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Abstract: In this paper we propose an efficient method for mining frequent intertransaction itemsets. Our approach 
consists in mining maximal frequent itemsets (MFI) by extending the SmartMiner algorithm for the 
intertransaction case. We have called the new algorithm InterTraSM (Inter Transaction Smart Miner). 
Because it uses depth first search the memory needed by the algorithm is reduced; a strategy for passing tail 
information for a node combined with a dynamic reordering heuristic lead to improved speed. Experiments 
comparing InterTraSM to other existing algorithms for mining frequent intertransaction itemsets have 
revealed a significant gain in performance. Further development ideas are also discussed. 

1 INTRODUCTION 

Association rule mining is a field of the data mining 
domain that has developed extensively in the last 
years. After the problem was introduced in 
(Agrawal, Imielinski and Swami, 1993) and the A-
Priori algorithm was introduced in (Agrawal and 
Srikant, 1994), the research expanded into a vast 
number of directions. There have been proposed 
other algorithms for the original problem, either 
Apriori-like or with a new structure. Also new 
algorithms have appeared for mining episodes and 
sequential patterns, mining correlations, mining 
generalized, multilevel or quantitative association 
rules. Our algorithm contributes to another of these 
new directions, mining intertransaction association 
rules.  

The initial association rule mining problem 
ignored any correlation between the transactions and 
searched for associations only between items inside 
a transaction – we call this case intratransaction 
analysis. To search for associations between items 
across several transactions ordered on a dimension 
(usually time or space), intertransaction association 
rule mining has been used.  

We use the stock market database example to 
differentiate between intra- and inter- transaction 
analysis. If the database contains the price for each 
stock at the end of the trading day, an 
intratransaction association rule might be “If stock 
prices for companies A and B go up for one day, 

there is a probability of over c% that the price for 
company C will also go up the same day”. However, 
analysts might be more interested in rules like “If 
stock prices for companies A and B go up for one 
day, there is a probability of over c% that the price 
for company C will go up two days later.” This rule 
describes a relationship between items from 
different transactions, and it can be discovered only 
by using intertransaction analysis. 

Several algorithms for intertransactional 
association rule mining have been introduced.  

The E-Apriori (Extended Apriori) and EH-
Apriori (Extended Hash Apriori) algorithms have 
been proposed by (Lu, Feng and Han, 2000). They 
use the Apriori algorithm for mining frequent inter-
transaction itemsets. The EH-Apriori algorithm also 
uses a hash in order to reduce the number of 
candidate intertransaction itemsets with two 
elements.  

(Tung et al., 2003) developed FITI – an 
algorithm that discovers first the frequent 
intratransaction itemsets and then uses them to 
generate the frequent inter-transaction itemsets. 

The ITP-Miner algorithm from (Lee and Wang, 
2007) uses a structure called dat-list to store item 
information and an ITP-tree to store discovered 
frequent inter-transaction patterns. 

The EFP-Tree algorithm presented in (Luhr, 
West and Venkatesh, 2007) is an extension of the 
FP-Tree (Frequent Pattern Tree) algorithm for the 
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intertransaction case. It uses a divide-and-conquer 
approach to avoid candidate generation. 

In this paper we propose a new method for 
mining frequent intertransaction itemsets called 
InterTraSM. This algorithm is an extension for the 
intertransactional case of the SmartMiner algorithm 
presented in (Zou, Chu and Lu, 2002).  

As the authors remark in the above mentioned 
paper, mining frequent itemsets is infeasible when 
the frequent patterns are long because of the 
exponential number of frequent itemsets. An 
alternative is mining maximal frequent itemsets 
(MFI) – itemsets that are not a subset of any other 
frequent itemset. Once we have obtained the MFI we 
can easily obtain all the frequent itemsets, who can 
then be counted for support in a single scan of the 
database. 

Like SmartMiner, InterTraSM uses a depth first 
search (DFS) to determine maximal frequent 
itemsets. It also uses a strategy for passing tail 
information for a node combined with a dynamic 
reordering heuristic that improve the speed of 
execution. 

The remainder of this paper is organized as 
follows: in Section 2 we will give a formal definition 
for the problem of intertransaction association rules 
mining. In Section 3 we will describe our proposed 
algorithm, InterTraSM. In Section 4 we will present 
the experimental results we have obtained so far, and 
we will present the conclusions and plans for future 
work in Section 5. 

2 PROBLEM DESCRIPTION 

In this section we introduce some notations and we 
present a formal definition for the problem of 
mining intertransaction association rules. 

Definition 2.1. Let I = {e 1 , e 2 , …, e n } be a set of 
items and let D be an attribute with values within the 
domain Dom(D). We call a transactional database a 
database with transactions (records) of the form (d, 
S), where d ∈  dom(D) and S ⊂  I. 

We restrict our search for associations to a 
maximum span of transactions, given as an input 
parameter. 

Definition 2.2. A sliding window W in a 
transactional database T represents a set of 
continuous intervals from the domain D, such that 
there exists in T a transaction associated to the first 
interval from W. Each interval from W is called a 
subwindow of W, and they are numbered 

corresponding to their temporal order d 0 , d 1 , ..., 

d m . We also use the notation W[0], W[1], ..., W[m]. 

Definition 2.3. Let T be a transactional database, let 
I be the set of items with n = | I| and let W be a 
sliding window with w intervals. A megatransaction 
M associated with W is the set 

M = {e i (j) | e i ∈W[j], 1 ≤ i ≤ n, 0 ≤ j ≤ w-1}. 

Items from a megatransaction will be called from 
now on extended items.  

Let E be the set of all possible extended items  
E = {e 1 (0), e 1 (1), …, e 1 (w-1), e 2 (0), …, 

e n (w-1)} 
We call an intratransaction itemset a set of items 

A ⊂  I. We call an intertransaction itemset a set of 
extended items B ⊂  E that contains at least an 
extended item e i (0), with 1 ≤  i ≤  n. 

Definition 2.4. An inter-transaction association rule 
has the form X -> Y, where: 

i) X, Y  ⊂   E 
ii) There is at least one element e i (0) 

in X, 1 ≤  i ≤  n 
iii) There is at least one element e i (j) 

in Y, 1 ≤  i ≤  n, 1 ≤  j ≤  w-1 
iv) X and Y are disjoint 

Let T XY be the set of megatransactions that 

contain the set X ∪ Y, let T X be the set of 
megatransactions that contain the set X and let N be 
the total number of transactions. 

Then S = | T XY | / N and C = | T XY | / |T X | are 
the support and confidence for the intertransaction 
association rule. 

As in the classical case, the problem of mining 
intertransaction association rules can be divided in 
two parts: 

- finding the frequent itemsets 
- generating the association rules. 
The second problem takes much less 

computational time than the first one, so it presents 
little interest for research. A solution has been 
discussed for example in (Tung et al., 2003). Our 
algorithm (like the algorithms mentioned before) 
will therefore focus on a solution for the first 
problem. 
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3 ALGORITHM DESCRIPTION 

We now introduce the InterTraSM algorithm. As we 
mentioned before, InterTraSM is an adaptation of 
the SmartMiner algorithm described in (Zou, Chu 
and Lu, 2002) for intertransaction association rule 
mining. Therefore the theoretical foundations of the 
two algorithms are very similar. Our main 
contribution has been to identify intertransaction 
mining as a domain where searching for MFI would 
lead to an improvement in performance, and to apply 
and customize the existing algorithm to the 
intertransaction analysis case; we also provided a 
new implementation. 

 
InterTraSM finds maximal frequent itemsets 

(MFI) of extended items from a transactional 
database. The algorithm uses depth first search and 
for performance optimization it uses a dynamic 
reordering to eliminate infrequent items from the tail 
of a current node. A hash table is also used to save 
the itemsets discovered as frequent at node-level, in 
order not to go down a tree path that was already 
investigated while exploring a maximal frequent 
itemset. 

As we mentioned the algorithm performs a depth 
first search, so at any step it works on a node from a 
search tree. We describe below the data managed at 
the level of a node used by the algorithm and how 
the data is processed.  

A node N is identified as X:Y, where X (the 
head) is the set of items that have been discovered to 
be part of a frequent itemset, and Y (the tail) is the 
set of items that still have to be explored. The 
purpose of the node is to find maximal frequent 
itemsets in the transaction set T(X) – all the 
transactions that include X. 

The starting node is Φ :E (the empty set and the 
set of all the possible extended items).  

The entry data for a node are:  
- the transaction set T(X) 
- the tail Y  
- the global data information Ginf, which is the 

tail information for the node known so far 
(this contains the itemsets that have been 
discovered in a previous step to be frequent 
in T(X)). 

The exit data for a node are:  
- the updated GInf  
- the discovered maximum frequent itemsets 

Mfi.   
The data processing at a node N is described 

below:  

- count the support for each item from Y in the 
transaction set T(X)  

- remove the infrequent items 
- while (Y has at least one element) 

- select from Y an item a i  to be the head of 

the next state S1  

- Y 1+i  = Y – a i  will be the tail for S 1+i  
- obtain the auxiliary tail information for     
S 1+i  by projecting on Y 1  the itemsets that 

contain a 0  from the tail information Ginf. 
- recursively call the algorithm for the node 
N 1+i  = Xa i  : Y 1+i . The returned values will 

be Mfi i  and the updated tail information. 

- Y = Y 1+i  
- end (while)  
The processing of the node returns the maximal 

frequent itemsets to be Mfi = ∪  a i Mfi i , and the 
updated Ginf as the itemsets in the original Ginf that 
have not been marked as deleted.  

As we mentioned, InterTraSM uses extended 
items instead of the intratransaction items used by 
SmartMiner. A customization for this case is that the 
first node we select while searching in depth from 
the root of the tree corresponds only with items from 
the first interval (interval 0). This was done because 
each frequent itemset has to have at least an item 
from interval 0. 

We created our own implementation of the 
algorithm using C, with a structure similar to the one 
for the SmartMiner algorithm described in (Zou, 
Chu and Lu, 2002) – but with modifications for the 
intertransaction case (The SmartMiner algorithm 
was implemented in Java). We felt that writing the 
algorithm in C enabled us to better control the 
memory use of the algorithm.  

4 PERFORMANCE STUDY 

We used both synthetic data and real data to evaluate 
the performance of the algorithm.  

To generate the synthetic data we used the same 
generator as the one described in (Luhr, West and 
Venkatesh, 2007) to evaluate EFP-Tree, gracefully 
provided to us by the authors. It uses the same 
method as the one used to evaluate FITI and ITP-
Miner.  

The real data consists of two datasets, WINNER 
and LOSER, similar to those used in (Lee and 
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Wang, 2007). They have been obtained from the 
values of ten stock exchange indexes from January 
1, 1991 to December 31, 2005. In the WINNER set a 
transaction for a trading day contains the stock 
indices that rise for the day, and in the LOSER set 
we have the stock indices that fall. The stock indices 
used are the ASX All Ordinaries Index (ASX), 
CAC40 Index (CAC), DAX Index (DAX), Dow 
Jones Index (DOW), FT-SE 100 Index (FTS), Hang 
Seng Index (HSI), NASDAQ Index (NDQ), Nikkei 
225 Index (NKY), Swiss Market Index (SMI), and 
Singapore ST Index (STI). 

Two synthetic data sets representing sparse and 
dense data were generated, with parameters identical 
to those used in the evaluation of EFP-Tree.  

Table 1 lists the parameters used to create the 
data sets used in the experimentation. 

Table 1: Parameters used in the generation of the synthetic 
data sets. 

Parameter Sparse Dense 

Number of intratransactions 
Size of the intertransaction pool 
Average length of intratransactions 
Maximum length of intratransactions 
Average length of intertransactions 
Maximum length of intertransactions 
Maximum number of unique items 
Maximum interval span of 
intertransactions 

500 
50 
5 

10 
5 

10 
500 

4 

200 
200 
25 
50 
8 

20 
100 

6 

 
The program was benchmarked under a 

Microsoft Windows XP OS, on a PC with Intel 
Pentium IV CPU with speed of 3GHz and main 
memory of 1GB. The code has been written and 
compiled using Microsoft Visual Studio 2003. 

Since FITI has been shown to be more 
computationally efficient than EH-Apriori and both 
EFP-Tree and ITP-Miner have been shown to 
outperform FITI, we have only made comparisons 
with EFP-Tree and ITP-Miner. 

We have compared the execution times of 
InterTraSM on the synthetic data sets with the 
execution times reported for EFP-Tree in (Luhr, 
West and Venkatesh, 2007) for synthetic data 
generated with the same parameters by the same 
generator (probably different actual data though, 
since it is a random generator).  

For the synthetic sparse data set we have 
gradually lowered the support threshold from 1.6% 
to 0.6%, using a fixed intertransaction window size 
of 4. For the synthetic dense data set we have 
gradually lowered the support threshold from 13% to 
8%, using a fixed intertransaction window size of 6. 

The execution times for InterTraSM are displayed in 
Figure 1 (sparse data) and Figure 2 (dense data).  

We have then incremented the intertransaction 
window size from w=0 to w=10 with fixed 
minimum supports of 1% for the sparse data and 
10% for the dense data. The results are displayed in 
Figure 3 (sparse data) and Figure 4 (dense data). 

 
Figure 1: Minimum support versus runtime, sparse data 
set, with maxspan=4. 

 
Figure 2: Minimum support versus runtime, dense data set, 
with maxspan=6. 

 
Figure 3: Intertransaction window size versus runtime, 
sparse data set, with support=1%. 
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Figure 4: Intertransaction window size versus runtime, 
dense data set, with support=1% 

We can see that all the execution times 
displayed in these charts are under one second, 
while the execution times reported for the EFP-
Tree in (Luhr, West and Venkatesh, 2007) for 
synthetic data generated with the same parameters 
have values of tens, even hundreds of seconds. 
Since the processors used have similar 
performances, even accounting for the different 
implementation languages (C versus Ruby), 
InterTraSM seems to perform at least an order of 
magnitude better than EFP-Tree. 

We have compared the execution times of 
InterTraSM on the real data sets with the execution 
times reported for ITP-Miner on transactions 
obtained from the same stock indices values.  

For both the WINNER and LOSER datasets we 
have used an intertransaction window size of 4 and 
we have varied the minimum support threshold 
from 4% to 12%. The results are displayed in 
Figure 5 (WINNER data set) and Figure 6 (LOSER 
data set).  

 
Figure 5: Minimum support versus runtime, WINNER 
data set, with maxspan=4. 

 
Figure 6: Minimum support versus runtime, LOSER data 
set, with maxspan=4. 

Comparing the results with those reported for 
running ITP-Miner on the same data sets in (Lee 
and Wang, 2007), on a processor with similar 
performances using Microsoft Visual C++ 6.0, it 
seems that there is an order of magnitude 
difference in favor of InterTraSM, especially when 
the minimum support value decreases. For example 
on the LOSER data set with the support threshold 
at 4% InterTraSM takes less than 6 seconds, while 
the authors reported the ITP-Miner takes about 100 
seconds. 

5 CONCLUSIONS 

In this paper we have proposed a new algorithm for 
mining intertransaction association rules called 
InterTraSM, an extension of the SmartMiner 
algorithm for the intertransaction case. InterTraSM 
uses depth first search and mines for maximal 
frequent itemsets (from which all the frequent 
itemsets can be easily generated). Previous 
algorithms have mined for all the frequent itemsets 
and they thus have had to count support for an 
exponentially large number of frequent itemsets 
compared to our algorithm. Experiments with 
similar data and on similar machines to those used 
for evaluating EFP-Tree and ITP-Miner have 
shown that InterTraSM outperforms them by at 
least an order of magnitude, especially when the 
minimum support threshold is reduced – generating 
longer maximal frequent itemsets. 

In our future research we want to apply the 
algorithm to some more real data sets and see how 
it performs. We also want to extend the algorithm 
from 1-dimensional to n-dimensional transactional 
databases. 
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