
A HEURISTIC POLYNOMIAL ALGORITHM FOR LOCAL
INCONSISTENCY DIAGNOSIS IN FIREWALL RULE SETS

S. Pozo, R. Ceballos and R. M. Gasca
Department of Computer Languages and Systems, ETS Ingeniería Informática, University of Seville

Avda. Reina Mercedes S/N, 41012 Sevilla, Spain

Keywords: Diagnosis, consistency, conflict, anomaly, firewall, acl, ruleset.

Abstract: Firewall ACLs can contain inconsistencies. There is an inconsistency if different actions can be taken on the
same flow of traffic, depending on the ordering of the rules. Inconsistent rules should be notified to the
system administrator in order to remove them. Minimal diagnosis and characterization of inconsistencies is
a combinatorial problem. Although many algorithms have been proposed to solve this problem, all reviewed
ones work with the full ACL with no approximate heuristics, giving minimal and complete results, but
making the problem intractable for large, real-life ACLs. In this paper we take a different approach. First,
we deeply analyze the inconsistency diagnosis in firewall ACLs problem, and propose to split the process in
several parts that can be solved sequentially: inconsistency detection, inconsistent rules identification, and
inconsistency characterization. We present polynomial heuristic algorithms for the first two parts of the
problem: detection and identification (diagnosis) of inconsistent rules. The algorithms return several
independent clusters of inconsistent rules that can be characterized against a fault taxonomy. These clusters
contains all inconsistent rules of the ACL (algorithms are complete), but the algorithms not necessarily give
the minimum number of clusters. The main advantage of the proposed heuristic diagnosis process is that
optimal characterization can be now applied to several smaller problems (the result of the diagnosis process)
rather than to the whole ACL, resulting in an effective computational complexity reduction at the cost of not
having the minimal diagnosis. Experimental results with real ACLs are given.

1 INTRODUCTION

A firewall is a network element that controls the
traversal of packets across different network
segments. It is a mechanism to enforce an Access
Control Policy, represented as an Access Control
List (ACL). An ACL is in general a list of linearly
ordered (total order) condition/action rules. The
condition part of the rule is a set of condition
attributes or selectors, where |condition|=k (k is the
number of selectors). The condition set is typically
composed of five elements, which correspond to five
fields of a packet header (Taylor, 2005). In firewalls,
the process of matching TCP/IP packets against
rules is called filtering. A rule matches a packet
when the values of each field of the header of a
packet are subsets or equal to the values of its
corresponding rule selector. The action part of the
rule represents the action that should be taken for a
matching packet. In firewalls, two actions are
possible: allow or deny a packet. A firewall ACL is
commonly denominated a rule set.

Firewalls have to face many problems in real-life
modern networks (Wool, 2004). One of the most
important ones is rule set consistency. Selectors of
rules can overlap (for example, the protocol
selector), and can even be rules that are totally equal
to others. Since a packet can be matched with any of
the overlapping rules, firewalls usually use a
positional conflict resolution technique, taking the
action of the first matching rule. An inconsistent
firewall ACL implies in general a design error, and
indicates that the firewall is accepting traffic that
should be denied or vice versa.

The minimal inconsistency characterization is a
combinatorial problem. Although many algorithms
have been proposed to solve it, to the best of our
knowledge, all of them are brute force. These results
return an optimal characterization, but make the
problem intractable for large real-life rule sets.

In this paper we propose to take a different
approach in order to make the problem tractable for
real-life, big rule sets. We propose to divide
consistency management in three sequential stages:

430
Pozo S., Ceballos R. and M. Gasca R. (2008).
A HEURISTIC POLYNOMIAL ALGORITHM FOR LOCAL INCONSISTENCY DIAGNOSIS IN FIREWALL RULE SETS.
In Proceedings of the International Conference on Security and Cryptography, pages 430-441
DOI: 10.5220/0001921504300441
Copyright c© SciTePress

• Inconsistency detection. It is the action of
finding the rules that are inconsistent with other
rules

• Identification of inconsistent rules. Finding the
rules that cause the inconsistencies among the
detected inconsistent rules, and whose removal
produces a consistent rule set.

• Inconsistency characterization is understood as
the action of naming the identified inconsistent
rules among an established taxonomy of faults.

This paper focuses in the first two parts of the
process (detection and identification, diagnosis). As
we will show, detection is a problem that can be
solved in polynomial time with complete algorithms.
However, optimal identification and characterization
are combinatorial problems. In this paper, we
propose best case O(n) and worst case O(n2) time
complexity order independent detection and
identification algorithms with the number of rules of
the rule set, n. Algorithms are capable of handling
full ranges in rule selectors without doing rule
decorrelation, range to prefix conversion, or any
other pre-process. A Java tool is available.

We consider this work a significant advance in
consistency diagnosis in firewall rule sets because
isolating diagnosis from characterization can reduce
the effective computational complexity of optimal
characterization algorithms, since they can now
applied to several smaller problems (the result of the
diagnosis stage) rather than to a big one (the full rule
set). The work presented in this paper is an
improvement over a previous presented one (Pozo,
2008). In this paper, best case has been improved by
and order of magnitude and worst case by a
constant. Although the worst case improvement may
not seem representative in theoretical results, we
will show that this improvement is very important in
real-life rule sets, since they are near the best case.

This paper is structured as follows. In section 2,
we analyze the internals of the consistency
management problem in firewall rule sets. In section
3 we propose the consistency-based diagnosis
algorithms, give a theoretical complexity analysis
and experimental results with real rule sets. In
section 4 we review related works comparing them
to our proposal. Finally we give some concluding
remarks in section 5.

2 ANALYSIS OF THE
CONSISTENCY PROBLEM

To understand the problem, it is important to firstly
review the inconsistencies characterized in the
bibliography. A complete characterization that
includes shadowing, generalization, correlation and
redundancy has been given in (Al-Shaer, 2006).
Although all of these are inconsistencies, usually not
all are considered to be errors, as it can be used to
cause desirable effects. All of these inconsistencies
except redundancy are graphically represented in
Fig. 1. For the sake of simplicity, only two rule
inconsistencies with one selector are represented. An
example of an ACL is presented in Table 1.

Figure 1: Graphical representation of three
inconsistencies.

In this paper, we propose to divide consistency
management in three sequential stages (Fig. 2). In
the first step, all inconsistent rules are detected.
Then, the minimal number of rules that cause the
detected inconsistencies should be identified. Their
removal guarantees that the resulting rule set is
consistent. These two stages are called Inconsistency
Diagnosis. Finally, the identified inconsistent rules
are characterized among a established taxonomy of
firewall rule set inconsistencies. The detection part
of the process can be solved with complete
polynomial algorithms (the most important are
reviewed in the related works section, and a new one
is proposed in this paper). The minimal
identification is a combinatorial problem, as is going
to be showed in the next section. A polynomial
heuristic algorithm is proposed in this paper. The
third and last problem is also combinatorial (Pozo4,
2008) (the most important works are reviewed later
in this paper). Diagnosis is also rule-order

A HEURISTIC POLYNOMIAL ALGORITHM FOR LOCAL INCONSISTENCY DIAGNOSIS IN FIREWALL RULE
SETS

431

Table 1: Example of a Firewall Rule Set.

Priority/ID Protocol Source IP Src Port Destination IP Dst Port Action
R1 tcp 192.168.1.5 any *.*.*.* 80 deny
R2 tcp 192.168.1.* any *.*.*.* 80 allow
R3 tcp *.*.*.* any 172.0.1.10 80 allow
R4 tcp 192.168.1.* any 172.0.1.10 80 deny
R5 tcp 192.168.1.60 any *.*.*.* 21 deny
R6 tcp 192.168.1.* any *.*.*.* 21 allow
R7 tcp 192.168.1.* any 172.0.1.10 21 allow
R8 tcp *.*.*.* any *.*.*.* any deny
R9 udp 192.168.1.* any 172.0.1.10 53 allow
R10 udp *.*.*.* any 172.0.1.10 53 allow
R11 udp 192.168.2.* any 172.0.2.* any allow
R12 udp *.*.*.* any *.*.*.* any deny

independent, contrarily to characterization. The main
difference of this work with other ones is that other
authors apply brute force algorithms to solve directly
the characterization problem, with no previous
diagnosis. This yields algorithms that cannot be
applied to big rule sets. With the proposed approach,
the same characterization algorithms can be applied
to several smaller problems, rather than to the full
rule set. However, the number of these smaller
problems is not minimal with the given heuristic
algorithms proposed in this paper. In addition,
heuristic characterization algorithms (Pozo4, 2008)
can also be used to make the problem fully tractable.

Figure 2: Consistency management process.

2.1 One to One Consistency in Firewall
Rule Sets

First, it is needed to formalize a firewall rule set.

• Let RS be a firewall rule set consisting of n
rules, { }1 , ... nRS R R= .

• Let 5, ,R H Action H=< > ∈` be a rule, where
{ },Action allow deny= is its action.

• Let [],1 ,jR k k n k≤ ≤ ∈

• { }, _ , _ , _ , _protocol src ip src prt dst ip dst prt
 be a selector of a firewall rule Rj.

• Let ‘<’ and ‘>’ be operators defined over the
priority of the rules, where Rx < Ry implies that
then Rx has more priority than Ry and its action
is going to be taken first, and vice versa.

Attending to Al-Shaer characterization, two rules
(Rx, Ry) are correlated if they have a relation
between all of its selectors, and have different
actions. Fig. 1(c) represents a correlation
inconsistency between two rules with one selector
each. As the figure shows, the relation between the
rules is not subset, nor superset, nor equal (rules R1
and R3 of Table 1 are correlated). Fig. 1(a)
represents a shadowing inconsistency between two
rules. The relation is equality or subset of the
shadowed rule, Ry, respect to the general rule, Rx,
with Rx>Ry (R4 is shadowed by R3 in Table 1
example). Fig. 1(b) represents a generalization
inconsistency between two rules, which is the
inverse of shadowing respect to the priority of the
rules. The relation is superset of the general rule
respect to the other one (R2 is a generalization of R3
in Table 1 example).

Since we are only interested in diagnosis and not
in characterization, let’s try to remove names and
give a general case of inconsistency based on these
inconsistency characterizations (except redundancy).
In a closer look at shadowing and generalization
inconsistencies in Fig. 1, it can be seen that, in
reality, these two inconsistencies are the same one,
and the only thing that differentiates them is the
priority of the rules. Thus, if priority is ignored,
these two inconsistencies are special cases of a

SECRYPT 2008 - International Conference on Security and Cryptography

432

correlation. That is, shadowing can be redefined as a
correlation where all selectors of one rule (the
shadowed one) are subsets or equal of the general
rule. As generalization is the inverse with respect to
the priority of shadowing, a generalization
inconsistency can also be redefined as a correlation
where of all selectors of a rule (the general one) are
supersets of the other rule. So, the correlation
inconsistency can be redefined as the superset of all
inconsistencies, representing the most general case.
For that reasons, it is possible to define rule
inconsistency in only one priority independent case
that recognizes all characterized inconsistencies.
This is a key issue for our diagnosis process.

Definition 2.1. Inconsistency. Two rules
,i jR R RS∈ are inconsistent if and only if the

intersection of each of all of its selectors R[k] is not
empty, and they have different actions,
independently of their priorities. The inconsistency
between two rules expresses the possibility of an
undesirable effect in the semantics of the rule set.
The semantics of the rule set changes if an
inconsistent rule is removed.

{ }

(,) 1 1 ,

[] [] [] []

, _ , _ , _ , _

, ,

i j i j

i jInconsistent R RS i n R RS j n j i

R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

≤ ≤ ⇔ ∃ ∈ ≤ ≤ ≠ •

≠ ∅ ∧ ≠

∀ ∈

∩

Inconsistency of one rule in a RS

{ }

(, ,) 1 , ,

[] [] [] []

, _ , _ , _ , _

,

i j i j

i jInconsistent R R RS i j n i j

R k R k R Action R Action

k protocol src ip src prt dst ip dst prt

≤ ≤ ≠ ⇔

≠ ∅ ∧ ≠

∀ ∈

∩

Inconsistency between two rules in a RS

This definition can be extended to more than two
rules, as is going to be explained in the next section.
Attending to Definition 2.1, all cases represented in
Fig. 1 are of the same kind, and are called
inconsistencies without any particular
characterization. Priority is only required if
inconsistencies are going to be characterized. We
showed that all inconsistencies between pairs of
rules can be detected by pairs of two with Definition
2.1, but more complicated situations must also be
analyzed in order to illustrate this definition. In next
sections we show that no extension is needed to
Definition 2.1, since the case of n to one rule
inconsistency can be decomposed in several
independent two-rule inconsistencies.

2.2 One to Many Consistency in
Firewall Rule Sets

All base situations are presented in Fig. 3, which is
an extension to Fig. 1. This figure is a simplification
to three inconsistent rules, but can easily be
extended to more rules that can be composed in
several ways.

Fig. 3(a1) represents an inconsistency where the
union of two independent rules Rx, Ry overlaps with
another one, Rz (Fig. 4(a) taken from (García-Alfaro,
2007) exemplifies this situation). As Rx is
inconsistent with Rz, and Ry is also inconsistent with
Rz, both in an independent manner, this situation can
be decomposed in two independent inconsistencies,
and can easily be diagnosed.

Rx
Action=deny

Rx
Action=allow

Ry
Action=allow

Rz
Action=deny

(a1)

Ry
Action=allow

Rz
Action=allow

Rx
Action=deny

(b1)

Ry
allow

Rz
allow

(a2) (b2)

Rz
Action=deny

Rx
allow

Ry
allow

Rx
Action=deny

(c)

Rz
Action=deny

Ry
Action=allow

Figure 3: Graphical representation of inconsistencias
between three rules.

Fig. 3(a2) presents a similar situation, where Rx
overlaps with the union of Ry and Rz. This situation
is also decomposable in two independent
inconsistencies: Rx inconsistent with Ry, and Rx with
Rz. Note that, in order to diagnose inconsistencies,
the priority of the rules is not necessary.

The situations presented in Fig. 3(b1) and Fig.
3(b2) are the inverse of the two previous ones
respect to the action. Thus, the diagnosis is
analogous. This situation is exemplified in Fig. 4(b).
Finally, Fig. 3(c) represents a relation with three
overlapping rules (an example is in Fig. 4(c)). This
situation can also be decomposed in two

A HEURISTIC POLYNOMIAL ALGORITHM FOR LOCAL INCONSISTENCY DIAGNOSIS IN FIREWALL RULE
SETS

433

independent ones: Rx inconsistent with Ry, and Ry
with Rz.

In conclusion, it is possible to diagnose
inconsistencies between an arbitrary number of rules
with Definition 2.1, because all the presented
situations can be decomposed in independent two by
two relations. These examples are easily extendable
to more than three rules.

{ } { }
{ } { }
{ } { }

: [10 50]

: [40 90]

: [30 80]

Rx port allow

Ry port allow

Rz port deny

∈ − ⇒

∈ − ⇒

∈ − ⇒

(a)
{ } { }
{ } { }
{ } { }

: [10 50]

: [40 90]

: [0 100]

Ry port allow

Rz port allow

Rx port deny

∈ − ⇒

∈ − ⇒

∈ − ⇒

(b)
{ } { }
{ } { }
{ } { }

: [0 50]

: [60 100]

: [40 70]

Rx port deny

Rz port deny

Ry port allow

∈ − ⇒

∈ − ⇒

∈ − ⇒

(c)

Figure 4: Inconsistency examples.

If a new rule, Rz, is added to an inconsistent rule
set, the new rule can only cause a new inconsistency
with one to all of the rules in the rule set, in a similar
way that it did in the previous case (Fig. 5). It cannot
modify a previous inconsistency, or cause an
inconsistency between two consistent rules, and
without the new rule. This inconsistency can also be
decomposed in two by two inconsistencies, which
are independent of the inconsistencies that were
present in the rule set previously to the addition of
Rz. In the same way, if a new rule is inserted in a
consistent rule set, a similar decomposition can be
done (Fig. 6).

Figure 5: Graphical representation of a new inconsistent
rule added in an inconsistent rule set.

Note that, as the diagnosis process is order-
independent, the new rule can be inserted anywhere

in the rule set. Again, these two situations can be
easily extended to more than three rules.

Figure 6: Graphical representation of a new inconsistent
rule added in an consistent rule set.

3 CONSISTENCY-BASED
DIAGNOSIS OF RULE SETS

The presented analysis has motivated the separation
of characterization from diagnosis, and to solve the
diagnosis problem in isolation, as a first stage for the
optimal inconsistency characterization problem. As
it is going to be showed, the result of the diagnosis
process is the identification of the rules that cause
the inconsistencies in the rule set and for each one,
the set of the rules which they are inconsistent with.
Each of these sets and their corresponding identified
conflicting rule can be taken as input to the
characterization part of the process, resulting in an
effective computational complexity reduction
(solving several small combinatorial problems is
faster than solving a big one). However, recall that
as the optimal identification of inconsistent rules is a
combinatorial problem, the application of an optimal
characterization algorithm to the result of the
proposed heuristic diagnosis process is senseless. In
contrast, heuristic characterization algorithms
(Pozo4, 2008) can be used, with a heavy
improvement in computational complexity of the
full process.

In this section, two algorithms which implement
Definition 2.1 and the diagnosis process explained in
the previous section are presented. Algorithms are
capable of handling ranges in all selectors.

SECRYPT 2008 - International Conference on Security and Cryptography

434

3.1 Stage 1. Detection of Inconsistent
Pairs of Rules

The first stage of the process detects the inconsistent
rules of the rule set and returns an Inconsistency
Graph (IG, Definition 3.1) representing their
relations. Note that the detection process, like
Definition 2.1, is order independent. Also note that
the presented algorithm is complete, as it
implements Definition 2.1 (which is complete).

Definition 3.1. Inconsistency Graph, IG. An IG is
an undirected, cyclic and disconnected graph whose
vertices are the inconsistent rules of the rule set, and
whose edges are the inconsistency relations between
the these rules. Note that |IG| is the number of
inconsistent rules in RS, and ||IG|| corresponds with
the number of inconsistencies pairs of rules in RS, or
simple the number of inconsistencies in RS.

() ,1 (,)

() , ,1 , , (, ,)

Let , be an undirected, cyclic and disconnected graph

i

i j i j

iV IG R RS i n Inconsistent R RS

E IG R R V i j n i j Inconsistent R R RS

IG V E
•= ∈ ≤ ≤

= ∈ ≤ ≤ ≠ •

=< >

Algorithm 1 presented in Figure 7 (implemented
in Object Oriented paradigm and using abstract data
types) exploits the order independence of the
inconsistency definition and only checks
inconsistencies between rules with different actions,
dividing the ACL in two lists, one with allow rules
and the other with deny ones. The algorithm receives
two rule sets. One of them is composed of allow
rules and the other of deny rules of the original rule
set. This decomposition is a linear complexity
operation. The algorithm takes one of the rule sets
and, for each rule, it checks if there is an
inconsistency with other rules in the other one. As
all inconsistencies can be decomposed in two by two
relations, there is no need to check combinations of
more than two rules. Each time the algorithm finds
an inconsistency between a pair of rules, the two
rules are added as vertices to the IG, with a non
directed edge between them. The algorithm returns
an IG. Since all possibilities have been checked,
Algorithm 1 detects of all possible inconsistent rules
(i.e. it is complete). Fig. 8 presents the resulting IG
of the Table 1 example.

Time complexity of Algorithm 1 is bounded by
the two nested loops (lines 8 and 10). Each rule in
ruleSetAllow is tested for inconsistency against rules
in ruleSetDeny. The worst case for the loop is
reached when ruleSetAllow.size()=
ruleSetDeny.size() (i.e. half rules allow and the other
half deny), and the best case when
ruleSetAllow.size()=n and ruleSetDeny.size()=0 or
ruleSetAllow.size()=0 and ruleSetDeny.size()=n.

Thus, the complexity of the improved detection
algorithm depends on the percentage of allow and
deny rules over the total number of rules.

Algorithm 1. Inconsistency Detection algorithm
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

Func detection(in List: ruleSetAllow,
ruleSetDeny; out Graph: ig)

Var
 Rule ri, rj
 Integer i, j
Alg
 for each j=1..ruleSetAllow.size() {
 rj= ruleSetAllow.get(j)
 for each i=1..ruleSetDeny.size() {
 ri = ruleSetDeny.get(i)
 if (inconsistency(ri, rj)) {
 ig.addVertex(ri)
 ig.addVertex(rj)
 ig.addEdge(ri, rj)
 }
 }
 }
End Alg

// Implements the Inconsistency Definition
Func inconsistency(in Rule: rx, ry; out

Boolean: b)
Var
 Integer i
Alg
 b = true
 i = 1
 while (i<=rx.selectors.size() AND b)
 b = b AND intersection(rx.getSelector(i),
 ry.getSelector(i))
 i=i+1
 }

End Alg

Figure 7: Inconsistency detection algorithm.

However, there are other inner operations that
should be analyzed in lines 12 to 15. The first one, in
line 12, is inconsistency() which is composed of an
iteration. This operation implements the
inconsistency definition. In typical firewall ACLs,
k=5, and thus the iteration runs 5 times. Anyway,
the iteration is bounded by the number of selectors,
which is a constant, k.

In addition, inside the iteration there is an
intersection between each selector (lines 28 to 30).
The typical 5 selectors of firewall ACLs (Table 1)
are integers or ranges of them, except IP address.

A HEURISTIC POLYNOMIAL ALGORITHM FOR LOCAL INCONSISTENCY DIAGNOSIS IN FIREWALL RULE
SETS

435

Knowing if two ranges of integers intersect can be
done in constant time with a naïve algorithm which
compares the limits of the intervals. Knowing if two
IP addresses intersect can also be easily done in
constant time by comparing their network addresses
and netmasks. Other operations of the inner loop
(lines 12 to 14) are the graph-related ones. If the
graph is based on hash tables, vertex and edge
insertions run in constant time, except in some cases
where rehashing could be necessary.

Figure 8: Inconsistency graph.

For all these reasons, the complexity of the two
nested loops is only affected by a constant factor in
all cases, which depends on the constant number of
selectors, k. Thus, worst case time complexity of the
detection algorithm is in O(n2), best case is in O(n),
and average case is in O(n·m) with the number of
allow rules, n, and deny rules, m in the ACL.

Space used by Algorithm 1 is the sum of the
space needed to store the ACL, and the one needed
for the graph. In best case the graph would have n
vertices and n-1 edges. In the worst case, there could
be n-1 inconsistent rules and also n-1 edges per
vertex. Note that the space needed to store an edge is
fewer than the needed to store a vertex, since only a
reference between vertices is needed.

3.2 Stage 2. Detection of Inconsistent
Pairs of Rules

The second and last stage of the diagnosis process
identifies the rules that cause the inconsistencies
from the set of inconsistent pairs of rules (the result
of the previous stage) with an heuristic algorithm.
Algorithm 2 (Fig. 9) was initially presented in
(Pozo, 2008). It receives the IG as input and takes

iteratively the vertex with the greatest number of
adjacencies (lines 6 and 7), that is, the vertex with
the greatest number of inconsistencies, v. Then, an
independent cluster of inconsistent rules (ICIR,
Definition 3.2) is created as a tree with v (the
conflicting rule of the cluster) as its root, and its
adjacents (the inconsistent rules) as leafs (lines 8 to
12). The root of all ICIRs from the Diagnosis Set
(DS, Definition 3.3), or the set of rules that must be
removed to get a consistent rule set. Then, v and its
edges are removed from the IG (line 13). If vertices
with no edges are left in the IG, then these vertices
are removed (line 14), since they are consistent by
definition (they are rules with no relations with
others). As inconsistencies have been decomposed in
pair wise relations, ICIRs are always formed by two
levels. For the analyzed example, the algorithm
finishes with a diagnosis set of cardinality five
(|DS|=5), containing the rules DS={R8, R12, R5, R1,
R4}, which are the ICIR roots or the rules that cause
an inconsistency with other ones. If all rules of DS
are removed, the resulting rule set is consistent. R8
and R12 were the most conflicting ones . A trace of
the different iterations of Algorithm 1 when applied
to Table 1 was presented in (Pozo, 2008).

Algorithm 2. Inconsistent Rule Identification algorithm
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

Func identification(in Graph:ig; out List of
Tree:icirs)

Var
 Tree icir
Alg
 while (ig.hasVertices()) {
 Vertex v = ig.getMaxAdjacencyVertex();
 List adj = ig.getAdjacents(v)
 icir.createEmptyTree()
 icir.setRoot(v)
 icir.addChildren(adj)
 icirs.add(icir)
 ig.removeVertexWithEdges(v)
 ig.removeNotConnectedVertices()
 }

End Alg

Figure 9: Inconsistency identification algorithm.

Definition 3.2. Independent Cluster of
Inconsistent Rules, ICIR. An ICIR(root, CV) is a
two level tree, rooted in the rule root and where CV
is a set of rules (its leafs). It represents a cluster of
mutually consistent rules, CV, which are at the same
time inconsistent with their root. ICIR(root) is the
rule which has the greatest number of
inconsistencies with other rules of the same cluster.

SECRYPT 2008 - International Conference on Security and Cryptography

436

Note that the action ICIR(root) is the contrary of the
actions of all of its leafs in CV.

(,)
(,)

, , (,)
i i

i j i j

ICIR root CV
R CV Inconsistent root R

R R CV i j Inconsistent R R

⇔

∀ ∈ • ∧

∀ ∈ ≠ •¬

Definition 3.3. Diagnosis Set, DS. This is the set of
rules that cause the inconsistencies, and coincide
with the root of all ICIRs.

{ }

{ }

1

1

, ...,

(), ..., ()

Let

be the set of all ICIR of a given , then
m

m

ICIR ICIR

DS ICIR root ICIR root

ICIRS

RS
=

=

If the rules from the DS are directly removed
from the rule set, it gets consistent. Note that this
heuristic is not necessarily minimal.

Time complexity of Algorithm 2 is bounded by
the loop of line 5, which runs as many times as
ICIRs are formed (it corresponds with the cardinality
of the Diagnosis Set, |DS|). The worst case is
reached, as in Algorithm 1, when
ruleSetAllow.size()=ruleSetDeny.size()=n/2 (Fig.
11(b)), resulting in a |DS|=n/2. In this case,
getMaxAdjacencyVertex() (line 7), a maximum
calculus, runs in O(n) with the number of vertices of
the graph (the number of inconsistencies).
Operations of lines 8, 9, 10, 11, and 12 run in
constant time. removeVertexWithEdges() (line 13)
runs in linear time with the cardinality of its
adjacency list (n/2-1 in the worst case). Finally,
removeUnconnectedVertices() (line 14) is also linear
with the number of vertices in the graph at each
iteration, O(n). Thus, the resulting worst case time
complexity of Algorithm 2 is in O(|DS|·(n+n/2-
1+n))=O(n/2·n)=O(n2).

The best case is reached, as in Algorithm 1,
when ruleSetAllow.size()=n and
ruleSetDeny.size()=0 or vice versa (Fig. 11(a)). The
IG only has one vertex, v, connected to all the other
vertices. In this case, |DS|=1 and the algorithm is in
O(n). In an average case the algorithm is in
O(|DS|·h), |DS|<<h (h is the number of
inconsistencies).

Algorithm 2 needs some space to store the
ICIRs. Each ICIR needs space for its root and for the
conflictive rules. But note that, as the algorithm is
creating the ICIRs, the corresponding vertices and
edges are removed from the IG, and thus at each
iteration only the space to store the adjacency list of
the removed vertex is necessary. Complexities are
presented in Table 2.

Figure 10: Generated ICIRs and the Diagnosis Set.

Figure 11: Identification best and worst cases.

The result of the diagnosis process is the set of all
ICIRs. As each ICIR represent a different
independent inconsistency, exhaustive search
optimal characterization algorithms can be applied
to each one independently, reducing the effective
computational complexity of the whole process. In
addition, heuristic characterization algorithms can
also be applied (Pozo4, 2008) Also note that the
presented proposal makes no assumptions about how
selector ranges are expressed. This is important,
because if the original rule set is directly used by
algorithms, inconsistency results are given over the
original, unmodified rule set.

Table 2: Detection and Identification Time Complexities.

Number of
inserted rules

Best
case

Average
case

Worst
case

Space
Worst

Detection O(n) O(n·m) O(n2)
n

Rules·h
Edges

Identification O(n) O(|DS|·h),
|DS|<<h O(n2)

n
Rules·h
Edges

Combined
(Diagnosis) O(n) O(n·m) O(n2)

n
Rules·h
Edges

A HEURISTIC POLYNOMIAL ALGORITHM FOR LOCAL INCONSISTENCY DIAGNOSIS IN FIREWALL RULE
SETS

437

Table 3: Performance Evaluation.
Size %Deny |DS| Average ICIR size #Inconsistencies Detection (ms) Identification (ms) TOTAL (ms)

50 28,21 0 n/a 0 0,06 0 0,06
144 30,91 3 16 48 0,59 0,21 0,8
238 66,43 15 19 291 2,08 0,15 2,23
450 34,73 15 20 312 5,59 0,16 5,75
900 14,8 29 34 1005 13,38 0,64 14,02

2500 6,97 100 43 4337 59,48 4,08 63,56
5000 1,98 32 19 1388 63,93 1,18 65,11

10611 2,05 156 59 18894 346,58 24,79 371,37

Figure 12(a): Running time. Average case Figure 12(b): Comparison between detection algorithms.

3.3 Experimental Results

In absence of standard rule sets for testing, the
proposed heuristic process has been tested with real
firewall rule sets (Table 3). The first column
represents the size of the rule set; the second one the
percentage of deny rules over the rule set size; the
third the cardinality of the Diagnosis Set, |DS|, (or
the number of generated ICIRs), or the
combinatorial problems to be solved by an optimal
characterization algorithm; the fourth represents the
average size of each ICIR (that is, the number of
ICIRs divided by |DS|), or the average size of the
characterization problems to be solved (how many
rules are in them); the fifth the number of
inconsistencies; and the sixth, seventh and last
columns the execution time of the detection,
identification and the sum of them.

The conducted performance analysis represents a
wide spectrum of cases, with ACLs of sizes ranging
from 50 to 10600 rules, and percentages of allow
and deny rules ranging from 2% to 65%. Recall that
worst case for the improved detection algorithm is
half rules allow and the other half deny. Also note
that real ACLs have some important differences with
synthetically generated ones. The most important
one is the number of deny and allow rules: as real
firewall ACLs are usually designed with deny all
default policy, most rules are going to have allow

actions. In ACLs designed with allow all policy,
most rules would have deny actions. Also note that,
as the percentage of allow or deny rules decrease,
the number of inconsistencies does necessarily not,
because the number of inconsistencies depend on
how many rules with different actions intersect. The
result is that the worst case would not normally
happen in real firewall ACLs. Experiments were
performed on a Java implementation with Sun JDK
1.6.0_03 64-Bit Server VM, on an isolated HP
Proliant 145G2 (AMD Opteron 275 2.2GHz, 2Gb
RAM DDR400). Execution times are in ms. Tests
have been run without wildcard rules (RW, deny all
or allow all rules) because WR provide no useful
information to the diagnosis process: they are
conflictive by definition with all rules with the
contrary action.

The experimental comparison of the efficiency of
the proposed algorithms with others of the reviewed
in the bibliography is a very difficult task for two
main reasons. In one hand, there are no standard rule
sets to be used. In other hand different algorithms
cover different parts of the process. One of the most
important parts of the presented experimental
analysis is the average reduction of the full problem,
and the size of each reduced part. Recall that optimal
characterization algorithms can be applied now to
each of these problems and solve them faster than
running the characterization over the full rule set.

SECRYPT 2008 - International Conference on Security and Cryptography

438

Unfortunately, there are neither standardized rule
sets nor syntactic generation tools that can be used to
test how near is the proposed heuristic to the
optimum.

As Table 3 and Fig. 12(a) show, execution time
for the diagnosis process is very reasonable, even in
large rule sets. Note that rule set of sizes 238 and
450 are very near worst case. Rule set of size 10611
has not been represented to prevent image scale
distortion, but note that even with a very high
number of inconsistencies (18894) execution time of
the full process is 371ms. Take into account that a
rule set of 10611 rules is a very big one (Taylor,
2005). Fig. 12(b) presents a comparison between the
previous detection algorithm (Pozo, 2008) and the
one presented in this paper. Note how the previous
version (DetectionV1) (Pozo, 2008) scale
quadratically with the number of rules. However, the
complexity of the new algorithm (DetectionV2)
depends on the percentage of allow and deny rules.
As can be seen, there is a huge difference with real
rule sets.

Figure 13: Identification with and without wildcard rules.

Fig. 13 represents a comparison of running times
of the identification algorithm with and without
wildcard rules, in order to highlight the impact these
rules have in processing time. As we previously
noted, leaving trailing wildcard rules for diagnosis
purposes gives no useful information to the process,
since they are conflictive with all rules with contrary
action.

Other important things worth noting are the
related with problem reduction. The average ICIR
size in Table 3 (fourth column) represents the
average number of children of each generated ICIR
(the number of ICIRs is represented in the third
column as the size of the Diagnosis Set, |DS|). That
is, |DS| is the number of characterization problems to
be optimally solved if optimal characterization
algorithms are going to be used, and Average ICIR

Size is their average size. Clearly, solving (optimally
or not) such small number of small problems is
faster than solving a big combinatorial one.

Finally, due to its low computational complexity,
the presented detection algorithm can be used with
very big rule sets or even in resource constrained
devices (Pozo2, 2008) in a real time process.

4 RELATED WORKS

The closest works to ours are related with
consistency detection in general network filters. In
the most recent work, Baboescu et al. (Baboescu,
2003) provide algorithms to detect inconsistencies in
router filters that are 40 times faster than O(n2) ones
for the general case of k selectors per rule. Although
its algorithmic complexity is not given, it improves
other previous works (Hari, 2000), (Eppstein, 2001).
However, they preprocess the rule set and convert
selector ranges to prefixes, and then apply the
algorithms. This imposes the implicit assumption
that a range can only express a single interval, which
is true (pozo3, 2008). However, the range to prefix
conversion technique could need to split a range in
several prefixes (Srinivasan, 1998) and thus the final
number of rules could increase over the original rule
set. Thus, results are given over the preprocessed
rule set, which could be bigger and different from
the original one.

Other researchers apply brute force,
combinatorial algorithms for the characterization
problem. Thus, the resulting worst case time
complexity will be exponential in all these proposed
algorithms. One of the most important advances was
made by Al-Shaer et al. (Al-Shaer, 2004), where
authors define an inconsistency model for firewall
ACLs with 5 selectors. They give a combined
algorithm to diagnose and characterize the
inconsistencies between pairs of rules. In addition,
they use rule decorrelation techniques (Luis, 2002)
as a pre-process in order to decompose the ACL in a
new, bigger, one with non overlapping rules. Results
are given over the decorrelated ACL, which has the
disadvantages commented above. Although the
proposed characterization algorithm proposed by Al-
Shaer is polynomial, a decorrelation pre-process
imposes a worst case exponential time and space
complexity for the full process.

A modification to their algorithms was provided
by García-Alfaro et al. (García-Alfaro, 2007), where
they integrate the decorrelation and characterization
algorithms of Al-Shaer, and generate a decorrelated
and consistent rule set. Thus, due to the use of the

A HEURISTIC POLYNOMIAL ALGORITHM FOR LOCAL INCONSISTENCY DIAGNOSIS IN FIREWALL RULE
SETS

439

same decorrelation techniques, this proposal also has
worst case exponential complexity. The resulting
ACL is also bigger and different from the original
one. However, García-Alfaro et al. provide a
characterization technique with multiple rules.

A similar approach to García-Alfaro was
followed in (Abedin, 2006), where authors provide
worst case O(2n) time complexity algorithms with
the number of rules (they also use rule decorrelation
techniques).

Ordered Binary Decision Diagrams (OBDDs)
have been used in Fireman (Yuan, 2006), where
authors provide a diagnosis and characterization
technique with multiple rules. A very important
improvement over previous proposals is that they do
not need to decorrelate the ACL, and thus, results
are given over the original one. Note that the
complexity of OBDD algorithms depends on the
optimal ordering of its nodes, which is a NP-
Complete problem (Bollig, 1996). This results in a
worst case O(2n) time complexity with the number
of rules, as other proposals.

There are several differences of our work with
these ones. In one hand, we provided an analysis of
the consistency diagnosis problem in rule sets,
separating diagnosis (detection and identification)
from characterization, which enabled us to design
heuristic polynomial diagnosis algorithms. The
result of the diagnosis process is several independent
clusters of inconsistencies, where optimal
characterization algorithms can be applied,
effectively reducing the computational complexity
(in time and space) of the whole process. In addition,
heuristic characterization algorithms can also be
applied. This heuristic process provides an
alternative to the reviewed brute force algorithms for
big rule sets. However, characterization algorithms
are not the focus of the paper, but the presentation of
a novel process and diagnosis algorithms for the
diagnosis part of the process. Our diagnosis
algorithms have a theoretical best case O(n) and
worst case O(n2) time complexity with the number
of rules in the rule set, n. More precisely, the
complexity of our algorithms depends on the
percentage of allow and deny rules over the total
number of them (in the case of detection), and on the
cardinality of the minimal diagnosis set and the
number of inconsistencies (in the case of
identification). Our process is capable of handling
full ranges in all selectors, and does not need to
decorrelate or do any range to prefix conversion to
the ACL as a pre process to the algorithms. We think
that for a result to be useful for a user, it should be
given over the original ACL. However, our proposal

does not cope with redundancies, because we
redundancies are not a consistency problem.

5 CONCLUSIONS

We have deeply analyzed the consistency diagnosis
problem in firewall ACLs, and decided to divide the
consistency management process in three sequential
stages: detection, identification, and
characterization. Inconsistency detection is a
polynomial problem, but minimal identification and
characterization are combinatorial ones. Detection
plus identification is called diagnosis. All reviewed
proposals deal with the full characterization problem
with brute force algorithms, with yield unusable
results for real-life, big rule sets.
In this paper we take a different approach, isolating
the combinatorial parts of the full problem (optimal
identification and characterization) from the
polynomial one (detection). We have proposed an
abstract definition of inconsistency that covers all
previously characterized cases in the bibliography.
Based on this definition, we revisited the
consistency problem in firewall rule sets and showed
that all relations between more than two rules can be
decomposed in simpler pair wise relations.

We have proposed two polynomial algorithms
that should be applied sequentially to get a diagnosis
of the inconsistent rules in the rule set. The first one
detects the inconsistent rules and is complete. The
second one identifies the rules that cause the
detected inconsistencies, and is based in a heuristic.
The diagnosis can then be taken as input to optimal
characterization algorithms resulting in an effective
computational complexity reduction (solving several
small combinatorial problems is faster than solving
one big one), or to heuristic ones.

A theoretical complexity analysis has been done
and showed that the full process has best case O(n)
and worst case O(n2) time complexity with the
number of rules in the rule set, n. An experimental
performance evaluation with real rule sets of
different sizes was also presented, showing that real
rule sets are very near to the best case, and the
effective problem reduction. Unfortunately, there are
neither standardized rule sets nor syntactic
generation tools that can be used to test how near is
the proposed heuristic to the optimum. We
compared our proposal with other works in the
bibliography and showed that, to the best of our
knowledge, no proposals that split the consistency
management process have been made. Thus, our
work represents a completely different way to treat

SECRYPT 2008 - International Conference on Security and Cryptography

440

the problem with algorithms that are useable with
real-life, big rule sets. We have implemented the
algorithms in Java language in a tool which is
available under request.

However, our approach has some limitations that
give us opportunities for improvement in future
works. The most important one is that our process
can diagnose inconsistent rules, but cannot diagnose
redundant rules.

ACKNOWLEDGEMENTS

This work has been partially funded by Spanish
Ministry of Science and Education project under
grant DPI2006-15476-C02-01, and by FEDER
(under ERDF Program). Many thanks to Pablo Neira
Ayuso for providing us with real rule sets for testing
and to the anonymous reviewers for their useful
comments.

REFERENCES

Abedin, M., Nessa, S., Khan, L., Thuraisingham, B.
“Detection and Resolution of Anomalies in Firewall
Policy Rules”. Proceedings of the Annual IFIP
Working Conference on Data and Applications
Security (DBSec), LNCS 4127. Sophia Antipolis,
France, 2006.

Al-Shaer, E., Hamed, H. Modeling and Management of
Firewall Policies". IEEE eTransactions on Network
and Service Management (eTNSM) Vol.1, No.1, 2004.

Baboescu, F., Varguese, G. “Fast and Scalable Conflict
Detection for Packet Classifiers.” Elsevier Computers
Networks (42-6) (2003) 717-735.

Bollig, B., Wegener, I. “Improving the Variable Ordering
of OBDDs is NP-Complete”. IEEE Transactions on
Computers, Vol.45 No.9, September 1996.

Eppstein, D., Muthukrishnan, S. “Internet Packet Filter
Management and Rectangle Geometry.” Proceedings
of the Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), January 2001.

García-Alfaro, J., Boulahia-Cuppens, N., Cuppens, F.
Complete Analysis of Configuration Rules to
Guarantee Reliable Network Security Policies,
Springer-Verlag International Journal of Information
Security (Online) (2007) 1615-5262.

Hamed, H., Al-Shaer, E. "Taxonomy of Conflicts in
Network Security Policies." IEEE Communications
Magazine Vol.44, No.3, 2006.

Hari, B., Suri, S., Parulkar, G. “Detecting and Resolving
Packet Filter Conflicts.” Proceedings of IEEE
INFOCOM, March 2000.

Luis, S., Condell, M. "Security policy protocol." IETF
Internet Draft IPSPSPP-01, 2002.

Pozo, S., Ceballos, R., Gasca, R.M. “Fast Algorithms for
Consistency-Based Diagnosis of Firewalls Rule Sets.”
International Conference on Availability, Reliability
and Security (ARES), Barcelona, Spain. IEEE
Computer Society Press, March 2008.

Pozo2, S., Ceballos, R., Gasca, R.M. "Fast Algorithms for
Local Inconsistency Detection in Firewall ACL
Updates". 1st International Workshop on
Dependability and Security in Complex and Critical
Information Systems (DEPEND). Cap Esterel, France.
IEEE Computer Society Press, 2008.

Pozo3, S., Ceballos, R., Gasca, R.M. "AFPL, An Abstract
Language Model for Firewall ACLs". 8th International
Conference on Computational Science and Its
Applications (ICCSA). Perugia, Italy. Springer-
Verlag, 2008.

Pozo4, S., Ceballos, R., Gasca, R.M. "Polynomial
Heuristic Algorithms for Inconsistency
Characterization in Firewall Rule Sets". 2nd
International Conference on Emerging Security
Information, Systems and Technologies
(SECURWARE). Cap Esterel, France. IEEE
Computer Society Press, 2008.

Srinivasan, V., Varguese, G, Suri, S., Waldvogel, M. “Fast
and Scalable Layer Four Switching.” Proceedings of
the ACM SIGCOMM conference on Applications,
Technologies, Architectures and Protocols for
Computer Communication, Vancouver, British
Columbia, Canada, ACM Press, 1998.

Taylor, David E. Survey and taxonomy of packet
classification techniques. ACM Computing Surveys,
Vol. 37, No. 3, 2005. Pages 238 – 275.

Yuan, L., Mai, J., Su, Z., Chen, H., Chuah,, C. Mohapatra,
P. FIREMAN: A Toolkit for FIREwall Modelling and
ANalysis. IEEE Symposium on Security and Privacy
(S&P’06). Oakland, CA, USA. May 2006.

Wool, A. A quantitative study of firewall configuration
errors. IEEE Computer, 37(6):62-67, 2004.

A HEURISTIC POLYNOMIAL ALGORITHM FOR LOCAL INCONSISTENCY DIAGNOSIS IN FIREWALL RULE
SETS

441

