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Abstract: In a large software system knowing which files are most likely to be fault-prone is valuable information for 
project managers. However, our experience shows that it is difficult to collect and analyze fine-grained test 
defects in a large and complex software system. On the other hand, previous research has shown that 
companies can safely use cross company data with nearest neighbor sampling to predict their defects in case 
they are unable to collect local data. In this study we analyzed 25 projects of a large telecommunication 
system. To predict defect proneness of modules we learned from NASA MDP data. We used static call 
graph based ranking (CGBR) as well as nearest neighbor sampling for constructing method level defect 
predictors. Our results suggest that, for the analyzed projects, at least 70% of the defects can be detected by 
inspecting only i) 6% of the code using a Naïve Bayes model, ii) 3% of the code using CGBR framework. 

1 INTRODUCTION 

Software testing is one of the most critical and costly 
phases in software development. Project managers 
need to know “when to stop testing?” and “which 
parts of the code to test?”. The answers to these 
questions would directly affect defect rates and 
product quality as well as resource allocation and the 
cost.   

As the size and complexity of software increases, 
manual inspection of software becomes a harder 
task. In this context, defect predictors have been 
effective secondary tools to help test teams locate 
potential defects accurately (Menzies et.al., 2007a). 

In this paper, we share our experience for 
building defect predictors in a large 
telecommunication system and present our initial 
results. We have been working with the largest GSM 
operator (~70% market share) in Turkey, Turkcell, 
to improve code quality and to predict defects before 
the testing phase. Turkcell is a global company 
whose stocks are traded in NYSE and operates in 
Turkey, Azerbaijan, Kazakhstan, Georgia, Northern 
Cyprus and Ukraine with a customer base of 53,4 
million. The underlying system is standard 3-tier 
architecture, with presentation, application and data 
layers. Our analysis focuses on the presentation and 
application layers. However, the content in these 
layers cannot be separated as distinct projects. We 

were able to identify 25 critical components, which 
we will refer to as project throughout this paper.  

We used a defect prediction model that is based 
on static code attributes. Some researchers have 
argued that the information content of the static code 
attributes is very limited (Fenton, 1999). However, 
static code attributes are easy to collect, interpret and 
many recent research have successfully used them to 
build defect predictors (Menzies et.al., 2007a, 
2007b; Turhan and Bener 2007, 2008). Furthermore, 
the information content of these attributes can be 
increased i.e. using call graphs (Kocak et.al. 2008). 
Kocak et.al shows that integrating call graph 
information in defect predictors decreases their false 
positive rates while preserving their detection rates.  

The collection of static code metrics and call 
graphs can be easily carried out using automated 
tools (Menzies et.al. 2007; Turhan and Bener 2008). 
However, matching these measurements to software 
components is the most critical factor for building 
defect predictors. Unfortunately, in our case, it was 
not possible to match past defects with the software 
components in the desired granularity, module level, 
where we mean the smallest unit of functionality 
(i.e. java methods, c functions). Previous research in 
such large systems use either component or file level 
code churn metrics to predict defects (Nagappan and 
Ball, 2006; Zimmermann and Nagappan, 2006; 
Ostrand and Weyuker, 2002; Ostrand et al. 2004; 

284
Koçak G., Turhan B. and Bener A. (2008).
PREDICTING DEFECTS IN A LARGE TELECOMMUNICATION SYSTEM.
In Proceedings of the Third International Conference on Software and Data Technologies - SE/GSDCA/MUSE, pages 284-288
DOI: 10.5220/0001887502840288
Copyright c© SciTePress



 

Ostrand et al. 2005; Bell et al. 2006; Ostrand et al. 
2007). The reason is that file level is the smallest 
granularity level that can be achieved. However, 
defect predictors become more precise as the 
measurements are gathered from smaller units 
(Ostrand et al. 2007).  

Therefore, we decided to use module level cross 
company data to predict defects for Turkcell projects 
(Menzies et al. 2007b). Specifically, we have used 
module level defect information from NASA MDP 
projects to train defect predictors and then obtained 
predictions for Turkcell projects. Previous research 
have shown that cross company data gives stable 
results and using nearest neighbor sampling 
techniques further improves the prediction 
performance when cross company data is used 
(Menzies et al. 2007; Turhan and Bener, 2008). Our 
experiment results with cross-company data on 
Turkcell projects, estimate that we can detect 70% of 
the defects with a 6% LOC investigation effort.  

In order to decrease false alarm rates, we 
included the CGBR framework in our analysis based 
on our previous research (Kocak et al. 2008). Using 
CGBR framework improved our estimated results 
such that the LOC investigation effort decreased 
from 6% to 3%.   

The rest of the paper is organized as follows: In 
section 2 we briefly review the related literature, in 
section 3 we explain the project data. Section 4 
explains our rule-based analysis. Learning based 
model analysis is discussed in section 5. The last 
section gives conclusion and future direction. 

2 RELATED WORK 

Ostrand and Weyuker have been performing similar 
research for AT&T and they also report that it is 
hard to conduct an empirical study in large systems 
due to difficulty in finding the relevant personnel 
and the high cost of collecting and analyzing data 
(Ostrand and Weyuker, 2002). 

Fenton and Ohlsson presented results of an 
empirical study on two versions of a large-scale 
industrial software, which showed that the 
distribution of the faults and failures in a software 
system can be modeled by Pareto principle (Fenton 
and Ohlsson, 2000). They claimed that neither size 
nor complexity explain the number of faults in a 
software system. Other researchers found interesting 
results showing that small modules are more fault - 
prone than larger ones (Koru and Liu, 2005; Koru 
and Liu, Dec. 2005; Malaiya and Denton, 2000; 

Zhang 2008). Our results will also show evidence in 
favor of this fact. 

As mentioned, Ostrand, Weyuker and Bell 
predicted fault-prone files of the large software 
system in AT&T by using a negative binominal 
regression model (Ostrand and Weyuker, 2002; 
Ostrand et al. 2004; Ostrand et al. 2005; Bell et al. 
2006; Ostrand et al. 2007). They report that their 
model can detect 20% of the files that contain 80% 
of all faults. Similarly, Nagappan, Ball and 
Zimmermann analyzed several Microsoft software 
components using static code and code churn 
metrics to predict post-release defects. They 
observed that different systems could be best 
characterized by different sets of metrics (Nagappan 
and Ball, 2006: Zimmermann and Nagappan, 2006). 

Our work differs at a large extent from previous 
work. Ostrand, Weyuker and Bell carried out the 
most similar work to this research, where they used 
file level measurements as a basic component. 
However, we prefer using modules, since modules 
provide finer granularity. They have collected data 
from various releases of projects and predict post-
release defects, whereas we have data from single 
release of 25 projects and we try to predict pre-
release defects.  

3 DATA 

In this research we analyzed 25 ‘Trcll’ projects. All 
projects are implemented in Java and we have 
gathered 29 static code metrics from each. In total, 
there are approximately 48,000 modules spanning 
763,000 lines of code.  

 
Figure 1: NASA datasets used in this study. 

We used cross company data from NASA MDP 
that are available online in the PROMISE repository 
(Boetticher et al. 2007; NASA). Figure 1 shows the 
characteristics of NASA projects. Each NASA 
dataset has 22 static code attributes. In our analysis, 
we have used only the common attributes (there are 
17 of them) that are available in both data sources.  
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4 DATA ANALYSIS 

4.1 Average-case Analysis 

Figure 2 shows the average values of 17 static code 
metrics collected from the 25 telecom datasets. It 
also shows the recommended intervals based on 
statistics from NASA MDP projects, when 
applicable. Cells marked with gray color correspond 
to metrics that are out of the recommended intervals. 
There are two clear observations in Figure 2. 
Developers do not write comments throughout the 
source code and low number of operands and 
operators indicate small, modular methods. 

 
Figure 2: Average-case analysis about Turkcell datasets. 

4.2 Rule-based Analysis 

Based on the recommended intervals in Figure 2, we 
have defined simple rules for each metric. These 
rules fire, if a module’s metric is not in the specified 
interval, indicating the manual inspection of the 
module. Figure 3 shows the 17 basic rules and 
corresponding metrics, along with 2 derived rules. 
The first derived rule, Rule 18, define a disjunction 
among 17 basic rules. That is Rule 18 fires if any 
basic rule fires. Note that, the gray colored rules in 
Figure 3 fire too frequently that cause rule 18 to fire 
all the time. The reason is that the corresponding 
comment and Halstead metrics’ related intervals do 
not fit Turkcell’s code characteristics.  

In order to overcome this problem we have 
defined Rule 19 that fires if all basic rules, but the 
Halstead fire. This reduces the firing frequency of 
the disjunction rule. However, Rule 19 states that 
6484 modules (14%) corresponding to 341,655 LOC 
(45%) should be inspected in order to detect 
potential defects. 

Inspection of 45% of total LOC is impractical. 
On the other hand, learning based model will be 
shown to be far more effective. We have designed 

two types of analysis using the learning based 
model. Analysis #1 uses the cross-company 
predictor with k-Nearest Neighbor sampling for 
predicting fault-prone modules. Analysis #2 
incorporates CGBR framework into static code 
attributes and than apply the model of Analysis #1. 

 
Figure 3: Rule-based analysis. 

5 ANALYSIS 

5.1 Analysis #1 

In this analysis we used the Naïve Bayes data miner 
that achieves significantly better results than many 
other mining algorithms for defect prediction 
(Menzies et.al., 2007a). We selected a random 90% 
subset of cross-company NASA data to train the 
model. From this subset, we have selected similar 
projects that are similar to Trcll in terms of 
Euclidean distance in the 17 dimensional metric 
spaces. The nearest neighbors in the random subset 
are used to train a predictor, which then made 
predictions on the Trcll data. We repeated this 
procedure 20 times and raised a flag for modules 
that are estimated as defective at least in 10 trials.  

Figure 4 shows the results from the first analysis. 
The estimated defect rate is %15 that is consistent 
with the rule-based model’s estimation. However, 
there is a major difference between the two models 
in terms of their practical implications. For the rule-
based model, estimated defective LOC corresponds 
to 45% of the whole code, while module level defect 
rate is 14% on the other hand; for the learning-based 
model, estimated defective LOC corresponds to only 
6% of the code, where module level defect rate is 
still estimated as 15%. 

This significant difference is occurred because 
rule base model makes decisions based on individual 
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metrics and it has a bias towards more complex and 
larger modules. On the other hand learning based 
model combines all ‘signals’ from each metric and 
estimates that defects are located in smaller 
modules.  

 
Figure 4: Analysis #1 results. 

5.2 Analysis #2 

We argue that module interactions play an important 
role in determining the complexity of the overall 
system rather than assessing modules individually. 
Therefore in a previous research (Kocak et.al. 2008) 
a model is proposed to investigate the module 
interactions with static call graphs. Kocak et.al. 
proposed the call graph based ranking (CGBR) 
framework that is applicable to any static code 
metrics based defect prediction model.  

To implement CGBR framework we created 
NxN matrix for building the call graphs where N is 
the number of modules. In this matrix, rows contain 
the information whether a module calls the others or 
not. Columns contain how many times a module is 
called by other modules. Inspired from the web page 
ranking methods, we treated each caller-to-callee 
relation in the call graph as hyperlinks from a web 
page to another. We then assigned equal initial ranks 
(i.e. 1) to all modules and iteratively calculated 
module ranks using PageRank algorithm.  

In this study we analyzed the static call graph 
matrices for only 22 projects, since the other 3 
projects were so large that their call graph analysis 

were not completed at the time of writing this paper, 
due to high memory requirements.  

 
Figure 5: Analysis #2 results. 

In analysis #2, we have calculated CGBR values, 
quantized them into 10 bins and assigned each bin, a 
weight value from 0.1 to 1 considering their 
complexity levels. Then, we have adjusted the static 
code attributes by multiplying each raw in the data 
table with corresponding weights, before we trained 
our model as in Analysis #1. 

Figure 5 shows the results of analysis #2. In 
order to catch 70% of the defects, the second model 
proposes to investigate only 3% proportion of the all 
code.  

6 CONCLUSIONS 

In this study we investigate how to predict fault-
prone modules in a large software system.  We have 
performed an average case analysis for the 25 
projects. This analysis shows that the software 
modules were written using relatively low number of 
operands and operators to increase modularity and to 
decrease maintenance effort. However, we have also 
observed that the code base was purely commented, 
which makes maintenance a difficult task. 

Our initial data analysis revealed that a simple 
rule-based model based on recommended standards 
on static code attributes estimates a defect rate of 
15% and requires 45% of the code to be inspected. 
This is an impractical outcome considering the scope 
of the system. Thus, we have constructed learning 
based defect predictors and performed further 
analysis. We have used a cross-company NASA data 
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to learn defect predictors, due to lack of local 
module level defect data. 

The first analysis confirms that the average 
defect rate of all projects was 15%. While the simple 
rule based module requires inspection of 45% of the 
code, the learning based model suggested that we 
needed to inspect only 6% of the code. This is from 
the fact that rule based model has a bias towards 
more complex and larger modules,  whereas learning 
based model predicts that smaller modules contain 
most of the defects. 

Our second analysis results employed data 
adjusted with CGBR framework and improved the 
estimations further and suggested that 70% of the 
defects could be detected by inspecting only 3% of 
the code. 

Our future work consists of collecting local 
module level defects to be able to build within-
company predictors for this large telecommunication 
system. We also plan to use file level code churn 
metrics in order to predict production defects 
between successive versions of the software. 

ACKNOWLEDGEMENTS 

This research is supported by Boğaziçi University 
research fund under grant number BAP 06HA104, 
the Turkish Scientific Research Council 
(TUBITAK) under grant number EEEAG 108E014 
and Turkcell A.Ş.  

REFERENCES 

Bell, R.M., Ostrand, T.J., Weyuker, E.J., July 2006. 
Looking for Bugs in All the Right Places. Proc. 
ACM/International Symposium on Software Testing 
and Analysis (ISSTA2006), Portland, Maine, pp. 61-
71. 

Boetticher, G., Menzies, T., Ostrand, T., 2007. PROMISE 
Repository of empirical software engineering data 
http://promisedata.org/repository, West Virginia 
University, Department of Computer Science. 

Fenton N.E. and Neil M., A critique of software defect 
prediction models. IEEE Transactions On Software 
Engineering (1999) vol. 25 pp. 675-689 

Fenton, N.E., Ohlsson, N., Aug 2000. Quantitative 
Analysis of Faults and Failures in a Complex Software 
System. IEEE Trans. on Software Engineering, Vol 
26, No 8, pp.797-814. 

Kocak, G., Turhan, B., Bener, A., 2008.  Software Defect 
Prediction Using Call Graph Based Ranking (CGBR) 
Framework, to appear in Proceedings of 
EUROMICRO SPPI (2008), Parma, Italy. 

Koru, A. G., Liu, H., 2005. An Investigation of the Effect 
of Module Size on Defect Prediction Using Static 
Measures. Proceeding of PROMISE 2005, St. Louis, 
Missouri, pp. 1-6. 

Koru, A. G., Liu, H., Nov.-Dec. 2005. Building effective 
defect-prediction models in practice Software, IEEE, 
vol. 22, Issue 6, pp. 23 – 29. 

Malaiya, Y. K., Denton, J., 2000. Module Size 
Distribution and Defect Density, ISSRE 2000, pp. 62-
71. 

Menzies, T., Greenwald, J., Frank, A., 2007. Data Mining 
Static Code Attributes to Learn Defect Predictors, 
IEEE Transactions on Software Engineering, 33, no.1, 
2-13. 

Menzies, T., Turhan, B., Bener, A., Distefano, J., 2007. 
“Cross- vs within-company defect prediction studies”, 
Technical report, Computer Science, West Virginia 
University. 

NASA, “WVU IV&V facility metrics data program.” 
[Online]. Available: http://mdp.ivv.nasa.gov 

Ostrand, T.J., Weyuker., E.J., July 2002. The Distribution 
of Faults in a Large Industrial Software System. Proc. 
ACM/International Symposium on Software Testing 
and Analysis (ISSTA2002), Rome, Italy, pp. 55-64. 

Ostrand, T.J., Weyuker, E.J., Bell, R.M., July 2004. 
Where the Bugs Are. Proc. ACM/International 
Symposium on Software Testing and Analysis 
(ISSTA2004), Boston, MA. 

Ostrand, T.J., Weyuker, E.J., Bell, R.M., April 2005. 
Predicting the Location and Number of Faults in Large 
Software Systems. IEEE Trans. on Software 
Engineering, Vol 31, No 4. 

Ostrand, T.J., Weyuker, E.J., Bell, R.M., July 2007. 
Automating Algorithms for the Identification of Fault-
Prone Files. Proc. ACM/International Symposium on 
Software Testing and Analysis (ISSTA07), London, 
England. 

Turhan, B., Bener, A., 2008. Data Sampling for Cross 
Company Defect Predictors, Technical Report, 
Computer Engineering, Bogazici University. 

Turhan , B., Bener, A., A Multivariate Analysis of Static 
Code Attributes for Defect Prediction. Quality 
Software, 2007. QSIC '07. Seventh International 
Conference on (2007) pp. 231 - 237 

Nagappan, N. and Ball T., Explaining failures using 
software dependences and churn metrics. Technical 
Report, Microsoft Research (2006) 

Zhang, H., On the Distribution of Software Faults. 
Software Engineering, IEEE Transactions on (2008) 
vol. 34 (2) pp. 301-302 

Zimmermann, T., Nagappan, N. Predicting Subsystem 
Failures using Dependency Graph Complexities. 
Technical Report, Microsoft Research (2006). 

 

ICSOFT 2008 - International Conference on Software and Data Technologies

288


