
RELAXING CORRECTNESS CRITERIA IN DATABASE
REPLICATION WITH SI REPLICAS

J. E. Armendáriz-́Iñigo, J. R. González de Mendı́vil, J. R. Garitagoitia, J. R. Juárez-Rodrı́guez
Universidad Pública de Navarra, 31006 Pamplona, Spain

F. D. Muñoz-Escoı́, L. Irún-Briz
Instituto Tecnológico de Informática, 46022 Valencia, Spain

Keywords: Database replication, distributed databases, snapshot isolation, read one write all, correctness criteria, formal
proofs.

Abstract: The concept of Generalized Snapshot Isolation (GSI) has been recently proposed as a suitable extension of
conventional Snapshot Isolation (SI) for replicated databases. In GSI, transactions may use older snapshots
instead of the latest snapshot required in SI, being able to provide better performance without significantly
increasing the abortion rate when write/write conflicts among transactions are low. We study and formally
proof a sufficient condition that replication protocols with SI replicas following the deferred update technique
must obey to achieve GSI. They must provide global atomicity and commit update transactions in the very
same order at all sites. However, as this is a sufficient condition, it is possible to obtain GSI by relaxing certain
assumptions about the commit ordering of certain update transactions.

1 INTRODUCTION

Snapshot Isolation (SI) is the isolation level provided
by several commercial database systems, such as Or-
acle,PostgreSQL, MicrosoftSQL Server orInterBase.
Transactions executed underSI allows to read from
the last committed snapshot and, hence, read oper-
ations are never blocked nor conflict with any other
update transaction. In order to prevent the lost update
phenomenon (Berenson et al., 1995), concurrent up-
date transactions (read-only transactions are always
committed) modifying the same data item apply the
first-committer-winsrule: only the first transaction
that commits is allowed to proceed the remainder are
aborted. This turns out into a nice feature because it
provides sufficient data consistency (though not seri-
alizable (Fekete et al., 2005; Elnikety et al., 2005))
for non-critical applications while it maintains a good
performance, since read-only transactions are neither
delayed, blocked nor aborted and they never cause
update transactions to block or abort. This behavior
is important for workloads dominated by read-only
transactions, such as those resulting from dynamic
content Web servers (Plattner et al., 2008).

Many enterprise applications demand high avail-

ability since they have to provide continuous ser-
vice to their users. This also implies to replicate
the information being used; i.e., to manage replicated
databases. The concept of Generalized Snapshot Iso-
lation (GSI, concurrently to this a similar definition
denoted as 1-copy-SI was proposed in (Lin et al.,
2005)) has been recently proposed (Elnikety et al.,
2005) in order to provide a suitable extension of con-
ventionalSI for replicated databases based on mul-
tiversion concurrency control. InGSI, transactions
may use older snapshots instead of the latest snap-
shot required inSI (setting up the latest snapshot in
a distributed setting is not trivial). Actually, authors
of (Elnikety et al., 2005) outline an impossibility re-
sult which justifies the use ofGSI in database replica-
tion: “there is no non-blocking implementation of SI
in an asynchronous system, even if databases never
fail” which has been formally justified in (González
de Mendı́vil et al., 2007).

The deferred update technique (Pedone, 1999)
consists in executing transactions at their delegate
replicas (obtaining their corresponding snapshot) and
setting up a commit ordering for update transac-
tions which is mainly done thanks to the total or-
der broadcast (Chockler et al., 2001). When a trans-

45
E. Armendáriz-Íñigo J., R. González de Mendívil J., R. Garitagoitia J., R. Juárez-Rodríguez J., D. Muñoz-Escoí F. and Irún-Briz L. (2008).
RELAXING CORRECTNESS CRITERIA IN DATABASE REPLICATION WITH SI REPLICAS.
In Proceedings of the Third International Conference on Software and Data Technologies - ISDM/ABF, pages 45-53
DOI: 10.5220/0001877700450053
Copyright c© SciTePress

action requests its commitment (read-only transac-
tions are committed right away) its updates are col-
lected and broadcast (using the total order primitive)
to the rest of replicas. Upon its delivery at replicas
a validation test (i.e. to detect conflicts with other
concurrent transactions in the system) is performed;
namely a certification test (Wiesmann and Schiper,
2005) that performs the distributed first-committer-
wins rule (Elnikety et al., 2005; Lin et al., 2005) in the
same way at al replicas and ensures the same order of
the commit process of transactions. The main advan-
tage of these replication protocols is that transactions
can start at any time without restriction or delay.

In this paper, we formalize the requirements for
achieving GSI over SI replicas usingnon-blocking
protocols. Thus, the criteria for implementingGSI
are: (i) Each submitted transaction to the system ei-
ther commits or aborts at all sites (atomicity); (ii) All
update transactions are committed in the same total
order at every site (total order of committed trans-
actions). Total order ensures that all replicas see
the same sequence of transactions, being thus able
to provide the same snapshots to transactions, inde-
pendently of their starting replica; i.e. giving the
logical vision of a one copy scheduler (1-Copy-GSI).
Whereas atomicity guarantees that all replicas take
the same actions regarding each transaction, so their
states should be consistent, once each transaction has
been terminated.

One can think that these assumptions are rather
intuitive but they constitute the milestone for our con-
tribution of the paper. It consists in somehow relax-
ing the assumption of the total order of committed
transactions. If a protocol is not careful about that,
those transactions without write/write conflicts might
be applied in different orders in different replicas. So,
transactions would be able to read different versions
in different replicas. However, this optimization is
important since processing messages serially as sup-
posed for replication protocols deployed over a group
communication system (Chockler et al., 2001) would
result in significantly lower throughput rates. A re-
laxing assumption has been already presented in (Lin
et al., 2005), still using the total order broadcast, it lets
validated transactions to apply (and commit) transac-
tions concurrently as long as their respective updates
do not intersect. However, this protocol needs toblock
the execution of the first operation of any starting
transaction until the concurrent application of trans-
actions finishes. Thus, it is easy to see that there are
multiple approaches to obtainGSI at the price of im-
posing certain restrictions, in particular, the need to
block the start of transactions to obtain a global con-
sistent snapshot. Finally, we take a look and discuss

how to relax this last contribution, which is actually
too strong, for deployingGSInon-blocking protocols.

The rest of the work is organized as follows1. Sec-
tion 2 introduces the concept of multiversion histories
based on (Bernstein et al., 1987). Sections 3 and 4
give the concepts ofSI andGSI respectively. In Sec-
tion 5, the structure of deferred update replication pro-
tocols is introduced. Conditions for 1-Copy-GSI is in-
troduced in 6. We take a look at how to relax con-
ditions for 1-Copy-GSI in Section 7. Finally, conclu-
sions end the paper.

2 MULTIVERSION HISTORIES

In the following, we define the concept of multiver-
sion history for committed transactions using the the-
ory provided in (Bernstein et al., 1987). The prop-
erties studied in our paper only require to deal with
committed transactions. To this end, we first define
the basic building blocks for our formalizations, and
then the different definitions and properties will be
shown.

A database (DB) is a collection of data items,
which may be concurrently accessed by transactions.
A history represents anoverall partial orderingof the
different operations concurrently executed within the
contextof their corresponding transactions. Thus, a
multiversion history generalizes a history where the
database items are versioned.

To formalize this definition, each transaction sub-
mitted to the system is denoted byTi . A transaction is
a sequence of read and write operations on database
items ended by a commit or abort operation. EachTi ’s
write operation on itemX is denotedWi(Xi). A read
operation on itemX is denotedRi(Xj) stating thatTi

reads the version ofX installed byTj . Finally,Ci and
Ai denote theTi ’s commit and abort operation respec-
tively. We assume that a transaction does not read an
itemX after it has written it, and each item is read and
written at most once. Avoiding redundant operations
simplifies the presentation. The results for this kind
of transactions are seamlessly extensible to more gen-
eral models. In any case, redundant operations can be
removed using local variables in the program of the
transaction (Papadimitriou, 1986).

Each version of a data itemX contained in the
database is denoted byXi , where the subscript stands
for the transaction identifier that installed that version
in the DB. The readsetandwriteset(denoted byRSi

andWSi respectively) express the sets of items read

1Due to space constraints, the reader is referred
to (González de Mendı́vil et al., 2007) for a thorough ex-
planation of the correctness proof.

ICSOFT 2008 - International Conference on Software and Data Technologies

46

(written) by a transactionTi . Thus,Ti is a read-only
transaction ifWSi = /0 and it is anupdateone, other-
wise.

Let T = {T1, . . . ,Tn} be a set ofcommittedtrans-
actions, where the operations ofTi are ordered by
≺Ti . The last operation of a transaction is the com-
mit operation. To process operations from a trans-
actionTi ∈ T, a multiversion scheduler must translate
Ti ’s operations on data items into operations on spe-
cific versions of those data items. That is, there is a
functionh that maps eachWi(X) into Wi(Xi), and each
Ri(X) into Ri(Xj) for someTj ∈ T.

Definition 1. A Complete Committed Multiversion
(CCMV) history H over T is a partial order with or-
der relation≺ such that:
(1) H = h(

⋃
Ti∈T Ti) for some translation functionh.

(2) ≺⊇
⋃

Ti∈T ≺Ti .
(3) If Ri(Xj)∈H, i 6= j, thenWj (Xj)∈H andCj ≺Ri(Xj).

In the previous Definition 1 condition (1) indi-
cates that each operation submitted by a transaction
is mapped into an appropriate multiversion operation.
Condition (2) states that theCCMV history preserves
all orderings stipulated by transactions. Condition (3)
establishes that if a transaction reads a concrete ver-
sion of a data item, it was written by a transaction that
committed before the item was read.

Definition 1 is more specific than the one stated
in (Bernstein et al., 1987), since the former only in-
cludes committed transactions and explicitly indicates
that a new version may not be read until the transac-
tion that installed the new version has committed. In
the rest of the paper, we use the following conven-
tions: (i) T = {T1, . . . ,Tn} is the set of committed trans-
actions for every defined history; and,(ii) any history
H is a CCMV history overT. Note that these con-
ventions will be also applicable when a superscript is
used to denote the site of the database where the his-
tory is generated.

In general, two histories(H,≺) and (H ′,≺′) over
the same set of transactions areview equivalent(Bern-
stein et al., 1987), denoted asH ≡ H ′ if they contain
the same operations, have the samereads-fromrela-
tions, and produce the same final writes. The notion
of equivalence ofCCMV histories reduces to the sim-
ple condition,H = H ′, if the following reads-fromre-
lation is used:Ti readsX from Tj in a CCMV history
(H,≺), if and only if Ri(Xj) ∈ H.

3 SNAPSHOT ISOLATION

In SI reading from a snapshot means that a transac-
tion Ti sees all the updates done by transactions that

committed before the transaction started its first oper-
ation. The results of its writes are installed when the
transaction commits. However, a transactionTi will
successfully commit if and only if there is not a con-
current transactionTk that has already committed and
some of the written items byTk are also written byTi .
From our point of view, histories generated by a given
concurrency control providingSI may be interpreted
as multiversion histories with time restrictions.

Definition 2. Let (H,≺) be a history andt : H →R+ a
mapping such that it assigns to each operationop∈ H
its real time occurrencet(op) ∈ R+. The scheduleHt

of the history(H,≺) verifies:
(1) If op,op′ ∈ H andop≺ op′ thent(op) < t(op′).
(2) If t(op) = t(op′) andop,op′ ∈ H thenop= op′.

The mappingt() totally orders all operations of
(H,≺). Condition (1) states that the total order< is
compatible with the partial order≺. Condition (2) es-
tablishes, for sake of simplicity, the assumption that
different operations will have different times. We are
interested in operating with schedules since it facili-
tates the work, but only with the ones that derive from
CCMV histories over a concrete set of transactionsT.
One can note that an arbitrary time labeled sequence
of versioned operations, e.g.(Ri(Xj),t1),(Wi(Xk),t2)
and so on, is not necessarily a schedule of a history.
Thus, we need to put some restrictions to make sure
that we work really with schedules corresponding to
possible histories.

Property 1. LetSt be a time labeled sequence of ver-
sioned operations over a set of transactionsT, St is a
schedule of a history overT if and only if it verifies
the following conditions:
(1) item there exists a mappingh such that S =

h(
⋃

i∈Ti
Ti).

(2) if op,op′ ∈ Ti andop≺Ti op′ thent(op) < t(op′) in
St .
(3) if Ri(Xj) ∈ S and i 6= j thenWj (Xj) ∈ S and t(Cj) <

t(Ri(Xj)).
(4) if t(op) = t(op′) andop,op′ ∈ S thenop= op′.

The proof of this fact can be inferred trivially. In
the following, we use an additional convention: (iii) A
scheduleHt is a schedule of a history(H,≺). Note that
every scheduleHt may be represented by writing the
operations in the total order (<) induced byt(). We
define the “commit time” (ci) and “begin time” (bi)
for each transactionTi ∈T in a scheduleHt asci = t(Ci)

andbi = t(first operation ofTi), holdingbi < ci by def-
inition of t() and≺Ti . In the following, we formalize
the concept of snapshot of the database. Intuitively, it
comprises the latest version of each data item. Firstly,
we will see an example of this:

Example 1. Let us consider the following transac-

RELAXING CORRECTNESS CRITERIA IN DATABASE REPLICATION WITH SI REPLICAS

47

tions T1, T2 and T3: T1 = {R1(X), W1(X),c1}, T2 =

{R2(Z),R2(X),W2(Y),c2}, T3 = {R3(Y),W3(X),c3}. A
sample of a possible schedule of these transac-
tions might be the following one:b1 R1(X0) W1(X1)c1

b2 R2(Z0)b3 R3(Y0)W3(X3)c3 R2(X1)W2(Y2)c2. As this
example shows, each transaction is able to include
in its snapshot (and read from it) the latest committed
version of each existing item at the time such transac-
tion was started. ThusT2 has read version1 of item
X sinceT1 has generated such version and it has al-
ready committed whenT2 started. But it only reads
version0 of item Z since no update of such item is
seen byT2. This is true despite transactionsT2 andT3

are concurrent andT3 updatesX beforeT2 reads such
item, because the snapshot taken forT2 is previous to
the commit ofT3.

This example provides the basis for defining what
a snapshot is. For that purpose, we need to define
first the set of installed versions of a data itemX in a
scheduleHt , as the setVer(X,H) = {Xj : Wj (Xj) ∈ H}∪

X0, beingX0 its initial version.

Definition 3. The snapshot of the databaseDB
at time τ ∈ R+ for a scheduleHt , is defined as:
Snapshot(DB,Ht ,τ) =

⋃
X∈DB latestVer(X,Ht ,τ) where

the latest version of each itemX ∈ DB at time τ is
the set: latestVer(X,Ht ,τ) = {Xp ∈ Ver(X,H) : (∄Xk ∈

Ver(X,H) : cp < ck ≤ τ)}

From the previous definition, it is easy to show
that a snapshot is modified each time an update trans-
action commits. Ifτ = cm and Xm ∈ Ver(X,H), then
latestVer(X, Ht , cm) = {Xm}. In order to formalize the
concept ofSI-schedule, we utilize a slight variation
of the predicateimpactsfor update transactions pre-
sented in (Elnikety et al., 2005). Two transactionsTj ,
Ti ∈ T impact at timeτ ∈ R+ in a scheduleHt , denoted
Tj impactsTi at τ, if the following predicate holds:
WSj

⋂
WSi 6= /0 ∧ τ < c j < ci .

Definition 4. A scheduleHt is a SI-schedule if and
only if for eachTi ∈ T:
(1) if Ri(Xj) ∈ H thenXj ∈ Snapshot(DB,Ht ,bi); and,
(2) for eachTj ∈ T : ¬(Tj impactsTi at bi).

Condition (1) states that all the versions read by a
transactionTi are obtained fromSnapshot(DB, Ht ,bi);
that is, versions are obtained from the snapshot of the
databaseDB at the time the transaction starts its first
operation. Condition (2) states that any pair of trans-
actionsTj and Ti , writing over some common data
items, can not overlap their time intervals[bi ,ci] and
[b j ,c j]. In other words, they have to be executed in
a serial way. Other equivalent definitions ofSI have
been provided in the literature (Berenson et al., 1995;
Kemme, 2000; Lin et al., 2005; Fekete et al., 2005;
Elnikety et al., 2005).

4 THE GSI LEVEL

The concept of Generalized Snapshot Isolation (or
GSI, for short) was firstly applied to database repli-
cation in (Elnikety et al., 2005). A hypothetical con-
currency control algorithm could have stored some
past snapshots. A transaction may receive a snapshot
that happened in the system before the time of its first
operation (instead of its current snapshot as in aSI
concurrency control algorithm). The algorithm may
commit the transaction if no other transaction impacts
with it from that past snapshot. Thus, a transaction
can observe an older snapshot of theDB but the write
operations of the transaction are still valid update op-
erations for theDB at commit time. These previous
ideas define the concept ofGSI.

Definition 5. A scheduleHt is a GSI-schedule if and
only if for eachTi ∈ T there exists a valuesi ∈ R+ such
thatsi ≤ bi and:
(1) if Ri(Xj) ∈ H thenXj ∈ Snapshot(DB,Ht ,si); and,
(2) for eachTj ∈ T : ¬(Tj impactsTi atsi).

Condition (1) states that every item read by a
transaction belongs to the same (possible past) snap-
shot. Condition (2) also establishes that the time in-
tervals[si ,ci] and[sj ,c j] do not overlap for any pair of
write/write conflicting transactionsTi andTj . If for all
Ti ∈ T, conditions (1) and (2) hold forsi = bi thenHt is
aSI-schedule. Thus, Definition 5 includes as a partic-
ular case the Definition 4. Another observation of the
definition concludes that if there exists a transaction
Ti ∈ T such that conditions (1) and (2) are only veri-
fied for a valuesi < bi then there is an itemX ∈ RSi for
which latestVer(X,Ht ,si) 6= latestVer(X,Ht ,bi). That is,
the transactionTi has not seen the latest version ofX
at the begin timebi . There was a transactionTk with
Wk(Xk)∈H such thatsi < ck < bi . This can be best seen
in the next example.

Example 2. The following is an example of aGSI-
schedule:b1 R1(X0)W1(X1)c1 b2 R2(X0)R2(Z0)b3 R3(Y0)

W3(X3)c3W2(Y2)c2. In this schedule, transaction
T2 reads X0 after the commit ofT1 appears. This
would not be correct for aSI-schedule (since
the read version ofX is not the latest one), but
it is perfectly valid for a GSI-schedule, taken
the time point of the snapshot provided toT2

(i.e. s2) previous to the commit ofT1, as it is shown:
b1 R1(X0)s2W1(X1)c1b2 R2(X0)R2(Z0)b3 R3(Y0)W3(X3)c3

W2(Y2)c2. The intuition under this schedule in a dis-
tributed system is that the message containing the
modifications ofT1 (the write operation onX) would
have not yet arrived to the site at the time transaction
T2 began. This may be the reason forT2 to see this
previous version of itemX. The fact thatGSIcaptures

ICSOFT 2008 - International Conference on Software and Data Technologies

48

these delays into schedules makes attractive its usage
on distributed environments.

The valuesi in Definition 5 plays the same role as
bi in Definition 4. Thus, it is possible to think that if
the operations in theGSI-schedule obtained from the
historyH had been ‘on time’ then the schedule would
have been aSI-schedule.

Example 3. Let us use Example 2 to show how a
GSI-schedule can be transformed into aSI-schedule.
Thus, to turn thatGSI-schedule into aSI-schedule, it
is just needed to move the beginning ofT2 back to
s2, and consequently, the resulting schedule will be
a SI-schedule:b1 R1(X0) b2 W1(X1) c1 R2(X0) R2(Z0)

b3 R3(Y0) W3(X3) c3 W2(Y2) c2. However, this schedule
does not fit the definition ofbi , which was described as
the time of the first operation a transaction performs.
Thus, such first operation of transactionT2 must be
also moved in theSI-schedule, resulting in the follow-
ing: b1 R1(X0) b2 R2(X0) W1(X1) c1 R2(Z0) b3 R3(Y0)

W3(X3) c3 W2(Y2) c2.

The following property describes the previous
transformation in a formal way:

Property 2. Let Ht be a GSI-schedule. There is a
mappingt ′ : H → R+ such thatHt ′ is a SI-schedule.

This last property states that ifHt is a GSI-
schedule, there will exist aHt ′ , which is actually a
SI-schedule, and verify the followingHt ≡ Ht ′ (in the
sense of view-equivalence).

5 THE DEFERRED UPDATE
TECHNIQUE

The GSI concept is particularly interesting in repli-
cated databases, since many replication protocols ex-
ecute each transaction initially in a delegate replica,
propagating later its updates to the rest of repli-
cas (Lin et al., 2005; Elnikety et al., 2005; Ar-
mendáriz-Iñigo et al., 2007). This means that trans-
action writesets cannot be immediately applied in all
replicas at a time and, due to this, the snapshot being
used in a transaction might be “previous” to the one
that (regarding physical time in a hypothetical cen-
tralized system) would have been assigned to it. In
this Section we consider a distributed system that con-
sists ofm sites, beingIm = {1..m} the set of site iden-
tifiers. Sites communicate among them by reliable
message passing. We make no assumptions about the
time it takes for sites to execute and for messages to
be transmitted. We assume a system free of failures2.

2Otherwise, writes will only be applied on the avail-
able replicas, but all our discussion is orthogonal to failures

Each sitek runs an instance of the database manage-
ment system and maintains a copy of the databaseDB.
We will assume that each database copy, denotedDBk

with k∈ Im, providesSI (Berenson et al., 1995).
We use the transaction model of Section 2. Let

T = {Ti : i ∈ In} be the set of transactions submitted to
the system; whereIn = {1..n} is the set of transaction
identifiers.

The deferred update technique defines for each
transactionTi ∈ T, the set of transactions{Tk

i : k ∈ Im}

in which there is only one, denotedTsite(i)
i , verifying

RSsite(i)
i = RSi andWSsite(i)

i = WSi ; for the rest of the
transactions,Tk

i , k 6= site(i), RSk
i = /0 andWSk

i = WSi .

Tsite(i)
i determines the local transaction ofTi , i.e., the

transaction executed at its delegate replica or site,
whilst Tk

i ,k 6= site(i), is a remote transaction ofTi , i.e.,
the updates of the transaction executed at a remote
site. An update transaction reads at one site and writes
at every site, while a read-only transaction only ex-
ists at its local site. In the rest of the paper, we con-
sider the general case of update transactions with non-
empty sets.

Let Tk = {Tk
i : i ∈ In} be the set of transactions sub-

mitted at each sitek∈ Im for the setT. Some of these
transactions are local atk while others are remote
ones. In the next, the Assumption 1 implies that each
transaction submitted to the system either commits at
all replicas or in none of them. Thus, the updates ap-
plied in a delegate replica by a given transaction are
also applied in the rest of replicas. Obviously, we con-
sider a fully-replicated system. Since only committed
transactions are relevant, the histories being generated
at each site should be histories overTk, as defined
above.

Assumption 1 (Atomicity). Hk is a CCMV history
overTk for all sitesk∈ Im.

In the considered distributed system there is not
a common clock or a similar synchronization mech-
anism. However, we can use a real time mapping
t :

⋃
k∈Im(Hk) → R+ that totally orders all operations

of the system. This mapping is compatible with each
partial order≺k defined forHk for each sitek ∈ Im.
In the following, we consider that eachDBk provides
SI-schedules under the previous time mapping.

Assumption 2 (SI Replicas). Hk
t is a SI-schedule of

the historyHk for all sitesk∈ Im.

In order to study the level of consistency imple-
mented by this kind of non-blocking protocols is nec-
essary to define the one copy schedule (1C-schedule)
obtained from the schedules at each site. In the next

and can be seamlessly extended to a system where failures
might arise.

RELAXING CORRECTNESS CRITERIA IN DATABASE REPLICATION WITH SI REPLICAS

49

definitions, properties and theorems we use the fol-
lowing notation: for each transactionTi , i ∈ In, Cmin(i)

i
denotes the commit operation of the transactionTi at
sitemin(i)∈ Im such thatcmin(i)

i = mink∈Im{ck
i } under the

considered mappingt().

Definition 6 (1C-schedule). LetT = {Ti : i ∈ In} be the
set of submitted transactions to a replicated database
system with a non-blocking deferred update strategy
that verifies Assumption 1 and Assumption 2. Let
S=

⋃
k∈Im(Hk) be the set formed by the union of the

historiesHk overTk = {Tk
i : i ∈ In}. And lett : S→ R+

be the mapping that totally orders the operations inS.
The1C-schedule,Ht ′ = (H, t ′ : H →R+), is built fromS
andt() as follows. For eachi ∈ In andk∈ Im:
(1) Remove fromSoperations such that:Wi(Xi)

k, with
k 6= site(i), or Ck

i , with k 6= min(i).
(2) H is obtained with the rest of operations inSafter
step (1), applying the renaming:Wi(Xi) = Wi(Xi)

site(i);
Ri(Xj) = Ri(Xj)

site(i); and,Ci = Cmin(i)
i .

(3) Finally, t ′() is obtained fromt() as follows:
t ′(Wi(Xi)) = t(Wi(Xi)

site(i)); t ′(Ri(Xj)) = t(Ri(Xj)
site(i));

and,t ′(Ci) = t(Cmin(i)
i)

As t ′() receives its values fromt(), we write, Ht

instead ofHt ′ . In the1C-scheduleHt , for each transac-
tion Ti , is trivially verified bi < ci because this tech-
nique guarantees that for allk 6= site(i), bsite(i)

i < bk
i .

The 1C history H, that is formed by the operations
over the logicalDB, is also a history overT. We
prove this fact informally. By the renaming (2) in
Definition 6, each transactionTi , has its operations
over the data items inRSi andWSi , and≺Ti is triv-
ially maintained in a partial order≺ for H, because
Ht contains the local operations ofTsite(i)

i . H is also
formed by committed transactions, under Assump-
tion 1; for eachTi , Ci ∈ H. Finally, if Ri(Xj) ∈ H, then
Ri(Xj)

site(i) ∈ Hsite(i). As Hsite(i) is a history overTsite(i)

thenCsite(i)
j ≺ Ri(Xj)

site(i). By definingCmin(j)
j ≺Csite(i)

j

in S thenCmin(j)
j ≺ Ri(Xj)

site(i) and soCj ≺ Ri(Xj). Thus
H can be defined as a history overT.

Transformation (2) on Definition 6 ensures that a
transaction is committed as soon as it has been com-
mitted at the first replica. Finally, no restriction about
the beginning of a transaction is imposed in this def-
inition. Hence, this definition is valid for the most
general case of non-blocking protocols. Although As-
sumptions 1 and 2 are included in Definition 6, they
do not guarantee that the obtained1C-schedule is a
SI-schedule. This is best illustrated in the following
example, where it is also shown how the1C-schedule
may be built from each siteSI-schedules.

Example 4. In this example two sites(A,B) and
the next set of transactionsT1,T2,T3,T4 are consid-

ered: T1 = {R1(Y),W1(X)},T2 = {R2(Z),W2(X)}, T3 =

{R3(X),W3(Z)}, T4 = {R4(X),R4(Z),W4(Y)}. Figure 1
illustrates the mapping described in Definition 6 for
building a1C-schedule from theSI-schedules seen in
the different nodesIm. T2 andT3 are locally executed
at siteA (RS2 6= /0 andRS3 6= /0) whilst T1 and T4 are ex-
ecuted at siteB respectively. The writesets are after-
wards applied at the remote sites. Schedules obtained
at both sites areSI-schedules, i.e. transactions read
the latest version of the committed data at each site.
The 1C-schedule is obtained from Definition 6. For
example, the commit ofT1 occurs for the1C-schedule
in the minimum of the interval betweenCA

1 and CB
1

and so on for the remaining transactions. In the1C-
schedule of Figure 1,T4 readsX1 and Z3 but theX2

version exists between both (sinceX2 was installed at
site A). T1 andT2, satisfying thatWS1

⋂
WS2 6= /0, are

executed at both sites in the same order. AsT1 andT2

are not executed in the same order with regard toT3,
the obtained1C-schedule is neitherSI nor GSI.

6 1-COPY-GSI SCHEDULES

The 1C-scheduleHt obtained in Definition 6 will be
a GSI-schedule if it verifies the conditions given in
Definition 5. The question is what conditions localSI-
schedules,Hk

t , have to verify in order to guarantee that
Ht is a GSI-schedule. Taking into account the order-
ing of conflicting transactions inGSI-equivalence, we
consider the kind of protocols that guarantee the same
total order of the commit operations for the transac-
tions with write/write conflicts at every site. However,
the execution of write/write conflicting transactions in
the same order at all sites does not offerSI norGSI, as
it has been shown in Example 4. Therefore, it is also
necessary to consider the need of reading from a con-
sistent snapshot from the notion ofGSI-equivalence;
i.e. all update transactions must be committed in the
very same order at all sites. As a result, since all repli-
cas generateSI-schedules and their local snapshots
have received the same sequence of updates, trans-
actions starting at any site are able to read a particular
snapshot, that perhaps is not the latest one, but that is
consistent with those of other replicas.

Assumption 3 (Total Order of Committing Transac-
tions). For each pairTi , Tj ∈T, a unique order relation
ck

i < ck
j holds for allSI-schedulesHk

t with k∈ Im.

TheSI-schedulesHk
t have the same total order of

committed transactions. Without loss of generaliza-
tion, we consider the following total order in the rest
of this section:ck

1 < ck
2 < ... < ck

n for everyk ∈ Im. In
the next property we are going to verify that, thanks to

ICSOFT 2008 - International Conference on Software and Data Technologies

50

A
T
1

1
T
1

2
T
1

3
T
1

4

W
1

1
(X1)C

1

1
R
1

2
(Z0)W

1

2
(X2)C

1

2
R
1

3
(X2)W

1

3
(Z3)C

1

3
W
1

4
(Y4)C

1

4

B
T
2

1
T
2

3
T
2

4
T
2

2

R
2

1
(Y0)W

2

1
(X1)C

2

1
W
2

3
(Z3)C

2

3
R
2

4
(X1)R

2

4
(Z3)W

2

4
(Y4)C

2

4
W
2

2
(X2)C

2

2

1CS
T1 T2 T3 T4

R1(Y0)W1(X1)C1 R2(Z0)W2(X2)C2 R3(X2)W3(Z3)C3 R4(X1)R4(Z3)W4(Y4)C4

Time

Figure 1: Replicated one-copy execution not providing CSI nor GSI.

the total order, versions of items read by a transaction
belong to the same snapshot in a given time interval.
This interval is determined for each transactionTi by
two commit times, denotedci0 and ci1. The former
corresponds to the commit time of a transactionTi0
such thatTi reads fromTi0 for the last time and from
then it performs no other read operation. The latter
corresponds to the commit time of a transactionTi1,
so that it is the first transaction, afterTi0, that verifies
WSi1 ∩RSi 6= /0 and hence modifying the snapshot of
the transactionTi . In case thatTi1 does not exist, the
correctness interval forTi will extend fromci0 to bi .

Property 3. Let Ht be a 1C-schedule verifying As-
sumption 3. For eachTi ∈ T if Ri(Xj) ∈ H thenXj ∈

Snapshot(DB,Ht ,τ) and τ ∈ R+ satisfiesci0 ≤ τ < ci1 ≤

bi .

The aim of the next theorem is to prove that the
1C-schedules generated by any deferred update pro-
tocol that verifies Assumption 3 are actuallyGSI-
schedules; i.e., they comply with all conditions stated
in Definition 5. Whilst proving that a transaction al-
ways reads from the same snapshot in a particular
time interval is easy, it is not trivial to prove that for a
given transactionTi there has not been any other trans-
actionTj that has impactedTi and that has been com-
mitted whilst Ti was being executed. However, due
to the total commit order an induction proof is possi-
ble, showing that the obtained1C-schedule verifies all
conditions in order to be aGSI-schedule.

Theorem 1. Under Assumption 3, the1C-scheduleHt

is a GSI-schedule.

This theorem formally justifies such protocols cor-
rectness and establishes that their resulting isolation
level is GSI; the proof of it is given in (González de
Mendı́vil et al., 2007). Additionally, it is worth not-
ing that Assumption 3 is a sufficient condition, but
not necessary, for obtainingGSI. Despite this, repli-
cation protocols that comply with such an assumption
are easily implementable. In the next section, we ana-
lyze how to relax this assumption while obtainingGSI
schedules with non-blocking protocols.

7 RELAXING ASSUMPTIONS

Assumption 3 (Total order of committing transact-
ions) is very strong. It forces to install the same snap-
shots in the same order at every replica. Thus, The-
orem 1 guarantees that the 1C-scheduleHt is a GSI-
schedule. On the contrary, the total order of conflict-
ing transactions is not enough to guaranteeSI norGSI
(see Example 4) and it requires a stronger condition:
it is needed that the snapshot gotten by a transaction
at its delegate replica matches the1C-schedule, actu-
ally being the latter aGSI-schedule. However, this
fact does not necessarily oblige each replica to install
the same snapshots as in the1C-schedule. That is, if
Ri(Xj) belongs toHt thenXj ∈ (Snapshot(DB,Ht ,bi)∩

Snapshot(DB,Hsite(i)
t ,bi)). From what it has been de-

picted before, it is clear that if you want to relax As-
sumption 3, you have to provide some property that
sets a relation between the reads-from relationship of
a transaction in the1C-schedule and the reads-from
relationship of the transaction local schedule at its
delegate site. In the next, we provide more relaxing
assumptions to obtain a1C-schedule providingGSI.

Assumption 4. For each pairTi ,Tj ∈ T with WSi ∩

WSj 6= /0, a unique order relationck
i < ck

j holds for all
SI-scheduleHk

t with k∈ Im; and, if there is some trans-
actionTp ∈ T such thatck

i < ck
p < ck

j holds for some site
k∈ Im then it holds for everyk∈ Im.

This assumption states that between two conflict-
ing transactions their commit ordering is the same at
every site. Moreover, it also states that between both
transactions, there are the same subset of committed
transactions; no matter the order in which they occur.

Example 5. Let us suppose that there are
two replicas and the next set of transactions:
{T1,T2,T3,T4,T5,T6,T7} with WS1 ∩ WS4 6= /0,
WS3 ∩WS7 6= /0 and the rest do not conflict among
each other. At the first site you can find the following
local SI-schedule: c1

1 < c1
2 < c1

3 < c1
4 < c1

5 < c1
6 < c1

7
whilst at the second site the derivedSI-schedule can
be: c2

1 < c2
2 < c2

3 < c2
4 < c2

6 < c2
5 < c2

7. In the latter, the

RELAXING CORRECTNESS CRITERIA IN DATABASE REPLICATION WITH SI REPLICAS

51

commit ordering of transactionsT5 andT6 is different
from the scheduling of the former.

As it may be inferred, Assumption 4 becomes As-
sumption 3 whenever the pattern of transactions do
not allow to reorder the commit of transactions. In
Example 5, it cannot happen without violating As-
sumption 4 the following:c2

4 < c2
3. On the other hand,

taking Assumption 4 to the extreme, if all transac-
tions do not conflict among them any committing or-
der can be obtained at each site. To limit these sit-
uations from making their appearance, it is needed
to enforce to each transaction to read from the same
snapshot like for each pair of transactionsTi ,Tj ∈ T
with WSj \RSi 6= /0: they verify that ifc j < bi in Ht then

csite(i)
j < csite(i)

i in Hsite(i)
t . WSj \RSi 6= /0: they verify that

if c j < bi in Ht then csite(i)
j <

site(i)
i in Hsite(i)

t which is
stated in the next assumption.

Assumption 5 (Compatible Snapshot Read). Let Ht

be a1C-schedule, for eachTi ∈ T there existssi ≤ bi

such that ifRi(Xj)∈Ht thenXj ∈ (Snapshot(DB,Ht ,si)∩

Snapshot(DB,Hsite(i)
t ,bi)).

This last assumption means that each transaction
reads data items that belong to a valid global snapshot
from the1C-schedule although their delegate site do
not install the same snapshot version. On the other
hand Assumption 4, it seems clear that a1C-schedule
serializes the execution of conflicting transactions.

Property 4. Under Assumption 4, the1C-scheduleHt

verifies that for each pairTi , Tj ∈ T : ¬(Tj impacts Ti
at bi).

Proof: By Assumption 2, at any sitek ∈ Im, for
each pairTk

j ,Tk
i ∈ Tk : ¬(Tk

j impacts Tk
i at bk

i). That
is,WSk

j ∩WSk
i = /0∨¬(bk

i < ck
j < ck

i).
(1) If WSk

j ∩WSk
i = /0, by definition of Tj and Ti ,

WSj ∩WSi = /0. Then,¬(Tj impacts Ti at bi).
(2) Let WSk

j ∩WSk
i 6= /0. Again, by definition ofTj

and Ti , WSj ∩WSi 6= /0. Hence, either¬(Tk
j impacts

Tk
i at bk

i) or ¬(Tk
i impacts Tk

j at bk
j). Thus, ck

i < bk
j

or ck
j < bk

i holds. By Assumption 4,ck
i < ck

j for all
sitesk ∈ Im. Thus,ck

i < bk
j for all k ∈ Im. In particu-

lar, csite(j)
i < bsite(j)

j . By definition of Ht : ci < c j and

ci ≤ csite(j)
i < b j holds inHt . Suppose thatTj impacts

Ti at bi in Ht . That is,WSj ∩WSi 6= /0 andbi < c j < ci .
A contradiction withci < c j is obtained. Therefore,
¬(Tj impacts Ti at bi). Analogously, ifTi impactsTj at
b j in Ht . That is,WSj ∩WSi 6= /0 andb j < ci < c j . A con-
tradiction withci < b j is obtained again, and therefore,
¬(Ti impacts Tj at bj).

In the next theorem is proved that1C-schedules
generated by deferred update protocols following As-

sumption 4 and Assumption 5 verify Definition 5; i.e.
they generateGSI schedules.

Theorem 2. Under Assumption 4 and Assumption 5,
the1C-scheduleHt is a GSI-schedule.

Proof: Firstly, notice that Assumption 4 im-
plies total order of conflicting transactions. Given
this total order of conflicting transactions, the1C-
scheduleHt, the 1C-schedule verifies for eachTi ∈

T that ¬(Tj impacts Ti at bi) for every Tj ∈

T. Additionally, by Assumption 5, for eachTi ∈

T, if Ri(Xj) ∈ Ht then Xj ∈ (Snapshot(DB,Ht ,si) ∩

Snapshot(DB,Hsite(i)
t ,bsite(i)

i)) with si ∈ R+ and si ≤ bi

(recall thatbi = bsite(i)
i). This fact makes true Con-

dition (1) in Definition 5. Therefore, ifsi = bi for
everyTi ∈ T then Condition (2) in Definition 5 triv-
ially holds. We need to prove Condition (2) in gen-
eral. Thus, considersi < bi ; there must be a transac-
tion Tm ∈ T such thatsi < cm < bi andWSm∩RSi 6= /0.
Let Tm be the first transaction inHt verifying such
condition. Therefore, by Assumption 1 and Assump-
tion 2 (Hsite(i)

t is a SI-schedule),bsite(i)
i < csite(i)

m holds.
As cm < bi then cm < ci also holds. Assume that
WSm∩WSi 6= /0, if csite(i)

i < csite(i)
m then by Assumption 4

and construction ofHt , ci < cm leading to a contra-
diction. So,bsite(i)

i < csite(i)
m < csite(i)

i . This implies, by
Assumption 2 thatWSm∩WSi = /0 andTm verifies Con-
dition (2) in Definition 5(¬(TmimpactsTi atsi)).

Every transactionTp ∈ T such thatsi < cp < cm < bi

verifies thatWSp∩RSi = /0 sinceTm is the first one such
thatWSm∩RSi 6= /0. So, ifWSp∩WSi 6= /0 then you can
find s′i ∈R+ : si < cp < s′i < cm < bi . At s′i , Assumption 5
is verified again forTi by Definition 3 of snapshot.
Furthermore, ifcp < bi then csite(i)

p < bsite(i)
i < csite(i)

i
due to Assumption 4 and construction ofHt (recall
that c=mink∈Im{ck

j} after renamingcm
j in(j) for all Tj),

cp < cm < ci in Ht that is a contradiction with the ini-
tial supposition ofcm < cp < bi . Thus,WSp ∩WSi = /0
and Condition (2) in Definition 5 is verified for every
transaction. The1C-schedule is aGSI-schedule under
the given assumptions.

From all discussed throughout this section, one
can infer that a replication protocol that respects As-
sumption 4 and Assumption 4 will provideGSI to its
executed transactions without needing to block trans-
actions. The simplest, and most straightforward, solu-
tion is to define a conflict class (Patiño-Martı́nez et al.,
2005; Amza et al., 2003) and each site is responsible
for one (or several) conflict class. Thus, transactions
belonging to different conflict classes will commit in
any order at remote replicas while conflicting trans-
actions belonging to the same conflict class are man-
aged by the underlyingDBMS of its delegate replica.
Of course, this solution has its own pros and cons, we

ICSOFT 2008 - International Conference on Software and Data Technologies

52

assume that each transaction exclusively belongs to a
conflict class, i.e. no compound conflict classes, and
it will read data and write data belonging to that class.
However, it is a high application dependent and the
granularity of the conflict class is undefined: it can
range from coarse (at table level) to fine (at row level)
granularity.

8 CONCLUSIONS

It has been formalized the sufficient conditions to
achieve 1-copy-GSI for non-blocking replication pro-
tocols following the deferred update technique that
exclusively broadcast the writeset of transactions with
SI replicas. They consist in providing global atom-
icity and applying (and committing) transactions in
the very same order at all replicas. This means that
there are other means to provideGSI in a replicated
setting, some come at the cost of blocking the start
of transactions (Lin et al., 2005) (which goes against
the non-blocking nature ofSI (Berenson et al., 1995))
or by way of relaxing the total order of commit-
ted transactions given here. In particular, that be-
tween two conflicting transactions the same set of
non-conflicting transactions must be committed and
transactions started while applying in different or-
der these writesets have read data items that belong
to global valid versions. To sum up, all the prop-
erties that have been formalized in our paper seem
to be assumed in some previous works, but none of
them carefully identified nor formalized such proper-
ties. As a result, we have provided a sound theoretical
basis for designing and developing future replication
protocols withGSI.

ACKNOWLEDGEMENTS

This work has been supported by the EU FEDER and
Spanish MEC under grant TIN2006-14738-C02.

REFERENCES

Amza, C., Cox, A. L., and Zwaenepoel, W. (2003).
Conflict-aware scheduling for dynamic content appli-
cations. InUSENIX.

Armendáriz-Iñigo, J. E., Juárez-Rodrı́guez, J. R.,
de Mendı́vil, J. R. G., Decker, H., and Muñoz-
Escoı́, F. D. (2007).K-bound GSI: a flexible database
replication protocol. InSAC, pages 556–560. ACM.

Berenson, H., Bernstein, P. A., Gray, J., Melton, J., O’Neil,
E. J., and O’Neil, P. E. (1995). A critique of ANSI
SQL isolation levels. InSIGMOD, pages 1–10.

Bernstein, P. A., Hadzilacos, V., and Goodman, N. (1987).
Concurrency Control and Recovery in Database Sys-
tems. Addison Wesley.

Chockler, G., Keidar, I., and Vitenberg, R. (2001).
Group communication specifications: a comprehen-
sive study.ACM Comput. Surv., 33(4):427–469.

Elnikety, S., Pedone, F., and Zwaenopoel, W. (2005).
Database replication using generalized snapshot iso-
lation. InSRDS, pages 73–84. IEEE-CS.

Fekete, A., Liarokapis, D., O’Neil, E., O’Neil, P., and
Shasha, D. (2005). Making snapshot isolation seri-
alizable.ACM TODS, 30(2):492–528.

González de Mendı́vil, J. R., Armendáriz-Iñigo, J. E.,
Muñoz-Escoı́, F. D., Irún-Briz, L., Garitagoitia, J. R.,
and Juárez-Rodrı́guez, J. R. (2007). Non-blocking
ROWA protocols implement GSI using SI replicas.
Technical Report ITI-ITE-07/10, ITI.

Kemme, B. (2000).Database Replication for Clusters of
Workstations (Nr. 13864). PhD thesis, ETHZ.

Lin, Y., Kemme, B., Patiño-Martı́nez, M., and Jiménez-
Peris, R. (2005). Middleware based data replication
providing snapshot isolation. InSIGMOD, pages 419–
430. ACM.

Papadimitriou, C. (1986).The Theory of Database Concur-
rency Control. Computer Science Press.

Patiño-Martı́nez, M., Jiménez-Peris, R., Kemme, B., and
Alonso, G. (2005). Consistent database replication at
the middleware level.ACM TOCS, 23(4):375–423.

Pedone, F. (1999).The database state machine and group
communication issues (N. 2090). PhD thesis, EPFL.

Plattner, C., Alonso, G., and̈Ozsu, M. T. (2008). Extending
DBMSs with satellite databases.VLDB J., Accepted
for publication.

Wiesmann, M. and Schiper, A. (2005). Comparison of
database replication techniques based on total order
broadcast.IEEE TKDE, 17(4):551–566.

RELAXING CORRECTNESS CRITERIA IN DATABASE REPLICATION WITH SI REPLICAS

53

