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Abstract: Business Intelligence (BI) provides enterprise decision makers with reliable and holistic business information.
Data Warehousing systems typically provide accurate and summarized reports of the enterprise’s operation.
While this information is valuable to decision makers, it remains an after-the-fact analysis. Just-in-time, finer-
grained information is necessary to enable decision makers to detect opportunities or problems as they occur.
Business Activity Monitoring is the technology that provides right-time analysis of business data. The purpose
of this paper is to describe the requirements of a BAM system, establish the relation of BAM to a Data Stream
Management System (DSMS) and describe the architecture and design challenges we faced building the Itaipu
system: a DSMS developed for BAM end-users.

1 INTRODUCTION

Business Activity monitoring (BAM) is the right-time
analysis of business events from multiple applications
to produce alerts of problematic situations or opportu-
nities. Right-time differs from real-time analysis. In
right-time analysis, the main goal is to signal oppor-
tunities or problems within a time frame in which de-
cision making has a significant value. The shorter the
time frame the higher the value of the decision. Real
time analysis requires that opportunities or problems
be signaled in a pre-specified, very short time-frame,
even if the alert has the same decision-making value
a day after the occurrence of the events that triggered
it. Therefore while real-time operation is preferred, it
is not essential. The goal is to analyze and signal op-
portunities or problems as early as possible to allow
decision making to occur while the data is fresh and
is of significance. BAM pushes organizations towards
proactive decision making.

Traditional Business Intelligence (BI) tools intro-
duce latencies from data arrival to production of valu-
able information. The main component of BI is a
Data Warehouse (DW). A DW is a central repository
of data collected from the entire organization. “The
data are stored to provide information from a histor-
ical perspective (such as the past 5-10 years) and are
typically summarized” (Han and Kamber, 2000). An-

alytical and data-mining tools enhance the utility of
a DW by enabling strategic1 decision makers to dis-
cover trends in the organization or build prediction
models from historical data. The main limitation of
the DW is that it provides an after-the-fact analysis.
It encourages retroactive decision making. BI tech-
nology, so far, does not include tools necessary for
just-in-time analysis.

Our main research goal is to build a BAM system
that can support operational decision makers. Op-
erational decisions are made daily by all employees
within an organization. They are predominantly re-
actionary in nature, prompt (or allow for little delay
between the triggering business event and notification
of the decision maker) and have immediate effects.
Hence, they require a data analysis tool that analyzes
business events as they occur.

We built the Itaipu system, a BAM system that
re-uses the data model and querying model of Data
Stream Management Systems (DSMS). Since BAM
is an emerging BI trend, the purpose of this paper is to
(i) establish the importance of BAM systems (section
1.1), (ii) describe the requirements of a BAM system

1Strategic decision making differs from operational de-
cision making. While strategic decisions address long-term
goals and usually effect the entire organization, operational
decisions have immediate effects and generally have mini-
mal consequences.
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(section 1.2), (iii) discuss systems that could be used
to provide BAM functionality (section 2) and finally
(iv) describe the design and architecture of the Itaipu
system in relation to the identified BAM requirements
(section 3).

1.1 Motivating BAM: The Intelligent
Oilfield

IBM accurately described the oil business as the infor-
mation business (IBM, 2007). To operate an oilfield,
local and geographically remote experts, engineers,
geologists and business analysts need to analyze and
share terabytes of data daily (IBM, 2007). This data
arrives from a variety of sources such as as tempera-
ture and pressure sensors on drilling rigs, stock feeds,
news feeds and weather and seismic activity monitor-
ing networks.

In the oil industry, making the right decision at
the right time saves both money and lives. Analyzing
drilling data (such as rock type, temperature and pres-
sure at rig) in real-time enables the perception of criti-
cal situations such as blowouts ahead of time. The rig
crew could be warned to take precautionary measures.
Hence, right-time analysis of data could save lives.
With traditional data warehouse technology, if the rig
crew is apprehensive for their safety, all drilling ac-
tivity is stopped, until experts could collect the data
and analyze it. Such downtime, while necessary is
costly. According to a Cisco case study “avoiding
just 10 hours downtime drilling time per month saves
US$125,000 per rig potentially US$9 million a year”
for the Belayim Petroleum Company operating rigs
in the Mediterranean sea off Egypt (Cisco, 2008).
By continuously analyzing data through persistent
queries that monitor for critical conditions (such as
temperature or pressure readings rising above a cer-
tain threshold) BAM could save downtime caused due
to latencies between data collection and processing.

Apart from monitoring for dangerous conditions,
Business analysts could use BAM to optimize their
productions rates for maximum profit in relatively
shorter time frames. Oil prices are extremely volatile.
Oil production is influenced by (and influences) oil
price. Therefore, deciding an appropriate production
rate is a complex task that depends on geological, po-
litical and economic factors. Business analysts could
enhance their oil production models by real-time in-
formation.

The benefits of BAM are not limited to the oil
industry. BAM could benefit other organizations by
providing right-time decision support. Supply-chain
management, resource distribution and scheduling,
and real-time pricing are a few applications that reap

benefits from the following BAM functions:
• BAM is designed to deal with real-time data. DWs

are pushed beyond their intended designed to sup-
port frequent updates. This comes at the cost of
less querying functionality and less data. BAM,
unlike data warehouses is not designed as a long
term data store. Instead, it is designed to support
persistent queries and process real-time data with-
out necessarily storing data. BAM is not meant to
replace DWs or DBMSs. It does not modify or
update data. Hence, BAM does not affect other
systems which can store data.

• BAM enables users to place ad-hoc queries.
While custom-made applications could provide
right-time data analysis, they handle queries and
data sources specified at design time. BAM is
meant to be a flexible data analysis solution that
does not require high development costs and al-
lows users to pose ad-hoc queries at run-time on
data transfered on the organization’s networks. It
could also integrate new data sources at run-time.

• BAM targets end-users, not IT assistants. Unlike
other BI technology that are heavily reliant on IT
assistants. BAM’s ad-hoc querying functionality
is only of use if end-users could circumvent IT
assistants. Hence, BAM is designed to enable
end-users to place queries without depending on
technically-skilled users.

1.2 Problem Statement

Researches have approached the problem from two
different perspectives, leading to two different solu-
tions:
1. If BAM is seen as a right-time data aggregation

and summarization tool, a Data Stream Manage-
ment System (DSMS) could be utilized.

2. If BAM is seen as an event detection system,
Complex Event Processing (CEP) systems were
utilized.

A DSMS evaluates queries on data streams. A
data stream is an append-only sequence of time
stamped, structured tuples. Similar to database sys-
tems (DBMS), a DSMS will manage the planning,
optimization and execution of queries on data. Un-
like a database system, a DSMS does not store the
entire data. A DSMS typically supports persistent,
continuous queries, which are evaluated as new data
arrives. This compares with one-time queries that are
evaluated once over a snapshot or the entire data as in
traditional database systems.

CEP systems also deal with stream data but target
event monitoring applications (Demers et al., 2007).
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These systems do not focus on data processing to pro-
duce new summaries or metrics, instead they focus on
specifying a sequence of events to monitor (event pat-
terns) and implementing efficient detectors (Demers
et al., 2007; Wu et al., 2006).

Proponents of CEP for BAM, argue that DSMS
could express event detection patterns but the result-
ing queries are cumbersome “and almost impossible
to read and to optimize.” (Demers et al., 2007). They,
also, argue that DSMS are “less scalable in the num-
ber of queries, capable of supporting only a small
number of concurrent queries.” (Demers et al., 2007).
This is based on the observation that most DSMSs
have been targeted for applications such as network
traffic monitoring that involve real-time processing of
high-volume data. While we partially agree with the
first statement, we disagree with the second.

Thus, our research questions and hypotheses are:

1. Could a DSMS be used as a BAM system? Both
BAM and DSMS need to support the following:

• Continuous and unbounded data streams: This
has implications on the memory management
strategy. Mainly blocking queries (queries that
require to see all values in a stream before they
could return an answer) need to run on bounded
sections of the stream.

• Continuous queries: Continuous queries have
implications on processing performance. At
any given time, several continuous queries
could be running simultaneously. Therefore,
multiple-query optimization is essential.

• Unstable operating environment with fluctuat-
ing data arrival rates: This means that at cer-
tain times, the system may be overloaded and
incapable of satisfying all queries.

A DSMS supports the above properties (Stone-
braker et al., 2005; Babcock et al., 2002). There-
fore, a DSMS supports at least these requirements
of a BAM system.
The key difference between BAM and DSMS is
that while BAM requires right-time performance,
a DSMS requires real-time performance. Right-
time may include real-time performance. Also,
BAM focuses on supporting more queries but a
DSMS focuses on response time and query (input)
load (defined as the amount of input a DSMS can
process while still maintaining real-time and cor-
rect responses by the Linear Road DSMS bench-
mark (Arasu et al., 2004)). Therefore, BAM could
compromise certain performance metrics but not
query support.

2. Could we enable end-users to write queries with-
out IT support in a DSMS? An essential require-

ment of the BAM system is usability. End-users
are not expected to write or learn to write queries
in a functional language such as SQL or in a
procedural language. Since the data streams are
created from events signaled from different en-
terprise applications, it is unlikely that the end-
user will know which data sources are relevant
to his/her query. With these requirements, the
DSMS needs to be designed to facilitate query
write up for the end user. We propose a query
frame approach: Data analysts write frames or
skeleton queries which end-users parameterize at
run time.

3. What are the design goals for a BAM system? Tra-
ditional BI systems have evolved over time to sup-
port a growing number of users, queries and data.
We expect that a BAM system will undergo such
an evolution. In addition to supporting the func-
tional requirements, (i) a BAM system should be
flexible (for example, it should adapt its query pro-
cessing techniques based on the nature of the data
and the queries), (ii) the system should be capable
of scaling gracefully to support more queries or
data at run-time and (iii) finally, the system should
be reusable such that different components could
interact with other front-end applications that re-
quest querying services. We hypothesized that a
DSMS could be built to satisfy these goals and
we built the Itaipu system. Our solution is based
on the following:

(a) Loose coupling between components: The op-
timizer and the query execution engine are in-
dependent of each other. Also, the stream pro-
duction and query result visualization clients
are decoupled from the other components in the
system. This loose coupling allows the sys-
tem to evolve gracefully. For example, if a
higher quality visualization tool is developed,
it could be swapped with the existing visualiza-
tion client.

(b) Encapsulated operators: We model queries as
data processing operators in a connected graph
where each operator encapsulates its function
from the query execution engine. The execu-
tion engine manages each operator’s position
within the graph (i.e. input and output) and
schedules running time for it.

(c) Extensible libraries: The system provides core
implementations for resource management but
is designed to allow the extension of any imple-
mentation or addition of new implementations.

Implementing these design goals, generally,
comes at the cost of performance. Since real-time
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performance could be compromised for query
support and right-time performance, we argue that
these goals are attainable without risking BAM
functionality.

2 RELATED WORK

We briefly describe systems that we compare to the
Itaipu system. These systems have partly influenced
our work especially in the areas of query optimization
and processing.

• STREAM developed by Widom et al. processes
streams by converting them to relations and uti-
lizing database relational operators to process the
stream (Arasu et al., 2006). The systems uses an
SQL variant, Continuous Query Language (CQL).
CQL and the query algebra used has operators for
stream-to-relation and relation-to-stream conver-
sion. This allows the re-use of relational database
query optimization and processing technology at
the cost of end-user usability.

• Borealis (Abadi et al., 2005) (an extension of Au-
rora (Abadi et al., 2003)) is a distributed DSM
that uses a procedural language to specify queries.
A query is formed by connecting operators into
the currently executing network of operators. In
Aurora, run-time optimizations are performed by
draining small sections of the operator network
and running an optimizer over the subnetwork.
Borealis extends Aurora to run over distributed
machines and balances load across the different
machines. Borealis introduces the idea of revi-
sion records that could correct previously output
results. Borealis also provides algorithms for sys-
tem recovery.

• TelegraphCQ (Krishnamurthy et al., 2003) uses a
unique model for query processing; Continuously
Adaptive Continuous Queries (CACQ). It avoids
the use of a fixed query plan and instead creates
on-the-fly query plans for each tuple. (Shah et al.,
2001) discusses some of the limitations and fea-
tures of Java as a language for building a BAM
system. This discussion was instrumental in some
of our design decisions.

• Cayuga (Demers et al., 2007) Cayuga is a CEP
system. It uses a non-deterministic finite state
automaton to physically describe a sequence of
events. Cayuga Event Language (CEL) is de-
signed to describe pattern matching queries using
SQL-like keywords. While expressing event pat-
terns is almost natural to Cayuga, certain DSMS

queries are not expressible by the Cayuga query
algebra (Demers et al., 2007).

Table 1 summarizes the current state of affairs in
DSMS’s and CEP’s research and illustrates the areas,
the Itaipu system contributes to.

3 THE ITAIPU SYSTEM

The Itaipu dam is the largest operational hydroelec-
tric dam in the world. The dam controls the flow of
the Paraná river satisfying 20% of Brazil’s and 94%
of Paraguay’s electricity demands2. Our Data Stream
Management System (DSMS) is like the Itaipu dam.
It processes data streams to produce information
power. This chapter will examine our DSMS, as data
flows from its Spring (or source), to the Dam query
processing system and finally to the Delta where it is
displayed.

3.1 Definitions

Before we discuss our system’s architecture, we cover
key data stream management concepts necessary to
our discussion.

Definition 1 Data Streams. A data stream is an
append-only (possibly infinite) sequence of times-
tamped, structured items (tuples) that arrive in some
order. A stream S is a pair (s,τ) where s is a sequence
of tuples with a fixed schema S and τ is a timestamp
associated for each tuple. The tuples s are ordered
by timestamps. The tuples arrive from a variety of
sources such as messages transferred on an organiza-
tion’s network and RSS feeds.

Definition 2 Tuple. A tuple is a fixed size, sequence
of values or data objects. A sales stream with schema
S = (sales agent, store id, total sale), could have a tu-
ple si = (“Willy Loman”, 123, 10$).

Definition 3 Timestamp. A timestamp τ is a value
from a discrete, ordered set representing time values
T (Arasu et al., 2006). Timestamps could be ex-
plicit (i.e. assigned by data sources) requiring all data
sources and query processing systems to be time syn-
chronized or they could be implicit (i.e assigned on
entry to the processing system, therefore, represent-
ing tuple arrival time and not tuple production time).
There are two main reasons for having timestamps.
First, from a memory requirement perspective, the

2Source: Itaipu Binacional http://www.itaipu.gov.br
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Table 1: Itaipu in comparison to the research contribution of other systems.

Research Focus DSMS CEP
Performance (Query optimization and
query plan reconfiguration)

Aurora (Abadi et al., 2003), Tele-
graphCQ (Krishnamurthy et al., 2003)

Cayuga (Demers et al.,
2007), SASE (Wu et al.,
2006)

Distributed Systems Borealis (Abadi et al., 2005)
Reliability (Hwang et al., 2007)
Query Language:
1. Declarative STREAM Continuous Query Lan-

guage (Arasu et al., 2006), Itaipu
SASE Complex Event Lan-
guage (Wu et al., 2006)

2. Procedural Aurora (Abadi et al., 2003)
3. Combination TelegraphCQ StreaQuel (Krishnamurthy

et al., 2003)
Cayuga (Demers et al.,
2007)

Usability (Query Language) Itaipu
Implemenation flexibility and component
reusability

Itaipu

Scalability Borealis (Abadi et al., 2005), Itaipu
Functionality:
1. Multi-dimensional data analysis Itaipu, Stream cubes (Han et al., 2005)
Specific Target Applications:
1. BAM Itaipu Cayuga (Demers et al.,

2007)
2. (Network, Road) Traffic Monitoring and
RFID and other sensor network monitor-
ing

Aurora (Abadi et al., 2003), Bore-
alis (Abadi et al., 2005)

SASE (Wu et al., 2006)

streams are unbounded and therefore storing an entire
stream is infeasible in a DSMS. Storing a time-based
window of the streams, however, is feasible. Second,
from a user perspective, the purpose of a DSMS is
to inspect recent data (a DBMS is more suited for
querying historical data), timestamps provide a prac-
tical way to measure data freshness.

Definition 4 Time-based Window. A window de-
fines processing bounds over data streams due to their
infinite nature. All tuples within a window are equally
processed and all tuples outside the window range are
discarded. A time-based window defines a time in-
terval in which tuples are processed based on their
timestamp value. Windows could be fixed or moving.

Definition 5 Query. A query is an information re-
quest defined in precise terms using a query language.
The query indicates the data sources and the process-
ing necessary to fulfill the information request. Each
query needs to be converted first into a query plan. A
query plan is a sequence of operators that are executed
to satisfy the information request. A query plan is the
physical counterpart of the logical query.

Definition 6 Operator. A query is physically com-
posed of a sequence operators. Each operator has a
unique function. This function takes tuples from one
or more streams as input, could maintain state and

outputs one or more streams of modified or filtered
tuples. In a DSMS, operators are non-blocking (they
do not need to read the entire stream before they could
produce an output) and pipelined (they could maintain
state as a side-effect, their output is a stream of tuples
not a change in memory state).

Definition 7 Consumer. A consumer is an operator
that processes tuples output by another operator.

Definition 8 Producer. A producer is an operator
that produces tuples that are input into another opera-
tor.

Definition 9 Query Frame. A frame is a query
with open parameters that users could modify at run-
time. These parameters could define dimensions users
could view the data along. For example, an open pa-
rameter could be the size of the window.

3.2 Architectural Overview

There are three main components to the Itaipu sys-
tem: Spring, Dam and Delta. Figure 1 layouts the
different components and the relationships between
them. Spring (section 3.3) manages the data sources
and produces structured data streams from the differ-
ent sources it listens to. It is the entry point to the
DSMS. Dam (sections 3.4, 3.6) is the core of Itaipu.
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Figure 1: The overview of the Itaipu Data Stream Manage-
ment System.

It consists of two parts, a back-end execution engine
and a front-end query processor. Within the execution
engine, operators form a variant of the pipe and filter
architecture3: queues (pipes) buffer tuples passed be-
tween operators (filters). The query processor parses,
plans and optimizes queries as well as query frames.
Finally, Delta (section 3.7) is the user interface to the
query results. The system is written in Java. The
following sections will examine each components of
Itaipu in detail. In each section, a set of design ques-
tions will be listed first, followed by a discussion of
our solutions to these questions.

3.3 Spring

Given a variety of input sources for business data
and events, how do we build a system flexible enough
to transform all of them into fixed schema streams?

Spring has three components: Data transformer,
Data streamer and Data definer. Figure 2 illustrates
the relationship between the Data transformer and the
Data streamer modules.

The data transformer consists of extensible li-
braries of modules that convert data from a variety
of input sources into a fixed schema stream. Data
sources can be broadly classified into two types: pull
and push sources. Itaipu subscribes to push events.
These events include transactions and messages from
messaging systems. Any module that converts push
events to streams must adhere to a Listener interface.
Pull events require Spring to actively poll other ap-
plications for data. Really Simple Syndication (RSS)
feed is an example of a pull event. Any module that
actively polls for data from sources must adhere to
a Reader interface. Spring allows experts to provide
application specific implementations of readers or lis-
teners and provides a standard factory module that

3Unlike a traditional pipe and filter architecture, the
topology of the operators (filters) affects the correctness of
results and/or system performance

Figure 2: Operator scheduling, communication and con-
struction interfaces with components of the execution en-
gine.

builds appropriate transformers based on the proper-
ties of the data source.

The Data streamer sends data streams to the ex-
ecution engine for processing. The streamer adds a
timestamp to each tuple which marks the time the
tuple was released from the data streamer. We use
an implicit timestamp to eliminate the need to time-
synchronize the different (potentially remote) compo-
nents of the Itaipu system.

The Data definer allows data analysts to describe
the schema of different data sources, the type of data
transformer required as well as other parameters nec-
essary to convert any data source into a stream. This
information is stored in a stream catalog.

3.4 Dam: Execution Engine

The purpose of the execution engine is to pro-
vide a framework in which operators could inter-
communicate seamlessly. The execution engine:

1. enables the dynamic addition, removal and move-
ment of operators.

2. modifies the behaviour of aggregators by chang-
ing window sizes and aggregation dimensions

3. provides mechanisms for tuple passing between
operators.

4. operates logically as a single engine while execut-
ing physically on multiple machines.

The complete encapsulation of operators means
that neither the execution engine has an awareness of
the inner workings of an operator nor does an oper-
ator know the execution engine’s inner workings or
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Figure 3: Operator scheduling, communication and con-
struction interfaces with components of the execution en-
gine.

even its location within the pipelined network of oper-
ators. Operators are designed and built independently
of the execution engine as long as they adhere to the
interface.

Figure 3 illustrates the main components of the ex-
ecution engine and the operator interfaces required.
A communication interface is necessary to manage
movement of tuples from one operator’s output to
another’s input. A scheduling interface is necessary
to share limited run-time resources such as execution
threads. Finally, the execution engine constructs and
destructs operators as queries are modified, added or
removed. This necessitates a construction interface.

3.4.1 Scheduling, Thread Manager

How do we allocate Threads (Execution Time) to the
Operators to Maximize CPU Utilization?
We evaluated three different approaches. We will de-
scribe each approach, its shortcomings and our pre-
ferred approach.

Single Thread of Execution and an Event-driven
Operation Model. In this approach, we think of op-
erators processing data as actions and the availability
of data for an operator as an event. In an event-driven
model, the execution engine tests for different events
within a single loop. If an event occurred (data be-
came available for a certain operator), the control is
transfered to the appropriate operator via a function
call such as process(). Such a model does not take
advantage of an underlying multi-processor system
where several threads could be executed concurrently.

Even if the model is adapted to run on a multi-
processor system, we believe the model has several
shortcomings. First, the execution engine incurs the

overhead of event detection. Second, this model com-
plicates the implementation of operators with time-
based windows that issue their results at regular time-
intervals. Since the presence of data causes an event
which drives the operators into action, time-based
window operators cannot fire their results unless they
have data.

A Thread for a Sequence of Operators. Any ap-
proach that involves assigning a thread to a sequence
of operators leads to an extremely complicated de-
sign. Operators that are part of different sequences
need to implement locking strategies to prevent sev-
eral execution threads running within the operator at
the same time. Locking adds unnecessary overhead
costs and introduces blocking time as threads wait for
another thread to exit a shared operator. Any task
that involves a change in the operator graph (such
as adding or removing queries or graph replanning)
could halt the system; if a sequence of operators
needs to be changed, any thread controlling execu-
tion within that sequence needs to halt to prevent sit-
uations where one operator waits on another operator
that no longer exists (but was in sequence before the
graph change).

A Thread for each Operator. Assigning each op-
erator a thread is a simple but costly solution. With-
out no limit on the number of threads, the system
may exhaust its CPU resources in order to support
a large number of threads. The execution engine,
sets a bound on the number of threads by using a
thread pool. The size of the thread pool is config-
urable. Each operator is both an object with state in-
formation and a runnable task. The Thread Manager
is a component of the execution engine that manages
the thread pool and moves operators onto and off the
threads. The execution engine also maintains refer-
ences to the operator objects. This way, the operators
are not garbage collected when they are removed from
a thread. This approach requires operators to commu-
nicate with each other using queues. The previous ap-
proaches did not need queues as function calls could
be used to transfer data. An operator is in Ready state
if it not currently running on a thread and is in Block
state if it has no input data. The Queue Manager (dis-
cussed next) blocks operators and places them in a
blocked queue when there are no tuples to process.
When data becomes available, it changes the state of
the operator to Ready. We chose this approach be-
cause it takes advantage of a multi-threaded environ-
ment, it does not require any locking and it preserves
the loose coupling between operators as no function
calls are required to pass data between operators.
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Figure 4: UML diagram illustrating interactions between
the thread manager factory, execution engine, operators and
scheduling implementations.

Two implemented strategies are round-robin
scheduling and first-in-first-out scheduling. Our de-
sign, however, enables the extension of the thread
manager to implement any scheduling strategy. Fig-
ure 4 illustrates how the execution engine utilizes a
thread manager factory to determine the appropriate
thread manager scheduling strategy based on config-
uration settings.

3.5 Communication, Queue Manager

Given that we assign each operator a thread to run
independently within, the only viable inter-operator
communication strategy involves using queues.
1. How do we prevent tuple duplication across mul-

tiple queues when an operator connects to mul-
tiple consumers?

2. How do we ensure that queued tuples are not
maintained longer than necessary and dropped
when all consumers have processed the tuple?
We use a specialized queue-based data structure:

Headless queue. The main property of a headless
queue is that it enables multiple concurrent access to
tuples at different positions within the queue. Each
consumer maintains a reference to the next tuple they
will consume. Therefore, no tuples are duplicated.
When a tuple has been read by all consumers, it is de-
referenced and garbage collected. Figure 5 illustrates
the operation of the headless queue.

In addition to using headless queues, our imple-
mentation uses the queue manager as a mediator. Op-
erators, therefore, maintain no reference to other op-
erators or physical headless queues. Instead they ac-
cess mediators that control input (Input Queue View)

Figure 5: Reading from and writing to a headless queue.

and output (Output Queue View). This both preserves
the loose coupling between operators and allows for
a simpler, light-weight operator. By having the queue
manager manage operator input and output, the queue
manager can synchronize operator execution without
locks (an operator thread is locked by a queue un-
til data arrives) or spins (the operator continuously
polls for data on the input queue). The queue man-
ager simply changes the state of the operator to Block
and places it in a queue of blocked operators until data
arrives. The operator, in turn, releases its execution
thread to allow other operators to run on the thread.

3.5.1 Construction Interface, Generating the
Operator Graph

1. How to represent the multiple-query plan pro-
duced by the query processor to enable the gen-
eration of the physical operator graph?

2. How to build the operator graph from this repre-
sentation

A good software engineering practice is to decou-
ple systems into components, where each unit rep-
resents an independent unit that provides a distinct
function. Decoupling allow the systems to evolve eas-
ily. Immature components that are prone to change
such as the query processing and optimization unit
could evolve without drastically affecting other com-
ponents. By limiting the functionality of each com-
ponent, decoupling enhances system re-use. For ex-
ample, different front-end user-interface clients could
communicate with the execution engine. Decoupling
also allows our system to adapt to different applica-
tion properties. Different applications will have dif-
ferent proportions of select-project-join (SPJ) queries
to aggregation queries. Different optimization strate-
gies could be used depending on the nature of queries
used in an application. By decoupling the query pro-
cessor from a relatively stable execution engine, dif-
ferent processors could be tested without a need to
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change the execution engine.
Decoupling, however, compromises performance

by introducing an indirection layer. Since the query
processor and execution engine do not form a single
component, the query processor can no longer effect
query plan changes by directly reconnecting operators
in the executing operator graph. Instead, the proces-
sor needs to create a representation of the modified
multiple-query plan. The execution engine then reads
this representation and builds the operator graph from
it. Decoupling, therefore, comes at an increased over-
head cost in representing the multiple-query plan and
reading this representation to build the operator graph.

We use an Extensible Markup Language (XML)
representation for the multiple-query plan produced
by the query processor. This choice is motivated by
the following reasons:

1. An XML representation is suitable for an evo-
lutionary design process. XML models semi-
structured data. Initially in the Itaipu design pro-
cess, the complete structure of operator graphs
is not known. The structure continues to evolve
as new operator attributes are discovered or cer-
tain operator attributes are recognized as redun-
dant and eliminated. XML provides an easy way
to add structure to the operator graph representa-
tion without a need for regularity.

2. Java Architecture for XML Binding (JAXB) un-
marshals an XML document or converts it to Java
object instances. This simplifies access to XML
documents. Java content objects are created rep-
resenting both the organization and content of the
XML documents. Each java content object has an
equivalent operator object augmented with tuple
processing functions. Therefore the content ob-
jects parameterize actual running operators.

3.6 Dam Query Processing

While the execution engine provides a framework
where operator could execute and inter-communicate,
the query processing unit validates, plans and opti-
mizes user queries to produce a multiple query-plan.

1. Which query language to use?

2. How to make query entry more natural for the
business user? (i.e. How could we reduce the
involvement of IT in query write-up?)

We use a declarative, SQL variant as Itaipu’s
query language for the following reasons:

1. SQL is well-understood and industry-adopted
query standard. This enhances the reusability of
the Itaipu system by other front-end applications.

Table 2: A sample query frame.

Oil well production rate frame

SELECT AVERAGE(production rate)
FROM pump data
TILT 15MIN-1HOUR-1DAY-7DAY
GROUPING region, rig company, cost;

Description: This frame returns the average oil well pro-
duction rate over a titled-time window ranging from a 15
minutes to a week. Specify the abstraction levels for re-
gion, rig company and cost dimensions. For example,
by specifying ‘country’ as the abstraction level for region,
production rates will be grouped for all wells within a
country.

With enough DSMSs interested in using SQL for
querying streams, SQL with windowing exten-
sions could become a stream querying standard.

2. SQL is a language for querying relational
databases. Even though, streams are not rela-
tions, relational operators could be modified to
work with streams and streams could be converted
to relational sets with the help of windowing op-
erations. This means, we could adapt existing
query processing technology found in relational
databases for our purposes.

While using an SQL variant for querying streams
requires less understanding of the data stream query-
ing model compared to a procedural language4, it is
still not business-user friendly. Since data streams are
created from events signaled from different applica-
tions, it is unlikely that the business-user will know
which data sources are relevant to his/her query.

We use a query frame approach, where a data an-
alyst specifies a skeleton queries which users param-
eterize at runtime. One natural implementation of a
query frame is the use data cube, that pre-aggregates
data across multiple dimensions and the users specify
the dimensions they are interested in. See table 2 for
a sample query frame.

Frames defined by data analysts are stored in a
query catalog. Each frame contains a description
field. The data analyst specifies in detail the purpose
of the frame and the data sources it processes. The
system provides a simple search engine that enables
users to retrieve queries based on keywords. The key-
words are matched to the description field and a set of

4Procedural querying languages involve users connect-
ing operators into a stream processing operator graph to ob-
tain their queries (Abadi et al., 2003; Demers et al., 2007). It
relies heavily on user optimizations. As the operator graph
increases in size, manual optimizations become more chal-
lenging to manage.
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frames are returned in order of relevance. In addition,
the frames contain a help field that describes how a
business-user could parameterize the frame.

Query frames may ease the query entry process.
However, they are far from enabling users to provide
queries in natural language.

3.7 Delta, the User Client

Delta is the final destination of data streams. It is the
end-user interface into the Itaipu system. Each end-
user uses a Delta client which communicates with the
Dam Execution Engine and Query Processing units.
These units act as servers and communicate via a
custom-made XML protocol over TCP sockets. Each
delta client initiates a fixed listening port, which the
Execution engine pushes output from its operators
into. Delta provides the following functions:
1. Visualizes output streams. All visualization tools

such as graph kits are part of Delta and not the
execution engine.

2. It forwards user queries to the query processing
unit and allows users to search and parameterize
existing frames.

4 PROJECT STATUS

The focus of this paper is to discuss the architecture
of the Itaipu system. We are currently working with
Business Objects to build a typical BAM data set to
validate our system. We ran a basic validation sys-
tem using simulated sales data collected from Point
of Sales (POS) terminals. This data set is typically
used to test data warehouses.

5 FUTURE WORK

We hope to extend the Itaipu system in the following
ways:
1. We wish to produce a more flexible query model

that has the benefits of complex event processing
systems while still providing DSMS functionality.
Our next research goal is to provide users with the
ability to enter a sequence of queries where each
query is triggered based on conditions satisfied by
results from the preceding query, hence produc-
ing an adapting query. Our approach will involve
utilizing workflows to define these querying se-
quences. (A workflow describes relationships and
dependencies between processes. It provides a
way to model a sequence of processing activities

and with the help of a workflow management sys-
tem enact or schedule the sequence.)

2. We would like to provide collaboration tools in
Delta. This would enable users to share queries
and results. Collaboration would enable a group
of users to create joint queries such that all users
within a group maintain a consistent view into the
data.
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