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Abstract:  This paper proposes a novel first order digital differentiator. The differentiator is obtained by linear mixing 
of Al-Alaoui operator (Al-Alaoui, 1993) and wide band differentiator (Hsue, 2006). MATLAB simulation 
results of the proposed differentiator for various sampling frequencies have been presented. The magnitude 
results are in close conformity to the theoretical results for approximately 78% of the full range. The phase 
of the new differentiator is almost linear, with a maximum phase error of 8.24º. We have also proposed new 
operator based fractional order differentiator models. These models are obtained by performing the Taylor 
series expansion and continued fraction expansion of the proposed operator. Comparisons of the suggested 
models with the existing models of half differentiators show perceptible improvement in performance of the 
fractional order circuit. MATLAB simulation results show that the magnitude response of the proposed half 
differentiator matches with the theoretical results of continuous-time domain half differentiator for almost 
the whole frequency range and the phase approximates a constant group delay which is desirable for many 
applications. The major purpose of this paper is to emphasize that fractional order control systems are better 
than the conventional order systems as the system control performance is enhanced. 

1 INTRODUCTION 

There are many design approaches for obtaining 
digital differentiators. Al-Alaoui (Al-Alaoui, 1995) 
used Simpson’s rule to develop stable differentiators. 
In another paper (Al-Alaoui, 1993), Al-Alaoui has 
used a linear combination of Simpson’s rule and 
trapezoidal rule to develop differentiator models. 
Tseng (Tseng, 2001) has proposed the design of 
fractional order digital FIR differentiator by solving 
linear equations of Vandermonde form and in 
(Tseng, 2007), he has proposed the design of FIR 
and IIR fractional order Simpson digital integrators 
using binomial series expansion. Zhao et al. (Zhao et 

al., 2005) have proposed a method for design of 
fractional order FIR differentiators in frequency 
domain and have presented simulation results to 
validate their technique. In (Bhattacharya and 
Antoniou, 1995), Bhattacharya et al. have designed 
digital differentiators using neural networks. B. 
Kumar et al. (Kumar and Roy, 1988), (Kumar and 
Roy, 1989), (Reddy et al., 1991) have designed 
digital differentiators for low, high and midband 
frequencies respectively. Khan et al. (Khan et al., 
2004) have proposed higher degree FIR 
differentiators based on Taylor series expansion. In 
(Hsue et al., 2004), the bilinear rule is modified to 
develop 1st and 2nd order having operating 
frequencies larger than 10 GHz. Schneider et al. 
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(Schneider et al., 1991) have proposed new 2nd and 
higher order stable s-to-z mapping functions and 
explored the sources of error in the higher order 
mapping functions. Work on fractional order 
systems has been done in (Chen and Moore, 
2002),(Chen and Vinagre, 2003),(Xue and Chen, 
2002),(Varshney et al., 2002). 

In this paper, a new first order s-to-z 
transformation is proposed which is obtained by 
using the Al-Alaoui operator and the Hsue et al. 
operator. The idea was to linearly mix two well 
known approaches to obtain a differentiator which 
would also follow the ideal differentiator for a large 
range of frequencies. Both differentiators being of 
first order and approximating the ideal differentiator 
for a large range of frequencies, the proposed 
differentiator results are found to be in close 
conformity with those of the ideal differentiator. The 
differentiator models are developed for different 
values of sampling frequency and their performance 
compared. The half differentiator models obtained 
by discretization of the proposed operator are 
developed and their performance compared with 
existing half differentiator models (Chen and Moore, 
2002) as well as the theoretical result of continuous-
time domain half differentiator. MATLAB 
simulation results are presented to validate the 
effectiveness of the proposed operator and its 
differentiator models. 

The paper is organized as follows: the new 
operator is proposed in Section 2. In Section 3, we 
have developed the fractional order differentiator 
models for 21s = . In Section 4, the MATLAB 
simulation results of the proposed operator and the 
half differentiators are presented and compared with 
their ideal counter parts. Section 5 concludes the 
paper. 

2 PROPOSED NEW OPERATOR 

The Al-Alaoui operator based integrator in z-domain 
is  
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and the integrator obtained by inverting the 
transformation of a wide-band differentiator in 
(Hsue,  2006) is  
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where T  is the sampling period.  

To obtain a differentiator that fits better the ideal 
differentiator over the entire normalized frequency 
band, linear mixing of Al-Alaoui differentiator and 
the wide-band differentiator is performed. The 
procedure is as follows: first, the transfer functions 
of the two integrators of eqns. (1, 2) are linearly 
mixed as in eqn. (3). 
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where α , ( 10 <α< ) determines the contribution of 
each operator in the new operator.  

Second, the transfer function of eqn. (3) is 
inverted and the resulting transfer function of the 
new digital differentiator is 

)T04205.012495.0()T375.0875.0(z
)1z()z(Gnew α−+α−

−
=  

(4) 
Using Jury’s stability criterion, the different- 
tiator )z(Gnew  was found to be stable for the condi-
tion ;25.2T <α  )10( <α<∀ . Choosing s05.0T = , 
(sampling frequency = 2 *1 T 125.7rad/secπ = ), 
the transfer function of the new differentiator is: 
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(5) 
Now, α  is varied from 1  to  0  in increments of 0.1. 
The magnitude response of the proposed 
differentiator is plotted for different values of α  as 
shown in Fig 1. 

 
Figure 1: Magnitude response of new operator for various 
α  with T=0.05s. 
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The percentage relative magnitude error of the new 
differentiator is compared with the magnitude 
response of the ideal differentiator and plotted in Fig 
2.  

 
Figure 2: Relative magnitude error as compared to the 
continuous-time differentiator for various α . 

Observations show that best matching with ideal 
differentiator were for 0.9.α =  The error is within 
2%  upto 0.84  of the Nyquist frequency. Fig 3 
shows the phase of the new differentiator for 
different α . The response is almost linear with a 
maximum phase of o24.8 at 55.0  of the Nyquist 
frequency. The ideal linear phase corresponds to an 
ideal differentiator with half a sample of delay. 
These results are comparable with those of Al-
Alaoui operator based differentiator as suggested in 
(Al-Alaoui,  1993). 

 
Figure 3: Phase of new operator for various α and 
corresponding linear phase differentiator and phase error 
for α=0.9. 

Using four values of T  viz. 0.05s, 0.00625s, 
0.001s and 0.000625s, and with 0.9,α =  the 
transfer functions of the new differentiator are: 

 
Figure 4: Magnitude response of new operator for 
different T. 
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Figure 5: Magnitude error (in dB) as compared to the 
continuous-time differentiator for different T.  

The magnitude response of eqns. (6-9) are 
plotted and compared with the magnitude of ideal 
differentiator (Fig 4). The relative magnitude errors 
are plotted in dB in Fig 5 and in percentage in Fig 6. 
The phase response of the new differentiator and the 
relative phase error is plotted in Fig 7.  
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Figure 6: Relative magnitude error (in percentage) for 
different T. 

3 FRACTIONAL ORDER 
DIFFERENTIATOR MODELS 

Next the fractional order differentiator models based 
on the proposed operator are suggested. 
Discretization is the key step in the digital 
implementation of the fractional order controller 
containing rs  where ( );r R∈ 0 1.r< <  The 
discretization of fractional order differentiator can 
be expressed by a generating function )z(s 1−ω= . 
The generating function is used for obtaining the 
coefficients and the form of the approximation 
(Chen and Moore, 2002). 

 
Figure 7: Phase response for different T, corresponding 
linear phase differentiator and phase error. 

In this paper, we have developed the models of 
half differentiator for various sampling periods using 
direct discretization method. We have discretized the 
fractional order derivative using Taylor series 
expansion (TSE) and continued fraction expansion 
(CFE). 

 
Figure 8: Response of half differentiator obtained by 
Taylor series expansion of the new operator for different 
values of T. 

In the first method, the TSE of the numerator and 
denominator polynomials of the transfer function of 
eqns. (6-9) are performed. Truncating the length of 
the numerator and denominator expansions, the 
approximate models of half differentiator for 

5to3n =  are obtained. In the second method, 
continued fraction expansion technique is used to 
expand the new operator. The continued fraction 
expansion uses the MATLAB command ‘cfrac’ 
(Chen and Moore, 2002), to obtain the models of 
half differentiator for 5to3n = by collecting the 
coefficients of the numerator and denominator 
polynomials.  

3.1 Discretization of New Operator 
using Taylor Series Expansion 

The proposed new operator for s001.0T =  is  
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Expanding the above eqn. (11) using Taylor 
series expansion the first 11 terms of the expansion 
are 
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Truncating the length of the expansion, the third 
order half differentiator model is  
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Figure 9: Percentage magnitude error for half 
differentiator obtained by Taylor series expansion of the 
new operator for different values of T. 

Similar method is used to obtain the half 
differentiator models for 0.00625 ,T s=  

s000625.0  (Table I). Fig 8 shows the magnitude 
response and the group delay for the models of half 
differentiators obtained using TSE for various 
sampling frequencies. The relative error in phase is 
also shown in the same figure. The relative 
magnitude error in percentage is given in Fig 9.  

3.2 Discretization of New Operator 
using Continued Fraction 
Expansion 

The transfer functions of eqns. (6-9) are expanded 
with 5.0r = using continued fraction expansion to 
obtain the half differentiator models. The half 
differentiator models for s00625.0,s001.0T =  and 

s000625.0  are listed in Table 1. The magnitude 
response and group delay for the models of half 
differentiators obtained using CFE are plotted for 
various sampling frequencies in Fig 10. The relative 
error in phase is also plotted in Fig 10. The relative 
magnitude error (in percentage) is given in Fig 11.  

 
Figure 10: Response of half differentiator obtained by 
continued fraction expansion of the new operator for 
different values of T. 

4 SIMULATION RESULTS 

In this paper, a new operator is proposed by linear 
mixing of Al-Alaoui operator and the Hsue et al. 
operator. The half differentiator models obtained by 
discretization of the new operator using Taylor 
series expansion and continued fraction expansion 
are also suggested. 

The magnitude and phase response of the 
proposed differentiator are compared with the 
responses of the ideal differentiator and MATLAB 
simulation results have been presented to validate 
the effectiveness of the proposed approach.  

Fig 4 shows the magnitude response of proposed 
differentiator for s00625.0,s001.0T =  and 
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0.000625 .s  The results are compared with the 
response of ideal differentiator and it matches with 
the theoretical results for approximately %78  of the 
frequency range for different sampling frequencies. 
In Fig 5, the magnitude error is plotted in dB. From 
the plot, it is observed that the best performance is 
obtained for s000625.0T =  as error is less than 

dB40  upto 73.0  of the Nyquist frequency. The 
results for s00625.0T =  are good for the range 
from ,0 to 0.74  excepting 62.0 to 36.0  of the 
Nyquist frequency.  

 
Figure 11: Percentage magnitude error for half 
differentiator obtained by CFE of the new operator for 
different values of T. 

For s001.0T = , the operational range is limited 
to the middle frequency range from 69.0 to 2.0  of 
the Nyquist frequency range.  Fig 6 shows the 
magnitude error in percentage for different sampling 
frequencies. Fig 7 shows the phase response of the 
proposed differentiator for different sampling 
frequencies. It can be seen that the proposed 
operator has linear phase response with a maximum 
error of 2.8  deg at 55.0  of the Nyquist frequency. 

From the MATLAB simulation results of the half 
differentiator (Fig 8, 10), it is observed that the 
magnitude of the models obtained using continued 
fraction expansion are in close conformity to the 
theoretical results of half differentiator in 
continuous-time domain for the full range of 
frequencies and the phase approximates a constant 
group delay which is desirable for many applications. 
The percentage error in magnitude of half 
differentiator (Fig 9, 11) obtained by continued 
fraction expansion of the proposed operator is less 
than %5.0  for the entire range of frequency. Fig 8, 
10 reveal that the CFE based models of half 
differentiator give constant group delay for wider 

range of frequency (0.03 to 1  of the Nyquist 
frequency) as compared to the TSE based half 
differentiator models (0.15 to 1  of the Nyquist 
frequency). Moreover the error in phase is less in the 
CFE based half differentiator models. 

In Figs. 12, 13 we present the comparison of the 
response of the new operator based fifth order half 
differentiator models with the existing model of fifth 
order half differentiator based on Al-Alaoui operator 
for s001.0T = . It is observed that the performance 
of the new operator based half differentiators is 
better than that of the Al-Alaoui operator based half 
differentiator.  

 
Figure 12: Comparison of magnitude responses (for n=5) 
of existing half differentiator based on Al-Alaoui operator, 
the proposed operator and the continuous-time domain 
half differentiator for T=0.001s. 

 
Figure 13: Group delays of the existing half differentiator 
based on Al-Alaoui operator, and the proposed operator. 
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5 CONCLUSIONS 

In this paper, two well known approaches have been 
used to develop a new first order s-to-z mapping 
function. The proposed operator was found to be 
stable for various sampling frequencies and the 
magnitude results matched with the ideal 
differentiator upto %78  of the Nyquist frequency.  
The phase of the proposed operator also 
approximates a linear phase of half a sample of 
delay with a maximum error of °24.8  at 55.0  of 
the Nyquist frequency.  

The half differentiator models obtained by 
discretization of the proposed operator using 
continued fraction expansion exhibit better 
performance in terms of magnitude and phase as 
compared to those obtained by Taylor series 
expansion. The above mentioned results of half 
differentiator validate the effectiveness of the 
proposed operator. Such modeling finds application 
in discrete realization of fractional order circuits. 
 In this paper, z-domain stable models of fractional 
order differentiators ( rs ) have been presented for 
r = 0.5.  This method can be further extended to 
obtain z-domain stable models based on the 
proposed operator for different r.  
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Table 1: Half differentiator models obtained by using CFE and TSE on the proposed operator.  
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TAYLOR SERIES EXPANSION 

HALF DIFFERENTIATOR MODELS USING 
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