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Abstract: In the past, specification of languages and data structures has traditionally been formally achieved using 
mathematical notations. This is very precise and unambiguous, however it does not map easily to modern 
programming languages and many engineers are put off by mathematical notation. Recent developments in 
graphical specification of structures, drawing from Object-Oriented programming languages, has lead to the 
development of Class Diagrams as a well-used means to define data structures. We show in this paper that 
there are strong parallels between the two techniques, but that also there are some surprising differences! 

1 INTRODUCTION 

Science originally evolved as a branch of 
mathematics. It could well be argued that maybe it 
should always have stayed a branch of mathematics 
because then our programs would be ‘proved’ to 
work before being executed. However, the set of 
programs for which we can ‘prove’ things is much 
smaller than the set of programs that we actually 
want to write, and more importantly, smaller than 
the set we want to use. 

If mathematics were the language of 
programming, either there would be a much larger 
number of mathematicians in the world or computers 
and software would simply not have permeated our 
culture as much as they have. The traditional 
mathematical approach to writing algorithms is 
declarative, whereas the typical programming 
approach is imperative. This, in our opinion, is one 
of the most significant differences between 
mathematics and programming. A consequence of 
this difference is an increase in the semantic 
complexity in traditional programming languages 

compared to the semantic simplicity of declarative 
languages. 

The complexity of the programs we write 
naturally leads us to the need for modelling. 
Modelling is an old discipline, possibly as old as 
engineering in general. The actual age of modelling 
is dependent on what one takes as the definition of 
modelling. Physical sculpture as modelling is pre-
historic, mankind has be fashioning models of things 
in the real world for as far back in his history as he 
can look. 

 Modelling as an engineering discipline is also a 
significantly old discipline; any engineering project 
involves construction of a model, for small projects 
this may only be a ‘mental model’ but for any 
project of significant size or complexity, especially 
if it involves multiple engineers, a more concrete, 
real world, model is created in order to aid 
communication and exploration of the problems and 
specification of the final product. Models strive to 
efficiently communicate the important abstract 
properties of the problem being modelled. 

Mathematics has traditionally been used as a tool 
for constructing such models. Mathematical models 
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of the stock market, of the weather system, of the 
forces involved in sending a rocket to the moon, 
they are all essential to mankind’s understanding and 
ability to interact with, build, or predict things about, 
the environment in which he lives. Programming, on 
the other hand, is simply a tool. It is, at the simplest 
level, a set of instructions for a machine to execute 
in order that the machine performs some useful task 
(though in some cases the actual usefulness is 
dubious). The complexity and the variety of the 
tasks to which we want to put our machines are 
increasing astonishingly quickly, thus it becomes 
more and more essential for us to be able to 
understand, predict and communicate about the 
programs that are written; hence the use of models. 

Models, in the sense of the Unified Modelling 
Language (UML) (OMG, 2003), have evolved as the 
non-mathematician, software engineer’s tool for 
facilitating communication and analysis of the 
complex programs that they build. A huge part of 
the modelling languages developed for this purpose 
focus on the structural elements of the program 
rather than the behaviour, which after all is the main 
purpose of the program. This split between structure 
and behaviour, is in itself a very interesting topic for 
discussion, however, although we may touch on it in 
this paper it is not the primary focus. 

Techniques and languages for modelling 
software have changed over the years to reflect the 
programming languages in common use. Early 
modelling approaches of flow charts, structure 
diagrams, data flow modelling, have been replaced 
with the current favoured approach of Object-
Oriented modelling. Although the UML consists of 
multiple different modelling languages with 
different modelling features for example: state based 
modelling, component based modelling, and activity 
flow based modelling. The core and most widely 
accepted and used part of the UML is the humble 
Class Diagram. This diagram type is fundamentally 
based on the notions of object-orientation: 
composition, abstraction, inheritance, modularity, 
polymorphism and encapsulation. 

The UML Class Diagram language arose towards 
the end of the 1990’s, as a result of the coming 
together of (initially) three different languages that 
had been separately developed for a very similar 
purpose. Booch’s development focussed approach 
(Booch method) closely related to OO 
programming; Rumbaugh’s Object Modelling 
Technique (OMT) coming from the Relational 
Database world; and Jacobson’s Use Case based 
approach, OOSE. 

The primary case study carried out and published 
as part of the definition of the “new” Unified 

Modelling Language was the definition of itself! 
Thus right from the very start, the UML 
(predominantly class diagrams) has been used as a 
language to model languages. Such a model of a 
language has come to be known as a metamodel (a 
model of a model). 

The use of UML as a means to model languages 
has been part of the fuel for the recent advances in 
the OO modelling community, and in particular 
Model Driven Development (MDD (Atkinson, 2003, 
Kleppe, 2003, Selic 2003)) research, which has 
inspired a new interest in language specification. 
This new interest comes under the title of Domain 
Specific Languages (DSL (Chen, 2005, Greenfield, 
2003, van Deursen, 2000, Vokac, 2003, Wile, 
2001.)). As a result, numerous languages are being 
defined, and in particular, numerous metamodels for 
those languages. 

Prior to UML alternative (traditional) modelling 
techniques were employed to significant effect in 
order to define languages. Set theory, logic, and 
other branches of mathematics were used to give 
precise and formal definitions of languages 
including their semantics. These languages were 
predominantly text based and Backaus-Naur-Form 
(BNF) is used to define the language syntax. It is 
useful at this point to note a significant difference, to 
a language specification reader, between a BNF 
grammar and a UML class diagram. In BNF, the 
syntax is presented in an entirely text based format 
and although complete and theoretically fit for 
purpose, it presents a possible conceptual barrier to 
the ease of understanding for a typical human reader. 
Further, BNF is overly specific regarding the nature 
of the syntax whereas the graphical based format of 
UML primarily introduces the abstract concepts in 
an easily accessible and pictorial manner. Recent 
works such as (Alanen, 2004, Wimmer, 2005) 
explore the relationships between BNF based 
definitions of syntax and metamodels. 

Mathematical modelling of algorithms has 
evolved to a very high degree. Denotational 
semantics (Stoltenberg-Hansen, 1994, Stoy, 1977) 
allows a detailed analysis of algorithms to be made 
and conclusions to be drawn regarding their 
behaviour and efficiency. However, the very 
mathematical nature of Denotational Semantics 
makes it highly inaccessible to traditional 
programmers and therefore its practical uptake has 
been limited. Alternatively, many practical logics 
have been developed for specific problem domains 
and theorem proving tools designed (Hanna, 1992, 
Hanna, 1990) to help verify and validate software 
systems. Again however problems associated with 
the complexity of such systems has limited their 
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practical employment and in some cases has actively 
hindered the verification process due to errors 
introduced by human operators within the program 
validation stage (Cohn, 1989). 

The primary aim of the paper is to investigate the 
use of the graphical Object-Oriented approach of 
metamodelling in contrast to traditional approaches 
for the specification of languages. It seeks to 
compare the practical issues related to clear and 
precise modelling offered by the mathematical 
techniques with the human accessibility and, by 
implication, practical utility, offered by the graphical 
approach. To achieve this aim, three contrasting 
examples are discussed in the following sections. 
Section 2 introduces the simplistic nation of a 
Directed Graph. Subsequently section 3 enhances 
the discussion to Petri-Nets and Section 4 addresses 
a significantly different example in the form of the 
Lambda Calculus. The paper then draws conclusions 
based on the relative merits of the proposals in 
Section 5. 

2 MODELLING DIRECTED 
GRAPHS 

One of the most common structures used in both 
mathematics and computing is that of a directed 
graph. A graph G=(N,E) is a pair of sets; N is a 
finite set of nodes or vertices and E is a set of pairs 
of elements of N. In depiction of graphs, nodes are 
points in some space and edges form connections 
from one node to another. 

Table 1: Mathematical Model of a Directed Graph. 

G = (N, E) 
N ⊆ { n | n ∈ Ζ }  // where N is finite 
E ⊆ { (n1,n2) | n1,n2 ∈ N } 

A very simple mathematical model of such a 
graph is shown in Table 1. This specifies the concept 
of a directed graph as a pair of sets. One set being a 
set of nodes, which for simplicity are represented by 
integers. The other set, representing the edges in the 
graph, is a set of pairs (tuples); each of the pairs 
containing two integers representing the nodes 
which are connected by the edge.  

To model the same kind of structure using OO 
modelling, Class Diagrams, we would typically 
define classes DirectedGraph, Node and Edge, and 
then define associations between the classes that 
indicate the relationships between nodes and edges 
and the graph as a whole. This is illustrated in the 
simplest form by Figure 1. 

Figure 1: Typical OO Model of a Directed Graph. 

Interestingly, even with this simple graph 
structure, there are significant differences between 
the mathematical and OO forms of model. If we 
interpret each class in the typical OO programming 
context, then there is an implicit property of each 
class/object (equitable to the memory location of the 
object representation) that defines the objects 
identity. In the case of the Node class, a ‘label’ 
property has been given, but there is nothing in the 
model that specifies that this property defines the 
identity of Node objects. 

In the mathematics, the identity of the nodes (N) 
are made explicit by defining a node as an integer; 
however, neither graph (G) nor edge (E) have an 
explicit identity other than the implicit identity of 
the tuple and set on which they are defined. 

With respect to the OO model the question arises 
as to whether two edge objects that refer to the same 
two nodes are a single edge or two separate edges. In 
the mathematics, the definitions of identity for tuples 
clearly indicates that, not only are two pairs of the 
same two nodes, the same edge, but that a graph 
cannot have two edges between the same two nodes 
(something can only appear once in a set.) 

Another difference is that the mathematical 
model specifies that the two ends of an edge are 
members of the set of nodes. The OO model does 
not make this restriction; the edges in this model 
may be node objects that do not appear in the set of 
nodes for the graph. 

Table 2: Mathematical version of OO Model of a Directed 
Graph. 

Graph = (id, nodes, edges ) 
    id ∈ Ζ 
    nodes ⊆ { (id, label) | id, label ∈ Ζ } 
    edges ⊆ { (id, n1, n2) | id ∈ Ζ, n1 ∈ Node, n2 
∈ Node }

So is our mathematical model wrong, or is it the 
OO model that is incorrect? Neither, they just 
happen to model two different structures. A 
mathematical model of the same structure as defined 
by the OO model of Figure 1 is shown in Table 2.  

In this structure we have explicit modelled the 
‘memory location’ identity as an Integer, and we 

start 
[1] 

DirectedGraph 

Integer
[*]    nodes

Edge 
[*]      edges 

finish 
[1] 
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define edges to reference two elements of the set of 
all Node objects as opposed to two elements from 
the set of nodes in the graph. 

 
Figure 2: Another OO Model of a Directed Graph. 

An OO model that provides a slightly better 
match to the original mathematical definition from 
Table 1 is illustrated in Figure 2. 

This second OO model directly models the nodes 
of a graph as a set of integers. However, using this 
simple class diagram language, there is no way to 
provide a completely equivalent model: 
1. We have no means to define the identity of 

classes/objects. In the case of an Integer, one 
has to assume that its value is its identity, but 
for the Graph and Edge classes, there is the 
implicit notion of ‘memory location’ identity 
which we have no means to override. Ideally we 
would define the identity of an edge as being 
equivalent to the set of its ends. 

2. We also have no way to define that the ends of 
an edge must be a subset of the nodes in the 
graph. 

To enable the precision of specification easily 
achieved with the mathematical approach, we must 
add a means for defining/overriding the identity of 
objects and a way to add constraints. 

Both of these things have been addressed (to an 
extent) by the designers of the UML. Additional 
constraints can be added to a model using the OCL, 
and there is a basic mechanism for defining that 
certain properties of a class define its identity1. 
Using this extended language of class diagrams we 
can now give an equivalent structural specification 
of our original mathematical definition of a graph, 
shown in Figure 3. 

This OO model of a directed graph is a much 
more precise specification. However, even though it 
does match the mathematical definition, it seems  
somewhat clumsy with the need for the additional 
constraint. Also the use of the Integer class directly 

for modelling nodes does not seem quite like the OO 
approach to modelling. 

If we make use of bi-directional associations and 
extend the use the UML 2.0 notion of subsetting2 we 
can construct a new model as illustrated in Figure 4.  

 

 
Figure 3: OO version of Mathematical model of a Directed 
Graph. 

In this model: 
• Node objects are identified by their label – the 

label property is marked as an identifying 
property. 

• Edges are identified by the nodes they connect – 
the start and finish properties are marked as 
identifying 

• The ends of an edge are constrained to be nodes 
in the same graph – the start and finish properties 
are constrained to be subsets of the nodes in the 
graph.  
In addition the model provides bi-directional 

navigation between Node objects and the edges that 
connect them, which although non-essential is likely 
to be very useful. 

This final OO model of directed graphs is, in our 
opinion, by far the most effective model. The initial 
OO model, although simple and intuitive, was not 
precisely correct. By looking at the traditional 
mathematical model it becomes apparent that the 
notion if identity is important, as is a mechanism for 
constraining the ends of edge objects to be part of 
the same graph as the edge itself. 

There are mechanisms designed into the UML 
language of class diagrams that nearly enable us to 
model as precisely as the traditional maths, however 
these notions are not quite sufficient, and more 
importantly are seen as ‘additions’ to an OO model 
rather than primary things to consider aspects of the 
semantic behaviour implied by those structures. 

This example has looked solely at models of 
structure (a graph has no behaviour). In the next two 
sections we look at modelling more complex 
structures (languages) and at specifying some. 

start 
[1] 

DirectedGraph 

Integer 
[*]       nodes 

Edge

finish 
[1] 

[*]      edges

DirectedGraph 

Integer
[*]       nodes 

nodes->includesAll( 
     edges.start.union(edges.finish) ) 

  start {id} 
[1] Edge 

  finish {id} 
[1] 

[*]       edges 

1 We extend the official UML facility slightly, allowing us to
mark multiple properties as jointly defining an object’s identity
and allowing those properties to be association ends as well as
attributes. 
2 Officially, association ends should only subset other
associations ends with the same source object. 
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Figure 4: Better OO model of Directed Graph.

3 PETRI-NETS 

A more interesting example than simple graphs is 
that of Petri-nets (Murata, 1989).  A Petri-net is 
directed, weighted, bipartite graph, together with an 
initial state called the initial marking, M0. Petri-net 
graphs consist of two types of nodes, called places 
and transitions, whereas edges are either from places 
to transitions or from transitions to places. If there is 
an arc from a place p to a transition t, we say p is an 
input place of t, and t is an output transition of p.  
Places are depicted as circles and transitions as 
rectangles. Arcs are labelled with positive integers, 
called weight. A marking of a Petri-net assigns a 
non-negative number, known as the number of 
tokens, to each place. A marking M is in effect an 
integer valued vector of dimension m, where m is 
the number of places. Hence, each coordinate of M 
denotes the number of the number of tokens in the 
corresponding place. Table 3 presents a formal 
definition of a Petri-net, taken from (Murata, 1989). 

Table 3: Mathematical definition of a Petrinet. 

PN = (P, T, F, W, M0) 
P = {p1,p2…pm} is finite set of Places 
T = {t1,t2,…tn} is a finite set of transitions 
F  ⊆  (P×T) ∪ (T×P) is a set of arcs 
W: F → {1,2,3,…} is a weighting function 
M: P → {0,1,2, …} is a marking.  
M0 is the initial marking.

An OO model would be more likely to define 
Petri-nets as illustrated in Figure 5. A Petri-net being 
a containing class for Place, Transition and Arc 
objects. There being two kinds of Arc, Place-
>Transition Arcs and Transition->Place Arcs. The 
additional definition of Markings is as shown in 
Figure 6. 

As with the directed graph definition, it is 
necessary to augment the class diagram with 
additional constraints, which in the mathematical 

model are unnecessary. In this case the constraints 
ensure that the ends of the arcs are members of the 
sets of places and transitions in the petri-net. 

The other major difference between these two 
specifications is the explicit definition of types for 
Arcs in the OO model, which in the maths 
specification are defined jointly as the union of 
tuples (place,transition) and (transition,place). 

3.1 Semantics 

With the definition of a language, in this case Petri-
nets, we can go a step further than we did with the 
graph model. The runtime semantics of Petri nets are 
defined using the traditional mathematical 
specification approach. In the OO modelling world 
this is less often defined; however, it is perfectly 
feasible to do so, using the standard UML/OCL 
language facilities. 

Semantics of a Petri net can be interpreted as a 
labelled transition system, in which each state of the 
Petri is a marking of the Petri net. Change of one 
state of a Petri net to another state is governed by the 
firing rules: 

1) A transition t is called enabled if for each of its 
input places p has at least w(p,t) tokens, where 
w(p,t)  is the weight of the arc from p to t.    

2) An enabled transition t may fire, in which case 
w(p , t) tokens are removed from each input 
place p of the transition t  and w(t , p’) tokens 
are added to the each output place p’ of t.   

Firing of an enabled transition t under a marking 
M resulting in new marking M’ is denoted by M [t> 
M’.  A Reachable marking (state) of a Petri net is a 
marking Mk  such that there are marking M1, M2, …, 
MK+1 and transition t1, t2, …, tk satisfying the 
following 

M0 [t1> M1 [t2>  M2 [t3> … [t K+1> MK+1 [t K> MK 
In this case the sequence of transitions t1 t2 …tk  is 
called a run. 

start {subsets graph.nodes } 
[1] 

DirectedGraph

Node Edge 
[*]     nodes 

label : Integer {id} 

[*]    edges 

finish {subsets graph.nodes } 
[1] 

graph 
[1] 

Graph  
[1]  

Outgoing  
[*]  

Incoming  
[*]  
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Figure 5: OO (Meta) Model of Petri-Nets. 

To add this semantics to the OO model of Petri-
nets we can define operations on the classes that 
provide the firing behaviour, the body of the 
operations can be given using OCL expressions3.  

To facilitate more concise OCL expressions, we 
would also adapt the OO model making more use of 
bi-directional associations. 

 
Figure 6: OO (Meta) Model of PetrNets.  
 shows an evolved specification of the model 

from Figure 5, including the specification of 
Markings and use of bi-directional associations. 
(The constraints have been left out for clarity.) 

Given this specification of the model of a Petri-
net, we can define the behaviour of the operations as 
shown in Table 4. 

Using these definitions we could define further 
operations that would simulate execution of the 
Petri-net, or search the reachable Markings. One 
could even go so far as to build various model-
checking operations.  

It can be seen from these specifications that a 
graphical OO definition of the language can be as 
precise as the more traditional definition. It is also 
possible, using the OO approach, to define 
operations that aid the semantic interpretation of the 
language. 

One distinct advantage of the OO definition, over 
the traditional, is that the MDD and code generation 

techniques (Akehurst, 2007, Budinsky, 2003) enable 
this definition of the language to be used to 
automatically produce an executable version of the 
model that can be used as a first cut evaluator for the 
language. 

Table 4: Definitions for Petri-net behaviour. 

context 
Transition::isEnabled(current:Marking) : 
Boolean 
body: incoming->forAll( arc | 
        let mark = current.mark-
>any(m|m.place=arc.src) in 
        mark.tokens >= arc.weight 
      ) 

context Transition::fire(current:Marking) 
: Marking 
body: let 
  unaffected = current.mark->reject( m | 
                 incoming.src-
>union(outgoing.dst)->includes(m.place) ),
  lost = incoming.src->collect( arc | 
                 let mark = current.mark-
>any(m|m.place=arc.src) in 
                 Mark { place = arc.src, 
                        tokens = 
mark.tokens-arc.weight } ), 
  gained = outgoing.dst->collect( arc | 
                 let mark = current.mark-
>any(m|m.place=arc.src) in 
                 Mark { place = arc.dst, 
                        tokens = 
mark.tokens+arc.weight } ), 
in 
 Marking { 
   mark = 
unaffected.union(lost).union(gained) 
 } 

PetriNet

Place Transition 

src  [1]     {subsets net.places} 

[*]  
places 

[*]    transitions 

PTArc 
TPArc

                      dst [1] 
{subsets net.transitions} 

Arc 

[*]     arcs 

TransitionPlace 

       {subsets net.transitions}      [1] src 

dst [1]    {subsets net.places} 

weight : Integer 

net 
[1] 

net
[1] 

net  [1]

3 We find it necessary to use an extension of OCL that allows us
to create instances of user model objects. Creation of such objects
is similar to the creation of tuples in standard OCL. 
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Figure 6: OO (Meta) Model of PetrNets.  

Figure 7: OO (Meta) Model of Lambda Calculus. 

Another, more subjective, observation is that the 
graphical specification of the concepts of Place, 
Transition and Arcs conveys more information to the 
reader about the structure of expressions in the 
language than does the text based more traditional 
specification. 

4 UNTYPED LAMBDA 
CALCULUS 

The third example we will look at is one of the 
fundamental languages of computer science - 
lambda calculus. The definition of this language 
(taken from (Thompson, 1991)) is given as a 
grammar shown in Table 5. The definition of this 
language differs from the previous two examples, in 

that the language definition is given using its syntax, 
in BNF, rather than being a set theory based 
definition.  

Table 5: Grammar for Lambda Calculus. 

expr = ID 
     | 'λ' ID '.' expr 
     | expr expr 
     ; 

Further definition of the language is then given 
using text definitions and illustrated by examples. 
The semantic of the language are given by defining 
the notions of substitution (α-conversion) and β-
reduction. These definitions are shown in Table 6. 

Using OO modelling techniques we can provide 
equivalent definitions, but using a metamodel of the 

Mark

tokens : Integer 

PetriNet

Place

Transition

incoming 

           [*] 

[*]     places 

[*]     transitions 

PTArc

TPArc

dstdst

src 

Marking
initialMarking

[*]      

[*] 

outgoing 

[*]    outgoing 
incoming 

[*] 

src 
fire(c:Marking):Marking 
isEnabled(c:Marking):Boolean 

name : String{id} 

Expr

Variable Abstraction

expr [1] 

param [1] 

Application 

hasFree(v:Variable) : Boolean 
substitute(v:Variable,w:Expr) : Expr 
reduce() : Expr 
createVariable() : Variable 
 

[0..1] 

 

arg [1] 

func [1] 

                  MATHS VS (META)MODELLING - Are we Reinventing the Wheel?

319



 

lambda calculus concepts, and OCL to define the 
substitution and reduction functions. A mapping can 
be given from a concrete syntax to the metamodel, 
but the details of this are not in the scope of this 
paper. A metamodel for the Lambda calculus is 
given in Figure 7. It shows an abstract Expr type 
which is realised by the three kinds of expression 
that can be formed, a function Application, a 
Variable, and a function Abstraction. 

Table 6: Definitions of substitution and reduction. 

The substitution of f for the free occurrences of 
x in e, written e[f/x] is defined thus. 

• x[f/x] ↑df f and for a variable y ⎣ x, y[f/x] ↑df 
y 

• For applications, we substitute the two parts: 
(e1 e2)[t/x] ↑df (e1[t/x] e2[t/x]) 

• If e ↑ λx.g then e[f/x] ↑df e. If y is a variable 
distinct from x, and e ↑ λy.g then 

- if y does not appear free in f, 
e[f/x] ↑df λy.g[f/x]. 

- if y does appear free in f, e[f/x] 
↑df λz.(g[z/y][f/x]) 

• In general, it is easy to see that if x is not 
free in e then e[f/x] is e. 

The rule of  β-reduction states that, for all x, e 
and f, we can reduce a function application by 
substituting the argument for the bound variable 

• (λx.e) f  φβ e[f/x] 
And if e φβ e' then  

• (f e) φβ (f e') 
• (e g) φβ (e' g) 
• λy.e φβ λy.e' 

Based on this metamodel, the notion of 
substitution can be defined as an operation that 
returns a new Expr. The behaviour of such an 
operation needs to be defined on each kind of 
expression and these definitions are given in Table 
7.  

Reduction is the expansion of a function 
application, substituting the argument for the 
function parameter. This also can be defined by 
operations on the Expr sub-classes, as shown in 
Table 8.Further concepts such as equivalence, 
normalization or η-reduction can be defined as 
additional operations that make use of the reduction 
and substitution functions. It is interesting to note 
that the addition of a transitive closure operation 
within OCL would ease the definition of some of 
these additional operations. 

It is of course a very subjective issue as to 
whether the traditional BNF based specification of 

this language is better or worse than the OO version. 
Your preference as a reader of the definition 
probably depends largely on your background and 
previous experience of specifications. However, as 
is the case with the Petri-net example, this definition 
can be used to generate an executable model of the 
language. It is also interesting to see the difference 
between basing the language definition on the syntax 
or the concepts. The traditional approach defines the 
syntax of the language and uses this on which to 
base the definition of the semantic functions. In 
contrast the metamodel defines only the concepts of 
the language (potentially enabling multiple 
syntaxes), but still provides precise definition of the 
semantic substitute and reduction functions. 

Table 7: OCL Definitions for substitution (α-conversion). 

context Variable::hasFree(v:Variable) : 
Boolean 
body: self==v 

context Application::hasFree(v:Variable) 
: Boolean 
body: func.hasFree(v) and arg.hasFree(v) 

context Abstraction::hasFree(v:Variable) 
: Boolean 
body: param <> v and expr.isFree(v) 

context Variable::substitute(v:Variable, 
w:Expr) : Expr 
body: if self==v then w else self endif 

context 
Application::substitute(v:Variable, 
w:Expr) : Expr 
body: Application { func = 
func.substitute(v,w), 
                    arg = 
arg.substitute(v,w) } 

context 
Abstraction::substitute(v:Variable, 
w:Expr) : Expr 
body: if w.hasFree(param) then 
        let z = createVariable() in 
        Abstraction { param = z, 
                      expr  = 
expr.substitute(param,z).substitute(v,w) 
} 
      else 
        Abstraction { param = param, 
                      expr  = 
expr.substitute(v,w) } 
      endif 

5 CONCLUSIONS 

The paper has employed Object-Oriented graphical 
specification techniques to model three separate 
well-known languages or data structures. These 
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Table 8: OCL Definition for β-reduction. 

. context Variable::reduce() : Expr 
body: self 

context Abstraction::reduce() : Expr 
body: self 

context Application::reduce() : Expr 
body: if func.oclIsKindOf(Abstraction) then 
           
func.substitute(func.oclAsType(Abstraction).param,arg) 
      else 
         self 
      endif 

 
examples are initially specified using traditional 
mathematical techniques and it has been shown that 
these may equally well be expressed using the O-O 
graphical methods. Further, the paper has sought to 
demonstrate the increased ease of comprehension of 
the O-O graphical techniques by contrasting the two 
alternative specification techniques. 

The major observations may be summarised as 
follows:-. 

• It is surprising that OO modelling seems to have 
forgotten the importance of identity. Notions of 
identity, naturally assumed in mathematical 
specifications are not the same as the default 
notions in OO models. Relational modelling, 
itself an ancestor of UML, in contrast, makes this 
importance clear via primary keys. 

• An important advantage of the OO graphical 
approach may be deduced by the assumption that 
mental pictures will be created by a reader when 
digesting a specification. When reading 
mathematical or text based specifications, the 
mental picture is constructed by the reader. In 
contrast, by explicitly giving the picture as part 
of the specification (class diagram) this helps the 
specification writer ensure that his own mental 
picture is better communicated to the reader. 
This significantly improves the ability to 
mentally communicate and/or interpret the 
abstract concepts involved. 

• By modelling languages using class diagrams we 
gain the added advantage of being able to 
automatically generate tool support for the newly 
created language. The Model Driven 
Development (MDD) and code generation 
techniques developed for aiding rapid 
development of general software systems can be 
readily employed as part of the Domain Specific 
Languages (DSL) or grammarware engineering 
(Klint, 2003) discipline supporting the rapid 
development of tools to support new or new 

versions of a language. Such support is not 
generally available if given a specification in a 
traditional mathematical formalism, other than 
perhaps that given by compiler compilers. 

• OO Modelling gives a more complex set of basic 
concepts for producing models, whereas 
mathematics uses a much simpler set. For 
example, notions of extensibility in OO 
techniques are not generally primitive concepts 
in traditional specification techniques. Due to the 
simplicity of the primitives used within the 
mathematical models, the expressions tend to be 
more precise and unambiguous.  

• Ironically, the ease of comprehension possessed 
by OO graphical techniques means that a human 
reader is likely to infer fewer ambiguities in this 
presentational style than would be the case for 
the mathematical techniques, even though the 
mathematical techniques will actually contain 
fewer ambiguities. 

Metamodelling is a practical engineering 
approach to modelling a language whose primary 
goal is to aid the designer in producing a working 
solution to a problem. In contrast, the mathematical 
approach is primarily driven by the need for 
precision and accuracy rather than practical utility. 
Although metamodelling can be as precise as a 
mathematical approach, some of the underlying 
concepts do not encourage this precision.    

So, is metamodelling reinventing the wheel? 
Yes, but the wheel is a different colour! Specifically, 
many of the same concepts are available but their 
utility is improved by the improved accessibility of 
the concepts concerned. I.e. this colour of wheel is 
easier on the eye!  
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