ws.

bs Ra(Yo) Wa(Xs) C3 Wa(Y2) co. However, this schedule 75'" determines the local transactionBf i.e., the
does not fit the definition of, which was describedas transaction executed at its delegate replica or site,
the time of the first operation a transaction performs. whilst TX k # site(i), is a remote transaction of, i.e.,
Thus, such first operation of transactidp must be the updates of the transaction executed at a remote
also moved in thel-schedule, resulting in the follow- site. An update transaction reads at one site and writes
ing: by Ri(Xo) b2 Ra(Xo) Wi(X1) €1 Ra(Zo) b Rs(Yo) at every site, while a read-only transaction only ex-

The deferred update technique defines for each

W5(X3) 3 Vo (Y2) C2. ists at its local site. In the rest of the paper, we con-
The following property describes the previous Siderthe general case of update transactions with non-
transformation in a formal way: empty sets.

LetT®= {TX: i €15} be the set of transactions sub-
mitted at each site € I, for the sefl. Some of these
transactions are local & while others are remote

This last property states that My is a GSk ones. In the next, the Assumption 1 implies that each
schedule, there will exist &y, which is actually a transaction submitted to the system either commits at
Sl-schedule, and verify the following; = Hy (in the aJl replicas or in none of them. Thus, the updates ap-
sense of view-equivalence). plied in a delegate replica by a given transaction are
also applied in the rest of replicas. Obviously, we con-
sider a fully-replicated system. Since only committed

Property 2. Let H; be aGStschedule. There is a
mappingt’: H — R™ such thatH, is aSl-schedule.

5 THE DEFERRED UPDATE transactions are relevant, the histories being generated
TECHNIQUE at each site should be histories ovEf, as defined
above.

The GSI concept is particularly interesting in repli- Assumption 1 (Atomicity). H* is a CCMV history
cated databases, since many replication protocols ex-overT« for all sitesk € I

ecute each transaction initially in a delegate replica, | the considered distributed system there is not
propagating later its updates to the rest of repli- 3 common clock or a similar synchronization mech-
cas (Lin et al., 2005; Elnikety et al., 2005, Ar- apism. However, we can use a real time mapping
me_ndanzl-lmgo et al., 2007). Th|s_ means th_at trans- . Uker, (H¥) — R* that totally orders all operations
action writesets cannot be |mme_:d|ately applied in a_1|| of the system. This mapping is compatible with each
replicas at a time and, due to this, the snapshot be'”gpartial order< defined forHk for each sitek € Im.
used in a transaction might be “previous” to the one |, the following, we consider that eadB® provides

that (regarding physical time in a hypothetical cen- g._.schedules under the previous time mapping.
tralized system) would have been assigned to it. In

this Section we consider a distributed system that con- Assumption 2 (SI Replicas) H is a Skschedule of
sists ofm sites, beingm — {1.m} the set of site iden- the historyH* for all sitesk & Im.

tifiers. Sites communicate among them by reliable In order to study the level of consistency imple-
message passing. We make no assumptions about thénented by this kind of non-blocking protocols is nec-
time it takes for sites to execute and for messages toessary to define the one copy schedule-¢chedule)

be transmitted. We assume a system free of faifures obtained from the schedules at each site. In the next

20therwise, writes will only be applied on the avail- and can be seamlessly extended to a system where failures
able replicas, but all our discussion is orthogonal to fasu might arise.

49

ICSOFT 2008 - International Conference on Software and Data Technologies

definitions, properties and theorems we use the fol-

lowing notation: for each transactiah i € I,, ™"

denotes the commit operation of the transacTtioat
sitemin(i) € I, such that™™" = miny¢,_{ck} under the
considered mapping).

Definition 6 (1C-schedule) LetT = {Ti: i €15} be the

ered: Ty = {Ry(Y),Wi(X)}, T2 = {Ra(2),Wo(X)}, T3 =
{R3(X)>V\’€3(Z)}> Ta = {R4(X)>R4(Z)>W4(Y)}' Figure 1
illustrates the mapping described in Definition 6 for
building a1C-schedule from th&lschedules seen in
the different nodek,. T, andT; are locally executed
at siteA (RS # 0 andRS # 0) whilst T; and T4 are ex-
ecuted at siteB respectively. The writesets are after-

set of submitted transactions to a replicated database yads applied at the remote sites. Schedules obtained
system with a non-blocking deferred update strategy 4t poth sites areskschedules, i.e. transactions read
that verifies Assumption 1 and Assumption 2. Let {he |atest version of the committed data at each site.

S= Uker, (H¥) be the set formed by the union of the
historiesH* overTk = {TX: i € Ip}. And lett: S— R+
be the mapping that totally orders the operationsin
ThelC-scheduleHy = (H,t': H — R™), is built fromS
andt() as follows. For eaclie I, andk € Iy

(1) Remove frons operations such that (X)X, with
k # site(i), or CK, with k # min(i).

(2) H is obtained with the rest of operations&after
step (1), applying the renamingy (X;) = W (X;)Stei);
R (X;) =R (X))*"*"; and, G =™,

(3) Finally, t’'() is obtained fromt() as follows:
W) = tW(X)S D) t(Ri(X))) = t(R(X))>);
and,t'(G;) = tc™)

As t/() receives its values fromny), we write, H;
instead oHy. Inthe1C-schedule+, for each transac-
tion T, is trivially verified b < ¢; because this tech-

nigue guarantees that for &l site(i), b™" < bk,
The 1C history H, that is formed by the operations
over the logicalDB, is also a history ovell. We
prove this fact informally. By the renaming (2) in
Definition 6, each transaction, has its operations
over the data items iR§ andwW§, and <, is triv-

ially maintained in a partial ordex for H, because
H, contains the local operations of"®". H is also
formed by committed transactions, under Assump-
tion 1; for eacht;, G, € H. Finally, if R(X;) € H, then
R (X;)stel) ¢ Hsitel) - As Hsitell) s a history ovefr site()
thenc;"*) < Ri(X))*"). By definingc™) < 5"V
in sthenc™ < R;(X;)s") and scC; < R (X;). Thus
H can be defined as a history over

Transformation (2) on Definition 6 ensures that a

transaction is committed as soon as it has been com-

mitted at the first replica. Finally, no restriction about
the beginning of a transaction is imposed in this def-
inition. Hence, this definition is valid for the most
general case of non-blocking protocols. Although As-
sumptions 1 and 2 are included in Definition 6, they
do not guarantee that the obtained-schedule is a
Sl-schedule. This is best illustrated in the following
example, where it is also shown how th@-schedule
may be built from each sitgl-schedules.

Example 4. In this example two sitesA B) and
the next set of transactiong, T, T3, T, are consid-

50

The 1C-schedule is obtained from Definition 6. For
example, the commit af occurs for thelC-schedule
in the minimum of the interval betwe@$ and C?
and so on for the remaining transactions. In the
schedule of Figure 1T, readsX; and Zz but the X,
version exists between both (sin¢ewas installed at
site A). T; andT,, satisfying thaWSNwWS # 0, are
executed at both sites in the same orderTAand T,
are not executed in the same order with regard4p
the obtained.C-schedule is neithesl nor GSl.

6 1-COPY-GSI SCHEDULES

The 1C-scheduleH; obtained in Definition 6 will be

a GStkschedule if it verifies the conditions given in
Definition 5. The question is what conditions lo&
schedulesiX, have to verify in order to guarantee that
H:; is aGSkschedule. Taking into account the order-
ing of conflicting transactions iGSl-equivalence, we
consider the kind of protocols that guarantee the same
total order of the commit operations for the transac-
tions with write/write conflicts at every site. However,
the execution of write/write conflicting transactions in
the same order at all sites does not oenor GS|, as

it has been shown in Example 4. Therefore, it is also
necessary to consider the need of reading from a con-
sistent snapshot from the notion @Blequivalence;

i.e. all update transactions must be committed in the
very same order at all sites. As a result, since all repli-
cas generatsl-schedules and their local snapshots
have received the same sequence of updates, trans-
actions starting at any site are able to read a particular
snapshot, that perhaps is not the latest one, but that is
consistent with those of other replicas.

Assumption 3 (Total Order of Committing Transac-
tions). For each pairT;, T; € T, a unique order relation
ck < ¢ holds for allSkschedulesi with k € I,

The SI-schedulest$ have the same total order of
committed transactions. Without loss of generaliza-
tion, we consider the following total order in the rest
of this section:ck < ¢ < ... < ¢ for everyk € I,. In
the next property we are going to verify that, thanks to

RELAXING CORRECTNESS CRITERIA IN DATABASE REPLICATION WITH SI REPLICAS

_Ti__ T3

T3

_ Ty

Wi (X1)ch R3(20)W3(X2)C) R3(X2)W3(Z3)C3 W;(Ye)Cl
5 T2 _TZ__ T2 _T2__
RE (Yo)WF (X4)CY W3(23)C3 R3(X1)R3(23)W5(Ya)CF W3 (X2)C3
T, Ty T3 Ty
1CS
Ry (Yo)W1(X1)Cy Ro(Zo)W2(X2)Co R3(X2)W3(Z3)Cs Ra(X1)Ra(Z3)Wa(Ya)Co

Time

Figure 1: Replicated one-copy execution not providing G8I@&SI.

the total order, versions of items read by a transaction
belong to the same snapshot in a given time interval.
This interval is determined for each transactipiy

two commit times, denoted, andc,. The former
corresponds to the commit time of a transactign
such thatl; reads fromT;, for the last time and from
then it performs no other read operation. The latter
corresponds to the commit time of a transactign

so that it is the first transaction, aftgy, that verifies
WS, NRS # 0 and hence modifying the snapshot of
the transactiorT;. In case thaf;, does not exist, the
correctness interval foF will extend fromc;, to b;.

Property 3. Let H; be a1C-schedule verifying As-
sumption 3. For eachii € T if R(X;) € H thenX; €
SnapshotDB, H;, 1) andt € Rt satisfiessi, <1< ¢j, <
b;

The aim of the next theorem is to prove that the
1C-schedules generated by any deferred update pro
tocol that verifies Assumption 3 are actualBsi-
schedules; i.e., they comply with all conditions stated
in Definition 5. Whilst proving that a transaction al-
ways reads from the same snapshot in a particular
time interval is easy, it is not trivial to prove that for a
given transactiom; there has not been any other trans-
actionT; that has impacte® and that has been com-
mitted whilstT; was being executed. However, due
to the total commit order an induction proof is possi-
ble, showing that the obtainad-schedule verifies all
conditions in order to be @Sl-schedule.

Theorem 1. Under Assumption 3, thieC-scheduled;
is aGStkschedule.

This theorem formally justifies such protocols cor-
rectness and establishes that their resulting isolation
level is GSI; the proof of it is given in (Gonzéalez de
Mendivil et al., 2007). Additionally, it is worth not-
ing that Assumption 3 is a sufficient condition, but
not necessary, for obtainingSl. Despite this, repli-
cation protocols that comply with such an assumption
are easily implementable. In the next section, we ana-
lyze how to relax this assumption while obtainiag!
schedules with non-blocking protocols.

7 RELAXING ASSUMPTIONS

Assumption 3 (Total order of committing transact-
ions) is very strong. It forces to install the same snap-
shots in the same order at every replica. Thus, The-
orem 1 guarantees that the 1C-schedtilés a GSF
schedule. On the contrary, the total order of conflict-
ing transactions is not enough to guarargeeor GS|
(see Example 4) and it requires a stronger condition:
it is needed that the snapshot gotten by a transaction
at its delegate replica matches theschedule, actu-
ally being the latter asSlschedule. However, this
fact does not necessarily oblige each replica to install
the same snhapshots as in tt@schedule. That is, if

R (Xj) belongs toH; thenX; € (SnapshaDB, H,bi) N
SnapshaDB, HS'"" b)). From what it has been de-
picted before, it is clear that if you want to relax As-
sumption 3, you have to provide some property that

sets a relation between the reads-from relationship of
a transaction in theC-schedule and the reads-from
relationship of the transaction local schedule at its
delegate site. In the next, we provide more relaxing
assumptions to obtainiC-schedule providingsl.

Assumption 4. For each pairT;, T; € T with WSn
W§ # 0, a unique order relatiortf < ¢k holds for all
Skscheduled¥ with k € Im; and, if there is some trans-
actionT, € T such thatf < ¢ < ¢ holds for some site
k € Im then it holds for everk € I.

This assumption states that between two conflict-
ing transactions their commit ordering is the same at
every site. Moreover, it also states that between both
transactions, there are the same subset of committed
transactions; no matter the order in which they occur.

Example 5. Let us suppose that there are
two replicas and the next set of transactions:
{T]_,Tz,Tg,T4,T5,T5,T7} with WS N W$§ # 0,
WSNWS # 0 and the rest do not conflict among
each other. At the first site you can find the following
local Skschedule:ct < ¢} <l <cl<cl<ct<dd
whilst at the second site the derivetischedule can
be: ¢f < cd < g <c§<ci<cZ<cl Inthe latter, the

51

ICSOFT 2008 - International Conference on Software and Data Technologies

commit ordering of transactiorig andTg is different
from the scheduling of the former.

As it may be inferred, Assumption 4 becomes As-
sumption 3 whenever the pattern of transactions do
not allow to reorder the commit of transactions. In
Example 5, it cannot happen without violating As-
sumption 4 the followingc? < c3. On the other hand,
taking Assumption 4 to the extreme, if all transac-
tions do not conflict among them any committing or-
der can be obtained at each site. To limit these sit-

sumption 4 and Assumption 5 verify Definition 5; i.e.
they generat&Si schedules.

Theorem 2. Under Assumption 4 and Assumption 5,
the 1C-scheduled; is aGStkschedule.

Proof: Firstly, notice that Assumption 4 im-
plies total order of conflicting transactions. Given
this total order of conflicting transactions, the-
scheduleH;, the 1C-schedule verifies for each e
T that —(T; impacts Tj at b)) for every T; €
T. Additionally, by Assumption 5, for each e

uations from making their appearance, it is needed 1 s R(X{) € H then X; € (SnapshdiDB,Hy,s) N

to enforce to each transaction to read from the same

snapshot like for each pair of transactionsl; € T

with WS \ RS # 0: they verify that ifc; < b; in H; then
' <" in Hts"e(”.l WS \RS # 0: they verify that
if ¢j <by in H thenc]™® <"V in H¥'*Y which is
stated in the next assumption.

Assumption 5 (Compatible Snapshot Read)et H;

be a1C-schedule, for eacl € T there exists < b;
such that ifR (Xj) € H; thenX; € (SnapshaDB, Ht,s) N

SnapshdDB, ') by)).

SnapshaDB, HZ™ b5%)) with 5 € R* ands < by
(recall thatb; = "), This fact makes true Con-
dition (1) in Definition 5. Therefore, it = b; for
everyT € T then Condition (2) in Definition 5 triv-
ially holds. We need to prove Condition (2) in gen-
eral. Thus, consides < bj; there must be a transac-
tion T, € T such thats < ¢y < by andWS$,NRS # 0.
Let T be the first transaction ikl; verifying such
condition. Therefore, by Assumption 1 and Assump-
tion 2 (™Y is asi-schedule)b™ ™" < i holds.
As cm < by thency < ¢ also holds. Assume that

This last assumption means that each transactiony g . nws - o, if ' < ¢St then by Assumption 4
reads data items that belong to a valid global snapshotang construction ofk, ¢ < cm leading to a contra-

from the 1C-schedule although their delegate site do
not install the same snapshot version. On the other
hand Assumption 4, it seems clear thatGaschedule
serializes the execution of conflicting transactions.

Property 4. Under Assumption 4, thec-schedule;
verifies that for each paifi, T; € T: —(T; impacts T

ath).
Proof: By Assumption 2, at any sité € I, for
each pairTf, Tk e T*: ~(TKimpacts ¥ at bf). That
is, W NW g = 0v (b < ¢k < c).
(1) If w§nws =0, by definition of T; and T,
WS§NWS§ =0. Then,~(T; impacts Tat b).
(2) LetwgnWs # 0. Again, by definition ofT;
and T, W§NW§ # 0. Hence, either(T¥ impacts
TX at 1) or —(T* impacts T at b). Thus, ¢f < bf
or ¢k < bf holds. By Assumption 4¢f < ¢ for all
sitesk € Im. Thus,ck < b¥ for all k € Im. In particu-
lar, ") < b?“e(”. By definition of H;: ¢ < ¢; and
G < < b; holds inH;. Suppose tha; impacts
Ti at b in H. That is,WSNWS$ # 0 andb; < ¢j < ¢;.
A contradiction withc; < c; is obtained. Therefore,
—(Tj impacts Tat k). Analogously, ifT; impactsT; at
bjinH. Thatisw§nW§ #0andb; <¢ <cj. Acon-
tradiction withc; < b; is obtained again, and therefore,
—(Tj impacts T at bj). u
In the next theorem is proved thacC-schedules
generated by deferred update protocols following As-

52

diction. So,b™"" < ¢! < ") This implies, by
Assumption 2 thatv $,NW S = 0 andT;, verifies Con-
dition (2) in Definition 5G(TmimpactsT; ats)).

Every transactiof, € T such that < cp <cm < by
verifies thaW §NRS = 0 SinceTy is the first one such
thatw SnNRS # 0. So, ifW$NWS # 0 then you can
findg e R": 5 <cp< g <cm<bi. Atg, Assumption 5
is verified again forT; by Definition 3 of snapshot.
Furthermore, ifc, < bi then ¢y < pP') < el
due to Assumption 4 and construction taf (recall
that c_min, {ck} after renamingin(j) for all T)),

Cp < tm < ¢ in H; that is a contradiction with the ini-
tial supposition otm < cp < bj. ThusW$NWS =0
and Condition (2) in Definition 5 is verified for every
transaction. TheC-schedule is &SI-schedule under
the given assumptions.]

From all discussed throughout this section, one
can infer that a replication protocol that respects As-
sumption 4 and Assumption 4 will providgSI to its
executed transactions without needing to block trans-
actions. The simplest, and most straightforward, solu-
tionis to define a conflict class (Patifio-Martinez et al.,
2005; Amza et al., 2003) and each site is responsible
for one (or several) conflict class. Thus, transactions
belonging to different conflict classes will commit in
any order at remote replicas while conflicting trans-
actions belonging to the same conflict class are man-
aged by the underlyinDBMS of its delegate replica.
Of course, this solution has its own pros and cons, we

RELAXING CORRECTNESS CRITERIA IN DATABASE REPLICATION WITH SI REPLICAS

assume that each transaction exclusively belongs to aBernstein, P. A., Hadzilacos, V., and Goodman, N. (1987).

conflict class, i.e. no compound conflict classes, and Concurrency Control and Recovery in Database Sys-
it will read data and write data belonging to that class. tems Addison Wesley.

However, it is a high application dependent and the Chockler, G., Keidar, 1., and Vitenberg, R. (2001).
granularity of the conflict class is undefined: it can Group communication specifications: a comprehen-
range from coarse (at table level) to fine (at row level) sive study. ACM Comput. Sury33(4):427-469.

granularity. Elnikety, S., Pedone, F., and Zwaenopoel, W. (2005).
Database replication using generalized snapshot iso-
lation. INSRDS pages 73-84. IEEE-CS.

Fekete, A., Liarokapis, D., O'Neil, E., O'Neil, P., and
8 CONCLUSIONS Shasha, D. (2005). Making snapshot isolation seri-
_ o N alizable. ACM TODS 30(2):492-528.
It has been formalized the sufficient conditions to 5, 216, de Mendivil, J. R., Armendariz-lfiigo, J. E.,

achieve 1-copyGsifor non-blocking replication pro- Mufioz-Escoi, F. D., Iriin-Briz, L., Garitagoitia, J. R.,

tocols following the deferred update technique that and Juarez-Rodriguez, J. R. (2007). Non-blocking
exclusively broadcast the writeset of transactions with ROWA protocols implement GSI using Sl replicas.

Sl replicas. They consist in providing global atom- Technical Report ITI-ITE-07/10, ITI.

icity and applying (and committing) transactions in Kemme, B. (2000). Database Replication for Clusters of
the very same order at all replicas. This means that Workstations (Nr. 13864)PhD thesis, ETHZ.

there are other means to providsl in a replicated Lin, Y., Kemme, B., Patifio-Martinez, M., and Jiménez-
setting, some come at the cost of blocking the start Peris, R. (2005). Middleware based data replication
of transactions (Lin et al., 2005) (which goes against providing snapshot isolation. BIGMOD pages 419—
the non-blocking nature 81 (Berenson et al., 1995)) o0. ACH

or by way of relaxing the total order of commit- Papadimitriou, C. (1986)The Theory of Database Concur-
ted transactions given here. In particular, that be- rency Control Computer Science Press.

tween two conflicting transactions the same set of Patiﬁz;g/'nasrct)ince;Z,(zhgasgimc;egnesz_;’:r:itsaailéb angﬁrrgé,_czi_,oin;
non-conflicting transactions must be committed and 9, 2. : ' Icatl
transactions gtarted while applying in different or- iegniddiegiie levelACM TOCS23(4)-375-423.

der these writesets have read data items that belong”&done, F. (1999)The database state machine and group
to global valid versions. To sum up, all the prop- communication Issues (N. 209MhD thesis, EPFL.
erties that have been formalized in our paper seemPlattner, C., Alonso, G., andzsu, M. T. (2008). Extending
to be assumed in some previous works, but none of DBMSs W|t_h satellite database®/LDB J, Accepted
them carefully identified nor formalized such proper- for publication.) _

ties. As a result, we have provided a sound theoretical stﬂﬁg&ﬁg rzgﬁcgt?gr']pteeﬂc rﬁ{icﬁggsb)ése(c:f&p?c;lt:?%rgfer
basis for deggnmg and developing future replication broadcastlEEE TKDE 17(4):551-566.

protocols withGSiI.

ACKNOWLEDGEMENTS

This work has been supported by the EU FEDER and
Spanish MEC under grant TIN2006-14738-C02.

REFERENCES

Amza, C., Cox, A. L., and Zwaenepoel, W. (2003).
Conflict-aware scheduling for dynamic content appli-
cations. INUSENIX

Armendariz-lfiigo, J. E., Juarez-Rodriguez, J. R,
de Mendivil, J. R. G., Decker, H., and Mufioz-
Escoi, F. D. (2007)K-bound GSI: a flexible database
replication protocol. I'SAG pages 556-560. ACM.

Berenson, H., Bernstein, P. A., Gray, J., Melton, J., O'Neil
E. J., and O’'Neil, P. E. (1995). A critique of ANSI
SQL isolation levels. II5IGMOD, pages 1-10.

53

