
A ROBUST SPEECH COMMAND RECOGNIZER FOR 
EMBEDDED APPLICATIONS 

Alexandre Maciel1, Arlindo Veiga1, Cláudio Neves1, José Lopes1 
Carla Lopes1,2, Fernando Perdigão1,3 and Luís Sá1,3 

1Instituto de Telecomunicações, Universidade de Coimbra, Portugal 
2Instituto Politécnico de Leiria - ESTG, Portugal 

3Departamento de Engenharia Electrotécnica e de Computadores, FCTUC, Universidade de Coimbra, Portugal 

Keywords: Speech recognition, noise robustness, embedded systems. 

Abstract: This paper describes a command-based robust speech recognition system for the Portuguese language. Due 
to an efficient noise reduction algorithm the system can be operated in adverse noise environments such as 
in cars or factories. The recognizer was trained and tested with a speech database with 250 commands 
spoken by 345 speakers in clean and noisy conditions. The system incorporates a user friendly application 
programming interface and was optimized for embedded platforms with limited computational resources. 
Performance tests for the recognizer are presented. 

 
1 INTRODUCTION 

Environment noise can drastically decrease the 
performance of automatic speech recognizers as it is 
the case of vehicle and factory environments. Under 
such adverse conditions, many speech recognition 
applications use a reduced vocabulary in order to 
improve the recognition rate. Even in the case of 
simple command recognizers, noise reduction 
techniques should be carefully designed. There are 
two common approaches to the noise robustness 
problem: signal processing techniques applied to the 
input speech or online adaptation of the recognition 
models to the present noise conditions. The latter 
generally requires higher computational resources 
and is not suited to embedded applications. Signal 
processing techniques for noise reduction include 
Wiener filtering, histogram equalization (Peinado 
and Segura, 2006), and others. A powerful feature 
extraction system for noise robust speech 
recognition was standardized by ETSI (ETSI, 2003). 
This system was developed for Distributed Speech 
Recognition and includes an Advanced Front-End to 
be implemented in client terminals such as portable 
devices and cell phones. These terminals send the 
extracted parameters to a remote server that runs a 
speech recognition engine. In embedded speech 

recognition with limited vocabulary, both the feature 
extraction and the speech recognition tasks are 
carried out in the terminal devices. Another common 
requirement for these embedded systems is their 
ability to run on limited hardware resources. 

In this paper we describe a command speech 
recognizer for European Portuguese that 
incorporates a new and efficient algorithm to reduce 
the noise in the acoustical signal and runs in low 
complexity embedded hardware platforms. The 
recognizer was trained and tested with a speech 
database that was recorded under the framework of a 
cooperation project funded by the Portuguese 
government (Tecnovoz, 2008). 

The paper is organized as follows. In section 2 
we describe the algorithms that were used in the 
extraction of noise robust features. In section 3 we 
describe the Tecnovoz database and the training of 
the system. The implementation of the decoder is 
addressed in section 4. Section 5 describes the 
application programming interface to operate the 
recognizer. Performance tests are presented in 
section 6. Finally, in section 7, we present the 
conclusions of this paper. 

92
Maciel A., Veiga A., Neves C., Lopes J., Lopes C., Perdigão F. and Sá L. (2008).
A ROBUST SPEECH COMMAND RECOGNIZER FOR EMBEDDED APPLICATIONS.
In Proceedings of the International Conference on Signal Processing and Multimedia Applications, pages 92-95
DOI: 10.5220/0001938700920095
Copyright c© SciTePress



 

2 NOISE ROBUST FEATURE 
EXTRACTION 

The ETSI noise reduction front-end is based on a 
two stage Wiener filtering system. The Wiener filter 
is estimated in the linear frequency domain and is 
implemented by a time domain convolution. A 
modified implementation of the ETSI front-end was 
presented by (Li et al, 2004), where both the filter 
estimation and operation is carried out in the Mel 
frequency domain. In our implementation we 
improved the efficiency of this modified front-end 
by using the signal processing scheme depicted in 
Figure 1. 

 
Figure 1: Block diagram of the feature extraction system. 

As can be seen the speech signal is processed by 
a two stage Wiener filter (WF). The estimated signal 
spectrum is applied to a Mel filter-bank. The signal 
frames are classified as noise only or speech plus 
noise by the VADNest block, as required for the 
Wiener filter design. 
 A novel characteristic of this front-end compared 
to others resides on the “Spectral Smooth” block. In 
our implementation we reduce the operations 
involved in the smoothing of the Wiener coefficients 
to a single pre-computed matrix (Neves et al, 2008). 
The noise reduction system includes a second 
Wiener filter stage, which, apart from a gain 
factorization block, is similar to the first one. We 
found that the gain factorization proposed in (ETSI, 
2003), when applied in the Mel frequency domain 
does not increase the system performance and can be 
omitted. 

The de-noised frames are converted to cepstral 
coefficients by a discrete cosine transform (DCT) 
and their means are normalized (CMN), (Neves et 
al, 2008), by an online algorithm. As a result, 12 
cepstral coefficients plus log energy are produced 
which, together with their first and second time 
derivatives, lead to a feature vector with 39 
components. 

3 MODEL TRAINING 

3.1 Database Description 

The recognizer is based on hidden Markov models 
(HMMs) which were created using the speech 
feature vectors described in the last section. The 
Tecnovoz speech database was used to train the 
HMM models. This speech database was designed 
regarding typical application demands in terms of 
vocabulary and acoustic environments. The 
collected speech includes about 250 commands and 
several phonetically rich sentences. About 30 
minutes of spoken content was recorded from each 
speaker. Three acoustical environments were 
considered, namely Clean (TVFL), Vehicle (TVV) 
and Factory (TVF) environments, as indicated in 
Table 1. 

All speech files in the database were 
automatically classified according to its signal-to-
noise ratio (SNR). For training proposes only files 
with SNR above 15 dB were used in the 
experiments, totalling 137,237 files. From these, 
103,001 (75%) were picked up for training 27,382 
(20%) for testing and 6,854 (5%) for development. 

Table 1: Audio files and gender distributions. 

Distributions TVFL TVF TVV Total 
Audio Files 119975 8633 8629 137237 

Gender (F/M) 99/180 19/16 9/22 345 

3.2 Training 

Three different approaches were used to find the 
acoustic models which best fit to the task of 
command recognition: whole-word models, context-
free phone models, and context-dependent triphone 
models. The word models are best suited for a 
command recognizer but have the disadvantage of 
being tied to a predefined vocabulary, which is not 
the case with phone models. 

The models were trained using the HTK toolkit 
(HTK3, 2006) which performs Baum-Welch 
parameters re-estimation. In order to evaluate the 
performance of the models in a recognition task, 
Viterbi algorithm was used and a grammar was 
defined with all the 254 commands in parallel. 
Results showing the comparative performance of the 
three approaches are presented in section 6. 
 
 
 
 

A ROBUST SPEECH COMMAND RECOGNIZER FOR EMBEDDED APPLICATIONS

93



 

4 DECODER 

The decoder task consists in finding the best 
sequence of commands given the speech features 
and models. The decoder is based on the Viterbi 
algorithm applied to a command grammar task and 
follows the “token passing” paradigm (HTK3, 
2006). The core of the decoder was written in C++ 
programming language, but critical sections were 
optimized in assembly using Intel SSE and AMD 
3DNow! floating-point extensions. 

A confidence measure of the recognition results 
was incorporated in the decoder. This measure is 
essential to real applications because there are 
always recognition errors and therefore the 
recognition results need to be accepted or rejected. 
Confidence measures can also be used for spotting 
errors as well as to detect out-of-vocabulary words. 
To detect out-of-vocabulary (OOV) words, we used 
a so called “filler model” (Yu et al, 2006). This 
model was trained with all commands and phrases 
present in the training database. In order to calculate 
the confidence measure, a reference model was 
formed by taking all phone models in parallel. The 
purpose of this model is to give a score comparison 
with the main result. For well pronounced words, 
both the reference model and the result’s models 
should give almost identical scores. On the contrary, 
the scores would be very different in the case of 
misrecognized words. 

In a first step the decoder tests whether or not a 
result is an OOV word using the “filler model”. If 
the result is not assigned as an OOV word, then a 
confidence measure is computed using the reference 
model. This is done by passing the speech feature 
vectors associated to the result to the reference 
model. The difference between the scores of the 
reference and the result’s models is normalized by 
the number of frames. This value is then applied to a 
sigmoid function in order to obtain a normalized 
confidence measure between 0 and 100%. 

In integrating the decoder with the feature 
extraction front-end, a VAD (voice activity detector) 
is used in order to signal speech endpoints. This 
detector is essential since it frees the decoder from 
processing very long sequences that do not 
correspond to speech. 

Due to the optimizations referred to previously, 
the decoder operates in real time. After the detection 
of a speech starting point, the decoder immediately 
starts the recognition process. As soon as the 
detector signals the speech endpoint, the decoder 
supplies the API, described in the next section, the 
best result for this speech segment. 

5 APPLICATIONS INTERFACE 

In order to use the speech recognizer in practical 
applications, we developed an application 
programming interface (API) which allows the real-
time control of the speech recognition engine and 
the audio interface. As shown in Figure 2, the 
applications interact with the recognition engine 
through the API. The API hides from the user the 
low level details of the engine operation, audio 
drivers and grammar handling. 
 

 
Figure 2: API interaction model. 

The API was designed for the embedded 
Windows operating systems, such as XPe and CE. 
The grammars are specified in XML, according to 
W3C SRGS format. 

From a programming point of view, the API 
consists of a single class referred to as SREngine. 
This class exposes to the applications a set of 
methods and properties that are described in Table 2. 

Table 2: Main API methods. 

Method/Event Basic Description 
InitSREngine Method to initialize events, 

audio stream and the engine. 
LoadGrammar Method to load a grammar. 
SetRuleState Method to activate/deactivate a 

grammar rule. 
StartRecognition Method to start the recognition 

process. 
StopRecognition Method to stop the recognition 

engine. 
OnSRecognition Event that occurs whenever a 

recognition result is available with 
an associated confidence measure. 

 
With the limited set of methods presented in 

Table 2 it is easy to build compact Windows speech 
recognition applications. 

API Audio Grammar 

Application 

Recognizer 

SIGMAP 2008 - International Conference on Signal Processing and Multimedia Applications

94



 

6 RESULTS 

In section 2 we described a new noise robust feature 
extraction front-end based on the ETSI standard. In 
order to assess the merit of our front-end, we 
compared both front-ends using the Tecnovoz 
database. Whole word models were trained and 
tested as described in section 3, using both front-
ends. The models are described by a 10 component 
Gaussian mixture. As it can be seen in Table 3, our 
front-end outperforms the ETSI front-end by a figure 
of 2% in recognition rate. 

Table 3: Front-end comparison results. 

Front-end Recognition rate 
ETSI front-end 94.88% 
New front-end 96.88% 

 
In section 3 we described 3 possible approaches 

for the recognition units: whole-word models, 
context-free phone models, and context-dependent 
triphone models. The training and testing datasets 
were the same as in the previous experiment and the 
results are presented in Table 4. 

Table 4: Results obtained for Tecnovoz database. 

Acoustic Model Recognition rate 
Whole-word 96.88% (10 mixtures) 
Phone model 91.41% (16 mixtures) 

Triphone model 97.13% (10 mixtures) 
Triphone model 97.50% (16 mixtures) 

 
With the whole-word model set the recognition 

rate is 96.88%. This model set has 46.7k Gaussians 
(about 3.6M parameters). 

For the context-free phone model set we used a 
multiple pronunciation dictionary but, despite of 
this, we obtained a recognition rate of only 91.41% 
even with a larger number of 16 mixtures. As the 
main concern is word recognition performance, the 
silence/pause models are simply ignored in the 
recognition evaluation. This low performance value 
is obviously due to the lack of parameters: only 
1,888 Gaussians (150k parameters). 

For the triphone model set, no multiple 
pronunciation dictionary was used and, as before, 
the silence/pause models were ignored. The result of 
97.50%, was obtained for 16 mixtures with 32,208 
Gaussians (about 2.5M parameters) and 846 physical 
triphone models. The result for 10 mixtures is also 
shown and compares favourably with the whole-
word case. 

7 CONCLUSIONS 

A speech command recognizer for the Portuguese 
language was presented in this paper. It incorporates 
a new noise robust front-end and a Viterbi decoder 
optimized for real time operation in embedded 
applications. A compact programming interface for 
application development was also presented. Several 
recognition units were discussed and evaluated. 

Results with the presented recognizer show that 
the models based on triphone units are higher than 
whole-word or context-free phone models. A 
possible explanation for this result could be the fact 
that, on average, there are much more occurrences of 
triphones than whole-words, which leads to a better 
parameter estimation. The use of triphones is also a 
better solution, as it combines fewer parameters with 
higher recognition rate. 

The noise robustness of our front-end was also 
evaluated, showing an increased performance when 
compared to the ETSI front-end. This result suggests 
that the ETSI front-end may be biased towards the 
database used in its development. 

REFERENCES 

ETSI, 2003. ETSI ES 202 050 v1.1.3. Speech Processing, 
Transmission and Quality Aspects (STQ); Distributed 
Speech Recognition; Advanced Front-end Feature 
Extraction Algorithm; Compression Algorithms. 
Technical Report ETSI ES 202 050, ETSI. 

HTK3, 2006. The HTK book (for HTK version 3.4). 
Technical report, Cambridge University. England. 
http://htk.eng.cam.ac.uk/. 

Li, J.-Y., Liu, B., Wang, R.-H., and Dai L.-R., 2004. A 
Complexity Reduction of ETSI Advanced Front-end 
for DSR. In proc. of ICASSP’2004, vol. I, pp. 61-64. 
Montreal, Canada. 

Neves, C., Veiga, A., Sá, L., and Perdigão, F., 2008. 
Efficient Noise-Robust Speech Recognition Front-end 
Based on the ETSI Standard. Submitted to 
INTERSPEECH’2008. Brisbane, Australia. 

Peinado, A., and Segura, J., 2006. Speech Recognition 
over Digital Channels: Robustness and Standards, 
John Wiley & Sons, Ltd. England. 

Tecnovoz, 2008. http://www.tecnovoz.pt/web/home.asp. 
Yu, D., Ju, Y., Wang, Y.-Y., and Alex, W., 2006. N-Gram 

Based Filler Model for Robust Grammar Authoring. 
In proc. of ICASSP’2006, vol. I, pp. 565-568. 
Toulouse, France. 

 

A ROBUST SPEECH COMMAND RECOGNIZER FOR EMBEDDED APPLICATIONS

95


