Dynamic Service Composition: Why, Where and How

Eduardo Silva, Luis Ferreira Pires and Marten van Sinderen

Centre for Telematics and Information Technology, Uniitgrsf Twente
The Netherlands, P.O. Box 217, 7500 AE Enschede
{e.mg.silva, |.ferreirapires, mj.vansi nderen}@s. utwente.nl

Abstract. We live in a society that is in its nature service-orientadamizations
and individuals get services from others, and provide sesvio others. This
paradigm has been now applied to computer systems with thic8eriented
Architecture, and it is gaining momentum, mainly motivabgtthe natural envi-
ronment provided by the Internet to connect people and beses. The Service-
Oriented Architecture provides an architectural stylelfi@rcreation, share, com-
position and execution of networked services. Given theaatynamic, hetero-
geneous and distributed nature of computer systems, thpasition of services
requires mechanisms to support service description, islearent, discovery,
composition, and execution. In this paper we motivate theadyic composi-
tion of networked services, presenting an overviewwndty this area is gaining
importance; discussingthereit has its most promising applications; and finally
exposing our initial ideas ohow dynamic service composition can be realized.
To tackle these problems we present a life-cycle for theisemomposition task,
and present our initial framework to support dynamic sergiemposition.

1 Introduction

Nowadays we are observing a constant emergence of mobilputorg devices, with
powerful communication capabilities and increasing pssa®y power. These devices
are getting smaller and ubiquitous, and this tendency wilitiiue. Recent studies [1]
have concluded that in the upcoming years an increase u$aged devices, referred
aslInternet-centric pocketabldevices, will overcome the usage of laptops, mainly for
users with high mobility. Such a trend is triggering a chaogahe way software ap-
plications are provided, going from the traditional on-devsoftware applications to
Internet-based software applications. This class of ir@ebased software applications
will take advantage of the high processing power of backsamder systems, providing
users with advanced functionality on their pocket compyt&ffered as services. There-
fore, these trends are expected to cause an increase ireie afsService-Oriented Ar-
chitecture (SOA) [2]. The acceptance of SOA principles endbsign of such distributed
software systems will allow companies to sell and buy ses/itased on subscription
instead of product licenses. This idea of offering funciity as services (according
to the SOA principles) is referred to &ftware as a Service (Sad3), and allows a
client organization or user to use on demand services pedviy other organizations
or users. Such a change in the way software is provided (asreeewill mainly be
possible due the high bandwidth available today, and theseétyvare companies are

da Silva E., Ferreira Pires L. and van Sinderen M.

Dynamic Service Composition: Why, Where and How.

DOI: 10.5220/0004465000730085

In Proceedings of the 2nd International Workshop on Enterprise Systems and Technology (I-WEST 2008), pages 73-85
ISBN: 978-989-8111-50-0

Copyright (© 2008 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

74

developing their services, by following open standardsctviallows higher interoper-
ability amongst different companies products.

In the context of end-users service provisioning new apfibos areas are appear-
ing. A clear example is the creation of services on demaréhdanto consideration
the context (situation) and preferences of the user to atlemervice accordingly [4].
Users’ preferences, behaviour, context, etc., vary wighuser and his situation, so ap-
plications created targeting a large set of users, will robptimally tailored for all
their possible users. Having this idea in mind we claim iis fhéper that mechanisms
for the dynamic composition of services are necessary iardaprovide tailored ser-
vices on demand to service users. We argue that SOA providdsatsic principles to
support dynamic service compaosition, but more mechaniseaecessary to improve
the collaboration of the different parts of a service-otéehsystem.

The rest of the paper is organized as follows: Section 2 rat##/sthe dynamic com-
position of services, why is it required and why is it possjt8ection 3 shows some of
the possible scenarios for dynamic service compositiooti@e4 presents a possible
life-cycle for dynamic composition of services; Sectiorrgents our initial framework
for dynamic service composition; Section 6 presents sofateicwork on dynamic and
automatic service composition; and finally Section 7 preseme conclusions and dis-
cuss challenges to be addressed in the future.

2 Motivation

New service applications appear everyday, such as onlipeser@ices, messaging ser-
vices, location services, online shopping, etc. This isntyariggered by the intensive
use of the Internet, not only by companies but also by regudrusers, who can create
applications and make them available. One of the most populé successful exam-
ples is provided by the open source communities, which ais ofdhe time a group of
developers scattered all over the world working remotéigoigh the Internet) on com-
mon projects [5]. The result is a constant increase of dvailapplications, which can
be used by different users in different devices. Considetfiat such applications are
made available, for example, on the Internet, new oppdrasarise. One of the most
interesting opportunities is the creation of new appladiout of existing oneseuse
instead of re-doThe aim is to allow one to create a new application, in a giwen
gramming language, in a given system, and expose it to patesers without requiring
them to use exactly the same set of technologies used toogeth application, but in-
stead using the technologies that are more convenientttapipdication user. However
to have such an open architecture all the different pares to agree on common prin-
ciples to allow interoperability between the applicatidBsrvice-Oriented Architecture
(SOA) [2] provides such a set of principles to create digteld computing systems,
which supports the creation of loosely coupled applicaiservices in heterogeneous
distributed systems.

2.1 Service-Oriented Architecture

The Organization for the Advancement of Structured InfdromaStandards (OASIS)
defines SOA as [6]:

75

A paradigm for organizing and utilizing distributed capbiies that may be
under the control of different ownership domains. It pr@gd uniform means
to offer, discover, interact with and use capabilities toguce desired effects
consistent with measurable preconditions and expectstion

Provided with such principles, developers can create fonality, and make it avail-
able to potential users. This functionality is provided a&eevice to possible users, by
defining the service capabilities and how it can be invokealservice description doc-
ument. Figure 1 shows the basic concepts behind SOA, subke different players and
interactions required in this architecture.

Service Registry

sx) Service
Description

N
“>=H-publish service

S, . -
ii) request seryice L . \‘desmlptwom

R4 R4 Ry AN
{ RS \‘ SX
'."'.'m) retrieve service
[descriptions N
N -
Sx Serwcg
Description
m Service
3 Ly ma
Service Service

User Provider/Developer

Fig. 1. Service-Oriented Architecture concepts and interactions

SOA is not an implementation technology but a set of prirgsipthat can be imple-
mented in different concrete technologies. One of the mashment and widely used
technologies for implementing the SOA principles is Welviges, which is a technol-
ogy with high industrial acceptance, for which many staddamd tools are available.
This allows developers or service providers to create afdigfuservices, and allow
potential users (Service users) to discover services asdilgy invoke them. Some
of these standards are Web Services Definition Language (WET Simple Object
Access Protocol (SOAP) [8], Universal Description, Disegvand Integration (UDDI)
[9], and Business Process Execution Language (WS-BPEI) Th@y allow one to de-
scribe services, exchange messages, publish/discovaresdescriptions and compose
services, respectively. More standards have been devklogech aim at addressing
all the additional issues concerning Web services systems.

76

2.2 Why Dynamic Composition

Traditionally service developers make application sexyiitom scratch, triggered by a
specific request from the service users or by the identifinadf some potential (busi-

ness) opportunity. This approach is time consuming, ardsleaany times, to the du-
plication of already existing functionality. FollowingehSOA principles, service de-
velopers can instead create compositions of existing aes\ub fulfill some given user

needs. Nowadays there are plenty of tools to support deeedap the task of service
composition, and these tools tend to facilitate (ease atichie) this task, enabling

the re-use of existing services. However, the current aareonsists of the creation
of static service compositions, with fixed service end-fgitargeting a specific group
of service users. We argue that more dynamic compositiohamsms have to be de-
veloped to allow the creation of more personalized, addgtabd context sensitive
services.

Assuming that different services are available that carismodered and composed,
we claim that more dynamic mechanisms can be used to acbiedemandservice
composition, given a specific user service request. Thisdsssence of dynamic ser-
vice compositionperform the composition of existing services on demand tichma
specific user requirements and preferendeghis paper we motivate dynamic service
composition based on a specific user service request, sugtéke user request, con-
text and preferences into account in the service compagitiocess. Dynamic service
composition may also address, such as, for example, theaditapof a service compo-
sition in case a service component is unavailable, implftiag an alternative service is
discovered to replace the unavailable one, however thistithe focus of this paper. In
[11] other research challenges have been identified in & @frservice composition,
however is clear that much focus is given to the creation afendgnamic mechanisms
for service composition.

To achieve dynamic service composition, frameworks to dioatte all the phases of
the service composition life-cycle are required. If su@nfeworks are available, users
will be able to develop more personalized services, acongridi their needs.

3 Scenariosfor Dynamic Service Composition

The most natural scenarios for service composition@ternet-basedThis is mainly

justified by the big number of applications that are avadaklhich can be exposed as
services (e.g., web services). Considering that the peosidf these services publish
their descriptions in a service registry, other users oriserdevelopers can discover
and make use of these services. For example, if there aresgithat provide lists

of hotels and lists of taxi companies given a location, antligsser may on-demand
create a new service that allows to book a hotel and givendtatibn of the hotel

book a taxi to take him from the airport to the hotel. Anothlelac example concerns
inter-organisational (business) computing. If differerganisations provide specialized
services to each other, each organisation can focus onaweirexpertise and simply
outsource some services by reusing other organisatiorvices to achieve the func-
tionality they require. This inter-organisational cocgtérn allow partners to reduce the
cost and possibly optimize their products, since they cangwmn the problem to be

77

solved, avoiding to tackle all the less important issuesdharequired to solve it. The
main issue in this situation, most of the time, is not the isereomposition process at
the technical level, but the contractual issues. This isuinapinion one of the great-
est barriers to the actual usage of service-oriented aathites in inter-organizational
systems.

Another interesting scenario is concerned withbile computingin which mobile
devices are provided with some functionality, but rely onksand systems to perform
the most complex computations and provide the necessaricasrin [12] these ser-
vices are described &eld Web services he idea of this scenario is to provide tiedd
mobile user device with the necessary functionality toreatewith the back-end sys-
tems, and perform all the more complex computing tasks ohdlok-end systems. This
is an emerging idea, and is gaining a lot of attention frorfedént parties, especially
from telecom service providers. If service users are prexvigith basic frameworks that
allow them to discover and compose available servazgavhere and anytimaccord-
ing to their context and preferences, companies may cregsasource of revenue by
providing such personalised services. This hybrid systeobfle clients and back-end
server system) has a lot of potential applications, andHéscurrent trend of moving
user client to mobile platforms. Another advantage that lsarioreseen in applying
SOA principles in mobile computing environments is that S@Avides a natural en-
vironment for task distribution, which allows one to savééry life of mobile devices.
This issue is a very well known problem in mobile computingaa, since it is often
a bottleneck for the usage of mobile devices. In [13] sevideds and challenges to
the application SOA principles in mobile environments aiscdssed, as well as how
more mature SOA principles applied to wired environmentstoa adapted to mobile
environments.

These examples differ in their nature and application afBasinternet-basedce-
nario seems to be the most natural and also the most suitsearso for service com-
position at the moment. However, tihdobile computingscenario, due to the intrin-
sic mobility of the users, provide interesting applicat@pportunities to be explored.
We expect that both scenarios will increase the usage ofceeoviented architecture
techniques, mainly triggered by the flexibility providedsiych architectural approach.
Dynamic service composition techniques will allow one td@ss the personalization,
context and preferences of the users in any of these scenatits implies that efforts
have to be made to allow the dynamic composition of services.

4 Service Composition Life-cycle

To present our framework for dynamic service compositioffiggeintroduce the notion
of service composition life-cycfer dynamic service composition. Figure 2 shows the
different phases and the different perspectives of thaseoomposition life-cycle.

In the context of service-oriented systems different pectipes (or parties) have to
be considered in the service composition creation and ¢xeclife-cycle. We admit
that there are two main perspectives in this life-cycle:$eevice useand theService
developer/provideperspectives. Other authors distinguish the service dpeelfrom
the service provider. However, to simplify the discussiwe, assume that the service

78

A 4
Service publication |(__|Service creation |(__

Service
developer/provider

% Service registry

Service developer A 4

Service request l_)| Service discovery |__>|Serv|cecompos|l|on

i <—‘ = A
Service composition

selection
End-user

Service user

Fig. 2. Service composition life-cycle.

developer and the service provider are the same entity ififeacycle. The service

user can be an end-user, a person without much technicall&dge; or can also be a
service developer, who makes use of services that are phopsilvided by other service
developers/providers to create new value-added services.

From the perspective of the service developer/provides, tmain phases can be
identified:service creatiomndservice publicationThe service creation phase basically
focuses on the creation of the application service. An appbn service may be a
new application created from scratch, or may consist of pedplegacy or existing
applications exposed as a service with a well-defined imterf The service creation
can alternatively consist on the construction of a new seregomposition, meaning
that a service developer/provider simply re-uses existinyices to compose a new
value-added service. After the creation of a new servicepéce descriptions for this
service should be published in a service registry. The patitin phase consists on the
publication of the service description document, so theisercan be later discovered
by possible service users.

From the perspective of the service user, several phasesecalentified:service
requestspecificationservice discoveryservice compositignservice composition se-
lection The service request specification consists of the definiifdhe desired service
properties and goals. This information is used to perfonwise discovery, and to drive
the service composition and selection processes. Two npgiroaches to service dis-
covery can be considered: discover all the relevant sesvarethe composition, based
on the service request; or iteratively discover the reguservices during the service
composition process. A combination of these two approacéieslso be considered, in
which all the relevant services are considered first and¢la services are discovered
on-demand at composition time, in case the set of discowamites is not sufficient to
complete the service composition process. Independehligw the service discovery
phase is implemented, it is always made based on informagienified in the service

79

request. The next phase is the actual service compositioereran algorithm for the
creation of a service composition plan is used to match tee service request for a
composition. Given the set of discovered services, diffeadternative service compo-
sition plans may be generated. In this case, the next phasést®on the selection of a
service composition, again based on properties of the eseice request such as, for
example, cost, reliability and response time, and his comated preferences. Addition-
ally, and not stated in the figure, for the end-user case ésadeployment phase must
also exist, so the service can be deployed to be ready fouggacln Figure 2 there is
another possible phase in the perspective of the servicemamly the service devel-
oper - theService publicationThis phase consists on the publication of a service that is
created dynamically for a given service user. This motiw#te use of dynamic service
composition mechanisms to support not only end-users, Ibatservice developers,
who can then publish the generated service compositions.

In this service composition life-cycle we ignored sevesalies, such as for example
service binding, service deployment. We intentionallyagrthese details, leaving them
open to be addressed in the concrete frameworks for dynarmgasition of services,
since these operations can be specified in different phdsles life-cycle.

5 Framework for Dynamic Service Composition

Figure 3 presents our initial framework for dynamic sendoenposition, following the
life-cycle presented in the Section 4.

Figure 3, shows that our framework makes uses of ontologiesdrvice creation
and description, service request description and alscefwice discovery and the con-
struction of service compositions. In computer sciencegratiology consists of a for-
mal specification of a conceptualization of a given domalris Tormalization allows

Domain Ontologies

. A 4 '

3 Service Spatel

. N description publication service creation

. "‘ “\ Service
% \ 5 Service registry

developer/provider
Service developer - Service discovery S s r
Service request and raph-base
. composition
Matrix construction

Selection based on
Non-functional props

and semantics

End-user

Service user

Fig. 3. Framework for dynamic service composition.

80

the description of a domain at a semantic level. This serméauel description enables
automatic reasoning, i.e., without human interventioroun framework we make use
of this possibility to perform the service composition tthesm a service request and
the service description of the existing services, both eptedescribed in common
ontologies.

Our framework is being implemented in the context of the $P(Service Plat-
form for Innovative Communication Environments) projet4]. In the SPICE project
a language called Spatel [15] has been defined to suppontd¢han, composition and
execution of services and service compositions. Anothepgnty of this language is
that it allows semantic annotations to be associated tdacgeoperations and proper-
ties. Provided with the Spatel language, a service develogre create new services,
and semantically annotate them according to ontologiebe&érvice domain. In our
framework this is done by th8patel service creatiomodule. Another language could
be used that support semantically annotated services,asifitr example SAWSDL
[16]. After the service is created, such annotations cansied in theService descrip-
tion publicationmodule, to publish the necessary information to enablesediscov-
ery. These modules reflect the life-cycle service develppavider perspective in the
framework.

From the perspective of the service user, the first step weidenin the framework
is the definition of theService requesiThe service request has to express the goal(s)
of the service user for his service, so that the necessacpwisy and composition of
existing services can take place. We define a service request XML-based format,
as follows:

<Servi ceRequest >
<l nputs>..</Inputs>
<Qut put s>. . </ Qut put s>
<Precondi tions>..</Precondi tions>
<Effects>..<Effects/>
<QGoal s>. . </ Goal s>
<Non-functional >.. </ Non-functi onal >
<Ont ol ogi es>. . </ Ont ol ogi es>
</ Servi ceRequest >

At the moment we are experimenting with simple statelesdaees, not taking into ac-
count complex service behaviors. The service request afmveseven different types
of annotations. The servideputs Outputs PreconditionsaandEffects(IOPESs) refer to
specific input, output, precondition and effect parametessthe service composition
has to contain and satisfy. T»alsannotations describe specific goals that the service
composition has to fulfill, such as, for example: translbtmkTicket, findDoctor. The
Non-functionalproperties specify some additional requirements that éineice com-
position has to fulfill, such as, for example: maximum costhaf service composition
and minimum level of security. Th@ntologiedists the ontologies used to specify the
service request properties. This means that each propestiotbe specified following
a defined concept in a valid domain ontology. An example ofreice request is the
following:

81

<Servi ceRequest >
<I nput s>
<"LanguageOnt #Language" nane="srclLang">
<"LanguageOnt #Engl i sh" name="tr gt Lang" >
<"LanguageOnt #Text" nanme="t xt ToTrans" >
<"Tel econOnt #PhoneNuni’ nanme="dest Nunber" >
</ I nput s>
<Qut put s>
<"Tel ecomOnt #AckSMS" nane="Acknow edgnent SM5" >
</ Qut put s>
<Precondi ti ons/ ><Effects/>
<Coal s>
<"Coal Ont #transl ate" >
<" Goal Ont #sendSMB" >
</ Goal s>
<Non- f uncti onal >
<" NFPOnt #Cost " val ue=0, 50 EUR>
</ Non-functi onal >
<Ont ol ogi es>
<"Goal Ont" "Tel ecomnt” "NFPOnt" "LanguageOnt" >
</ Ont ol ogi es>
</ Servi ceRequest >

This service request denotes a service that performs th&lataon of a text from a given
language to English, and sends the result by SMS to a sped#jghitone number. Fur-
thermore the service should not cost more that 0,50 EUR.sHmisce request specifies
the necessary inputs for the service, i.e., the text to eskaged, the source and target
languages for the translation, and the telephone numbehnidwvthe message has to be
sent. The output of the service request is a simple ackngmiedt that the SMS mes-
sage has been received. The goals are to translate and s&\Samessage. Finally,
the ontologies used to specify the annotations are alsallistthe service request.
Once the service request is available Bervice discovery and matrix construc-
tion module can be used to perform the discovery of the necessaricas and orga-
nize them into a matrix that facilitates the constructiorthe# actual service compo-
sitions by theGraph-based compositiomodule. We perform service discovery based
on service goals. For example, in the service request avavegybals are specified:
GoalOnt#translate andGoalOnt#sendSM S. Based on these goals the service dis-
covery module queries the service registry (an UDDI-basgistry, extended with se-
mantic support) for services with goal annotations serallyirelated with the service
request goals. After retrieving all the matching servitiesy are organized in@ausal
Link Matrix (CLM™) [17], which is a formalism that allows the representatioalbthe
possible semantic links between the discovered servicgseBiantic links we mean
the connection between services inputs and outputs, whictiescribed with semantic
annotations using common ontologies, to allow their coritfprsand interoperability.
Once the CLM is created, th&raph-based compositianodule can perform the
necessary service composition. The service compositgori#hm consists of a graph-
based algorithm that uses the service request specificationive the composition
process. It starts from the specified service request cugnat composes services back-

82

wards until all the requested service inputs are matchedite requested goals are
resolved. At each iteration, the composition algorithmakisewhether the requested
non-functional properties are met by the service compmsiif these are not met the
composition is discarded.

At the end of the process several service compositions mayeberated. To help
select a particular composition we rank the generated cesitipos according the spec-
ified non-functional properties and the services semairtics! This is an important
issue, since if the service user is an end-user without arntdogical knowledge, he
expects to obtain a running service. This implies that aqader composition has to be
selected if alternative service compositions are possiblhe future we also intend to
take the user’s context into account in the selection of thetrappropriate service.

We refer to [18] for a discussion in the CLVcreation, the graph-based composi-
tion algorithm and the proposed ranking algorithm for sesvdomposition selection.

6 Redated Work

The area service composition is a very active area of relseawadays. Different as-
pects of service composition are being studied. Howeveirtfegration of the differ-
ent parts of the process of service composition, from theieerequest to the actual
runnable service composition, using dynamic and autonmaéchanisms is still not
addressed by many.

[19] address the problem of interleaving web service discpand composition,
considering only simple workflows where web services haweinput and one output
parameter. In this case the web service composition plaasigicted to a sequence
of limited web services corresponding to a linear workflonmafb services. In our
framework we propose a formalism to support the compositiaervices with multiple
inputs and outputs, and also address the other phases dfetfoydle of the service
composition process.

In [20] an algorithm for automatic composition of servicepresented. The service
composition is considered as a directed graph, where naddmked by the seman-
tic matching compatibility Exact, Subsume, PlugIn, Disjoint) between input and
output parameters. Based on this graph, the shortest segjoémweb services from
the initial requirements to the goal can be determined. @apgoach compute the best
composition according to the semantic similarity of outpotl input pa rameters of
web services, but it does not consider any non-functiongp@rties of the composi-
tion services. We consider this to be a very pertinent pairtéke into account, since
the selection of the most suitable service compositionsremey times based on such
properties (e.g.: cost, security, etc.).

In [21] a semi-automatic composition process is proposegxktéorm the composi-
tion of web services. This approach supports the systemarsére selection of web
services for each activity in the composition, and to crdlaig specifications to link
them. The discovery process consists on finding matchingcgs, meaning web ser-
vices that provide outputs that can be fed as input on thécgsrthat exist in the service
composition. After selecting all the services, the systemegates a composite process
in DAML-S [22]. The composition is executed by calling eagmsce separately, and

83

passing the results between services according to the fleeifgmtions. This process
grant a higher control over the composition process, whsctometimes desirable for
service developers. However, and since the compositiazegsis semi-automatic, end-
users without technical knowledge can’t usually make ughisfapproach. Our frame-

work deals with the composition process in a more abstrataatomated way, which

allow its usage by both service developers and end-users.

7 Conclusionsand Future Work

In this paper we motivate dynamic service composition. Vééntlthat given the cur-
rent trends on computer and communication systems an seesage of distributed
application services is expected. This implies that newlarisms and architectures
are required to support such systems, and also to provide with tools to use these
new application services. The main architectural priresgb support these ideas can
be found in the Service-Oriented Architecture (SOA).

To motivate the creation of mechanisms for dynamic servimaposition we pro-
vide two potential scenarios suitable for service compmsitthe Internet-basedce-
nario, where several services can be published or advertisel one can make use of
them to compose new application services, reusing theimgiservices; and thi&lo-
bile computingscenario, which has a lot of potential with the emergence olbita
devices and communications. In the later scenario meamarase required to support
mobile users, providing them with minimal functionality tae mobile terminal, and
performing the complex tasks at the back-end server systems

We conclude by providing some initial ideas on how to tackke problem of dy-
namic composition of services. We discuss a dynamic senoogposition life-cycle,
showing the phases, and perspectives that are necessamyporsthe process of dy-
namic composition of services. Based on this we present ratiali framework for
dynamic composition of services, from the service user esgito the actual service
composition.

In the future we plan to explore further our ideas and impitxeeproposed frame-
work towards a generic framework to support dynamic serg@aposition using dif-
ferenttechnologies in different application scenarid following research challenges
have been identified:

1. The service request module has to accept user servicestsgn an abstract form,
to support not so technical skilled users. It has also teecbontext information
and other user preferences, to be used in the compositice§so

2. At the moment we perform service discovery based on theifsgge goals on the
service request, but it is clear that other services may lededat composition
time to complete a service composition. Given this, medrasito make service
discovery at composition time have also to be considereadriramework.

3. The use of ontologies is clearly required to allow such mattyic mechanism for
service composition. Nevertheless how and where thesdogids are defined is
still fuzzy. This is an issue that may have very interestesggearch challenges.

4. The proposed framework is being prototyped, following finoposed modular ar-
chitecture. The aim is to provide a very modular architextsw one can easily

84

extend it and support other service description languagebkservice composition
languages. We plan to evaluate the prototype in a specifitasicein the e-health

domain, specifying for this a library of services and alse tiecessary ontologies
to describe the domain.

Acknowledgements

This work is supported by the European IST SPICE project-Q37617) and the Dutch
Freeband A-MUSE project (BSIK 03025).

References

1.

2.

10.

11.

12.

13.

14.

15.

Gartner: Gartner highlights key predictions for it origations and users in 2008 and beyond.
http://gartner.com/it/page.jsp?id=593207 (January8200

Erl, T.. Service-Oriented Architecture: Concepts, Tedhgy, and Design. Prentice Hall
(2005)

. O'Reilly, T.: The open source paradigm shift. In: Perspes on Free and Open Source

Software, The MIT Press (July 2005) 461 — 481

. Jorstad, I., van Thanh, D.: Service personalisation ibiladieterogeneous environments. In:

Advanced International Conference on Telecommunicatmasnternational Conference on
Internet and Web Applications and Services, IEEE Compubeiedy (February 2006) 70 —
75

. Raymond, E.S.: The Cathedral and the Bazaar. O’'Reilly &o&fates, Inc., Sebastopol, CA,

USA (1999)

. MacKenzie, C.M., Laskey, K., McCabe, F., Brown, P.F., #&R.: Reference model for

service oriented architecture 1.0. Technical report, GBA&Ictober 2006)

. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, &b ¥érvices description language

(wsdl) version 2.0. http://www.w3.0rg/TR/wsdI20/ (Jur@0Z)

. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J.|$m, H.F., Karmarkar, A., Lafon,

Y.: Simple object access protocol (soap) version 1.2. Mipw.w3.0org/TR/soapl2-partl/
(April 2007)

. Clement, L., von Riegen, A.H., Rogers, T.: Universal dgsion discovery and integration

(uddi) version 3.0. http://uddi.org/pubs/udeB.htm (October 2004)

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., K/éi., Leymann, F., Liu, K., Roller, D.,
Smith, D., Thatte, S., Trickovic, |., Weerawarana, S.: Bass process execution language
for web services, version 1.1 (May 2003)

Papazoglou, M.P., Traverso, P., Dustdar, S., Leyman&gfvice-oriented computing: State
of the art and research challenges. |IEEE Compd@€t1) (2007) 38 — 45

Papazoglou, M.P.: Web Services: Principles and TeolggoPrentice Hall (2007)

Sen, R., Handorean, R., Roman, G.C., Gill, C.: Servidgertted Computing Imperatives in
Ad Hoc Wireless Settings. In: Service-Oriented Softwarst&y Engineering: Challenges
And Practices. Idea Group Publishing (2005) 247 — 269

Cordier, C., Carrez, F., van Kranenburg, H., Liccia€li, van der Meer, J., Spedalieri, A.,
Rouzic, J.P.L.: Addressing the challenges of beyond 3Gis=delivery: the SPICE plat-
form. In: 6th International Workshop on Applications and\8ees in Wireless Networks.
(May 2006)

Almeida, J.P., Baravaglio, A., Belaunde, M., FalcaRn,Kovacs, E.: Service creation in
the spice service platform. In: Wireless World Researctuffomeeting on "Serving and
Managing users in a heterogeneous environment”. (Nove2028)

16.

17.

18.

19.

20.

21.

22.

85

Sivashanmugam, K., Verma, K., Sheth, A., Miller, J.: Addsemantics to web services
standards. In: 1st International Conference on Web Sexv{2803) 395-401

Lécué, F., Léger, A.: A formal model for semantic websce composition. In: International
Semantic Web Conference. LNCS, vol. 4273 (2006) 385-398

Lécué, F., Silva, E., Pires, L.F.: A framework for dgma web services composition. In: 2nd
ECOWS Workshop on Emerging Web Services Technology, CEURSkop Proceedings
(November 2007)

Lassila, O., Dixit, S.: Interleaving discovery and casition for simple workfows. In: First
International Semantic Web Services Symposium. (2004)

Zhang, R., Arpinar, |.B., Aleman-Meza, B.: Automatiamuosition of semantic web ser-
vices. In: 1st International Conference on Web Service303238-41

Sirin, E., Hendler, J.A., Parsia, B.: Semi-automatimposition of web services using se-
mantic descriptions. In: 1st Workshop on Web Services: MogeArchitecture and Infras-
tructure. (2003) 17-24

Burstein, M.H., Hobbs, J.R., Lassila, O., Martin, D.M¢Dermott, D.V., Mcllraith, S.A,,
Narayanan, S., Paolucci, M., Payne, T.R., Sycara, K.P.:|BakVeb service description for
the semantic web. In: International Semantic Web Conferef2002) 348363

